Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33473
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳平(Richard Ping Cheng)
dc.contributor.authorYu-Te Tingen
dc.contributor.author丁毓德zh_TW
dc.date.accessioned2021-06-13T04:42:30Z-
dc.date.available2015-08-01
dc.date.copyright2011-08-01
dc.date.issued2011
dc.date.submitted2011-07-27
dc.identifier.citationReferences:
Chapter 1
1.Crick, F. Central dogma of molecular biology. Nature 1970, 227, 561.
2.Lektin, A.; Osmol, M. Self-replication of a channel-forming protein invitro. Biophys. J. 1986, 49, A414-A414.
3.Yao, S.; Ghosh, I.; Zutshi, R.; Chmielewski, J. A self-replicating peptide under ionic control. Angew. Chem. Int. Edi. 1998, 37, 478-481.
4.Dadon, Z.; Samiappan, M.; Safranchik, E. Y.; Ashkenasy, G. Light-induced peptide replication controls logic operations in small networks. Chem. Eur. J. 2010, 16, 12096-12099.
5.Burd, C. G.; Dreyfuss, G. Conserved structures and diversity of functions of Rna-binding proteins. Science 1994, 265, 615-621.
6.Mermall, V.; Post, P. L.; Mooseker, M. S. Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 1998, 279, 527-533.
7.Lamond, A. I.; Earnshaw, W. C. Structure and function in the nucleus. Science 1998, 280, 547-553.
8.Wickner, S.; Maurizi, M. R.; Gottesman, S. Posttranslational quality control: folding, refolding, and degrading proteins. Science 1999, 286, 1888-1893.
9.Cyster, J. G. Chemokines - Chemokines and cell migration in secondary lymphoid organs. Science 1999, 286, 2098-2102.
10.Rudd, P. M.; Wormald, M. R.; Dwek, R. A. Glycosylation and the immune system. J. Protein Chem. 1998, 17, 519-519.
11.Brivanlou, A. H.; Darnell, J. E. Transcription - signal transduction and the control of gene expression. Science 2002, 295, 813-818.
12.Klingenberg, M. Membrane-protein oligomeric structure and transport function. Nature 1981, 290, 449-454.
13.Hannon, G. J. RNA interference. Nature 2002, 418, 244-251.
14.Orengo, C. A.; Todd, A. E.; Thornton, J. M. From protein structure to function. Curr. Opin. Struct. Biol. 1999, 9, 374-382.
15.Wright, P. E.; Dyson, H. J. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Mol. Biol. 1999, 293, 321-331.
16.Paschalis, E. P.; Roschger, P.; Fratzl, P.; Zoehrer, R.; Roschger, A.; Manjubala, I.; Gainsjaeger, S.; Zysset, P.; Robins, S. P.; Klaushofer, K. Collagen's contribution to bone strength. Calcif. Tissue Int. 2008, 82, S51-S51.
17.Perumal, S.; Antipova, O.; Orgel, J. P. R. O. Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. Proc. Natl. Acad. Sci. USA 2008, 105, 2824-2829.
18.Perutz, M. F.; Rossmann, M. G.; Cullis, A. F.; Muirhead, H.; Will, G.; North, A. C. T. Structure of haemoglobin - 3-dimensional fourier synthesis at 5.5-A resolution, obtained by X-Ray analysis. Nature 1960, 185, 416-422.
19.Schellman, J. A.; Schellman, C. G. Kaj Ulrik Linderstrom-Lang (1896-1959). Protein Sci. 1997, 6, 1092-1100.
20.Yip, K. S. P.; Stillman, T. J.; Britton, K. L.; Artymiuk, P. J.; Baker, P. J.; Sedelnikova, S. E.; Engel, P. C.; Pasquo, A.; Chiaraluce, R.; Consalvi, V.; Scandurra, R.; Rice, D. W. The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure 1995, 3, 1147-1158.
21.Pauling, L.; Corey, R. B.; Branson, H. R. The structure of proteins - 2 hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. USA 1951, 37, 205-211.
22.Agawa, Y.; Lee, S.; Ono, S.; Aoyagi, H.; Ohno, M.; Taniguchi, T.; Anzai, K.; Kirino, Y. Interaction with phospholipid-bilayers, ion channel formation, and antimicrobial activity of basic amphipathic α-helical model peptides of various chain lengths. J. Biol. Chem. 1991, 266, 20218-20222.
23.Sansom, M. S. P.; Kerr, I. D.; Mellor, I. R. Ion channels formed by amphipathic helical peptides - a molecular modeling study. Eur. Biophys. J. 1991, 20, 229-240.
24.Chasteen, N. D.; Harrison, P. M. Mineralization in ferritin: an efficient means of iron storage. J. Struct. Biol. 1999, 126, 182-194.
25.Fishburn, J.; Mohibullah, N.; Hahn, S. Function of a eukaryotic transcription activator during the transcription cycle. Mol. Cell 2005, 18, 369-378.
26.Parry, D. A. D.; Strelkov, S. V.; Burkhard, P.; Aebi, U.; Herrmann, H. Towards a molecular description of intermediate filament structure and assembly. Exp. Cell Res. 2007, 313, 2204-2216.
27.Hope, I. A.; Struhl, K. GCN4, a eukaryotic transcriptional activator protein, binds as a dimer to target DNA. EMBO J. 1987, 6, 2781-2784.
28.Hashimoto, M.; Rockenstein, E.; Crews, L.; Masliah, E. Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer's and Parkinson's diseases. Neuromolecular Med. 2003, 4, 21-35.
29.Nemethy, G.; Printz, M. P. γ-Turn, a possible folded conformation of polypeptide chain - comparison with β-Turn. Macromolecules 1972, 5, 755-758.
30.Blanco, F. J.; Rivas, G.; Serrano, L. A Short linear peptide that folds into a native stable β-hairpin in aqueous-solution. Nat. Struct. Biol. 1994, 1, 584-590.
31.Kanyo, Z. F.; Pan, K. M.; Williamson, R. A.; Burton, D. R.; Prusiner, S. B.; Fletterick, R. J.; Cohen, F. E. Antibody binding defines a structure for an epitope that participates in the PrPC -> PrPSc conformational change. J. Mol. Biol. 1999, 293, 855-863.
32.Brandhuber, B. J.; Boone, T.; Kenney, W. C.; Mckay, D. B. 3-dimensional structure of interleukin-2. Science 1987, 238, 1707-1709.
33.Hendrickson, W. A.; Klippenstein, G. L.; Ward, K. B. Tertiary structure of myohemerythrin at low resolution. Proc. Natl. Acad. Sci. USA 1975, 72, 2160-2164.
34.Baldwin, R. L. The nature of protein-folding pathways - the classical versus the new view. J. Biomol. NMR 1995, 5, 103-109.
35.Dill, K. A. Dominant forces in protein folding. Biochemistry 1990, 29, 7133-7155.
36.Pace, C. N. Evaluating contribution of hydrogen bonding and hydrophobic bonding to protein folding. Energ. of Biol. Macromol. 1995, 259, 538-554.
37.Perutz, M. F.; Kendrew, J. C.; Watson, H. C. Structure and function of haemoglobin: II. some relations between polypeptide chain configuration and amino acid sequence. J. Mol. Biol. 1965, 13, 669-678.
38.Chothia, C. Hydrophobic bonding and accessible surface-area in proteins. Nature 1974, 248, 338-339.
39.Wertz, D. H.; Scheraga, H. A. Influence of water on protein-structure - analysis of preferences of amino-acid residues for inside or outside and for specific conformations in a protein molecule. Macromolecules 1978, 11, 9-15.
40.Guy, H. R. Amino-acid side-chain partition energies and distribution of residues in soluble-proteins. Biophys. J. 1985, 47, 61-70.
41.Elcock, A. H. The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins. J. Mol. Biol. 1998, 284, 489-502.
42.Xiao, L.; Honig, B. Electrostatic contributions to the stability of hyperthermophilic proteins. J. Mol. Biol. 1999, 289, 1435-1444.
43.Takano, K.; Tsuchimori, K.; Yamagata, Y.; Yutani, K. Contribution of salt bridges near the surface of a protein to the conformational stability. Biochemistry 2000, 39, 12375-12381.
44.Horovitz, A.; Serrano, L.; Avron, B.; Bycroft, M.; Fersht, A. R. Strength and cooperativity of contributions of surface salt bridges to protein stability. J. Mol. Biol. 1990, 216, 1031-1044.
45.Strop, P.; Mayo, S. L. Contribution of surface salt bridges to protein stability. Biochemistry 2000, 39, 1251-1255.
46.Thomas, A. S.; Elcock, A. H. Molecular simulations suggest protein salt bridges are uniquely suited to life at high temperatures. J. Am. Chem. Soc. 2004, 126, 2208-2214.
47.Elcock, A. H.; McCammon, J. A. Continuum solvation model for studying protein hydration thermodynamics at high temperatures. J. Phys. Chem. B. 1997, 101, 9624-9634.
48.Chou, P. Y.; Fasman, G. D. Prediction of protein conformation. Biochemistry 1974, 13, 222-245.
49.Cheng, R. P.; Girinath, P.; Suzuki, Y.; Kuo, H. T.; Hsu, H. C.; Wang, W. R.; Yang, P. A.; Gullickson, D.; Wu, C. H.; Koyack, M. J.; Chiu, H. P.; Weng, Y. J.; Hart, P.; Kokona, B.; Fairman, R.; Lin, T. E.; Barrett, O. Positional effects on helical Ala-based peptides. Biochemistry 2010, 49, 9372-9384.
50.Leeper, T. C.; Athanassiou, Z.; Dias, R. L. A.; Robinson, J. A.; Varani, G. TAR RNA recognition by a cyclic peptidomimetic of Tat protein. Biochemistry 2005, 44, 12362-12372.
Chapter 2
1.Elcock, A. H. The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins. J. Mol. Biol. 1998, 284, 489-502.
2.Xiao, L.; Honig, B. Electrostatic contributions to the stability of hyperthermophilic proteins. J. Mol. Biol. 1999, 289, 1435-1444.
3.Horovitz, A.; Serrano, L.; Avron, B.; Bycroft, M.; Fersht, A. R. Strength and cooperativity of contributions of surface salt bridges to protein stability. J. Mol. Biol. 1990, 216, 1031-1044.
4.Strop, P.; Mayo, S. L. Contribution of surface salt bridges to protein stability. Biochemistry 2000, 39, 1251-1255.
5.Takano, K.; Tsuchimori, K.; Yamagata, Y.; Yutani, K. Contribution of salt bridges near the surface of a protein to the conformational stability. Biochemistry 2000, 39, 12375-12381.
6. Serrano, L. Comparison between the φ distribution of the amino-acids in the protein
database and NMR data indicates that amino-acids have various φ propensities in
the random coil conformation. J. Mol. Biol. 1995, 254, 322-333.
7. Chou, P. Y.; Fasman, G. D. Prediction of protein conformation. Biochemistry 1974,
13, 222-245.
8. Cheng, R. P.; Girinath, P.; Suzuki, Y.; Kuo, H. T.; Hsu, H. C.; Wang, W. R.; Yang,
P. A.; Gullickson, D.; Wu, C. H.; Koyack, M. J.; Chiu, H. P.; Weng, Y. J.; Hart, P.;
Kokona, B.; Fairman, R.; Lin, T. E.; Barrett, O. Positional effects on helical
Ala-based peptides. Biochemistry 2010, 49, 9372-9384.
9. Hope, I. A.; Struhl, K. Gcn4, a eukaryotic transcriptional activator protein, binds as
a dimer to target DNA. EMBO J. 1987, 6, 2781-2784.
10. Jones, S. W.; Christison, R.; Bundell, K.; Voyce, C. J.; Brockbank, S. M. V.;
Newham, P.; Lindsay, M. A. Characterisation of cell-penetrating peptide-mediated
peptide delivery. Br. J. Pharmacol. 2005, 145, 1093-1102.
11. Leeper, T. C.; Athanassiou, Z.; Dias, R. L. A.; Robinson, J. A.; Varani, G. TAR
RNA recognition by a cyclic peptidomimetic of Tat protein. Biochemistry 2005, 44,
12362-12372.
12. Doig, A. J.; Baldwin, R. L. N- and C-capping preferences for all 20 amino-acids in
α-helical peptides. Protein Sci 1995, 4, 1325-1336.
13. Chakrabartty, A.; Kortemme, T.; Baldwin, R. L. Helix propensities of the
amino-acids measured in alanine-based peptides without helix-stabilizing
side-chain interactions. Protein Sci. 1994, 3, 843-852.
14. Padmanabhan, S.; York, E. J.; Stewart, J. M.; Baldwin, R. L. Helix propensities of
basic amino acids increase with the length of the side-chain. J. Mol. Biol. 1996, 257,
726-734.
15. Cheng, R. P.; Weng, Y. J.; Wang, W. R.; Suzuki, Y.; Wu, C. H.; Yang, P. A.; Hsu,
H. C.; Kuo, H. T.; Girinath, P. Helix formation and capping energetics of arginine
analogs with varying side chain length. 2011.Unpublished.
16. Zimm, B. H.; Bragg, J. K. Theory of the phase transition between helix and random
coil in polypeptide chains. J. Chem. Phys. 1959, 31, 526-535.
17. Lifson, S. Theory of helix-coil transition in polypeptides. J. Chem. Phys. 1961, 34,
1963-1974.
18. Chou, P. Y.; Fasman, G. D. Conformational parameters for amino-acids in helical,
β-Sheet, and random coil regions calculated from proteins. Biochemistry 1974, 13,
211-222.
19. Merutka, G.; Stellwagen, E. Effect of amino-acid ion-pairs on peptide helicity.
Biochemistry 1991, 30, 1591-1594.
20. Merutka, G.; Shalongo, W.; Stellwagen, E. A model peptide with enhanced helicity.
Biochemistry 1991, 30, 4245-4248.
21. Cheng, R. P.; Girinath, P.; Ahmad, R. Effect of lysine side chain length on
intra-helical glutamate-lysine ion pairing interactions. Biochemistry 2007, 46,
10528-10537.
22. Stellwagen, E.; Park, S. H.; Shalongo, W.; Jain, A. The contribution of residue
ion-pairs to the helical stability of a model peptide. Biopolymers 1992, 32,
1193-1200.
23. Baldwin, S. M. a. R. L. Helix stabilization by Glu-Lys salt bridges in short
peptides of de novo design. Proc. Natl. Acad. Sci. USA 1987, 84, 8898-8902.
24. Scholtz, J. M.; Qian, H.; Robbins, V. H.; Baldwin, R. L. The energetics of ion-pair
and hydrogen-bonding interactions in a helical peptide. Biochemistry 1993, 32,
9668-9676.
25. Robert, C. H. A hierarchical nesting approach to describe the stability of α-helices
with side-chain interactions. Biopolymers 1990, 30, 335-347.
26. Huyghuesdespointes, B. M. P.; Scholtz, J. M.; Baldwin, R. L. Helical peptides with
3 pairs of Asp-Arg and Glu-Arg residues in different orientations and spacings.
Protein Sci. 1993, 2, 80-85.
27. Doig, A. J.; Chakrabartty, A.; Klingler, T. M.; Baldwin, R. L. Determination of
free-energies of N-capping in α-helices by modification of the Lifson-Roig
helix-coil theory to include N-capping and C-capping. Biochemistry 1994, 33,
3396-3403.
28. Yip, K. S. P.; Stillman, T. J.; Britton, K. L.; Artymiuk, P. J.; Baker, P. J.;
Sedelnikova, S. E.; Engel, P. C.; Pasquo, A.; Chiaraluce, R.; Consalvi, V.;
Scandurra, R.; Rice, D. W. The structure of Pyrococcus furiosus glutamate
dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme
stability at extreme temperatures. Structure 1995, 3, 1147-1158.
29. Davies, G. J.; Gamblin, S. J.; Littlechild, J. A.; Dauter, Z.; Wilson, K. S.; Watson,
H. C. Structure of the ADP complex of the 3-phosphoglycerate kinase from
Bacillus stearothermophilus at 1.65 Angstrom. Acta. Crystallogr. D 1994, 50,
202-209.
30. Stapley, B. J.; Doig, A. J. Hydrogen bonding interactions between glutamine and
asparagine in α-helical peptides. J. Mol. Biol. 1997, 272, 465-473.
31. Scholtz, J. M.; Qian, H.; Robbins, V. H.; Baldwin, R. L. The energetics of ion-pair
and hydrogen-bonding interactions in a helical peptide. Biochemistry 1993, 32,
9668-9676.
32. Huyghuesdespointes, B. M. P.; Klingler, T. M.; Baldwin, R. L. Measuring the
strength of side-chain hydrogen-bonds in peptide helices - the Gln-Asp-(i, i+4)
interaction. Biochemistry 1995, 34, 13267-13271.
33. Smith, J. S.; Scholtz, J. M. Energetics of polar side-chain interactions in helical
peptides: salt effects on ion pairs and hydrogen bonds. Biochemistry 1998, 37,
33-40.
34. Stapley, B. J.; Rohl, C. A.; Doig, A. J. Addition of side chain interactions to
modified Lifson-Roig helix-coil theory: application to energetics of
phenylalanine-methionine interactions. Protein Sci. 1995, 4, 2383-2391.
35. Padmanabhan, S.; Baldwin, R. L. Tests for helix-stabilizing interactions between
various nonpolar side chains in alanine-based peptides. Protein Sci. 1994, 3,
1992-1997.
36. Shi, Z.; Olson, C. A.; Kallenbach, N. R. Cation-π interaction in model α-helical
peptides. J. Am. Chem. Soc. 2002, 124, 3284-3291.
37. Stellwagen, E.; Park, S. H.; Shalongo, W.; Jain, A. The contribution of residue ion
pairs to the helical stability of a model peptide. Biopolymers 1992, 32, 1193-1200.
38. Errington, N.; Doig, A. J. A phosphoserine-lysine salt bridge within an α-helical
peptide, the strongest α-helix side-chain interaction measured to date. Biochemistry
by Glu-...Lys+ salt bridges in short
peptides of de novo design. Proc. Natl. Acad. Sci. USA. 1987, 84, 8898-8902.
42. Olson, C. A.; Spek, E. J.; Shi, Z.; Vologodskii, A.; Kallenbach, N. R. Cooperative
helix stabilization by complex Arg-Glu salt bridges. Proteins 2001, 44, 123-132.
43. Stapley, B. J.; Doig, A. J. Hydrogen bonding interactions between glutamine and
asparagine in α-helical peptides. J. Mol. Biol. 1997, 272, 465-473.
44. Padmanabhan, S.; Baldwin, R. L. Helix-stabilizing interaction between tyrosine
and leucine or valine when the spacing is I,I+4. J. Mol. Biol. 1994, 241, 706-713.
45. Whitmore, L.; Wallace, B. A. Protein secondary structure analyses from circular
dichroism spectroscopy: Methods and reference databases. Biopolymers 2008, 89,
392-400.
46. Chang, C. T.; Wu, C. S. C.; Yang, J. T. Circular dichroic analysis of protein
conformation - inclusion of β-turns. Anal. Biochem. 1978, 91, 13-31.
47. Johnson, W. C. Protein secondary structure and circular-dichroism - a practical
guide. Proteins Struct. Func. Genet. 1990, 7, 205-214.
48. Marqusee, S.; Baldwin, R. L. Helix stabilization by Glu-...Lys+ salt bridges in short
peptides of de novo design. Proc. Natl. Acad. Sci. 1987, 84, 8898-8902.
49. Feichtinger, K.; Zapf, C.; Sings, H. L.; Goodman, M. Diprotected triflylguanidines:
A new class of guanidinylation reagents. J. Org. Chem. 1998, 63, 3804-3805.
50. Feichtinger, K.; Sings, H. L.; Baker, T. J.; Matthews, K.; Goodman, M.
Triurethane-protected guanidines and triflyldiurethane-protected guanidines: New
reagents for guanidinylation reactions. J. Org. Chem. 1998, 63, 8432-8439.
51. Chakrabartty, A.; Kortemme, T.; Padmanabhan, S.; Baldwin, R. L. Aromatic
side-chain contribution to far-ultraviolet circular-dichroism of helical peptides and
its effect on measurement of helix propensities. Biochemistry 1993, 32, 5560-5565.
52. Edelhoch, H. Spectroscopic determination of tryptophan and tyrosine in proteins.
Biochemistry 1967, 6, 1948-1954.
53. Fields, G. B.; Noble, R. L. Solid-phase peptide-synthesis utilizing
9-fluorenylmethoxycarbonyl amino-acids. Int. J. Pept. Protein Res. 1990, 35,
161-214.
54. Pace, C. N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T. How to measure and
predict the molar absorption-coefficient of a protein. Protein Sci. 1995, 4,
2411-2423.
55. Chakrabartty, A.; Kortemme, T.; Baldwin, R. L. Helix propensities of the amino
acids measured in alanine-based peptides without helix-stabilizing side-chain
interactions. Protein Sci. 1994, 3, 843-852.
56. Mcgregor, M. J.; Islam, S. A.; Sternberg, M. J. E. Analysis of the relationship
between side-chain conformation and secondary structure in globular-proteins. J.
Mol. Biol. 1987, 198, 295-310.
57. Dunbrack, R. L.; Karplus, M. Backbone-dependent rotamer library for proteins -
application to side-chain prediction. J. Mol. Biol. 1993, 230, 543-574.
VI. References
1. Hope, I. A.; Struhl, K. Gcn4, a eukaryotic transcriptional activator protein, binds as
a dimer to target DNA. EMBO J. 1987, 6, 2781-2784.
2. Jones, S. W.; Christison, R.; Bundell, K.; Voyce, C. J.; Brockbank, S. M. V.;
Newham, P.; Lindsay, M. A. Characterisation of cell-penetrating peptide-mediated
peptide delivery. Br. J. Pharmacol. 2005, 145, 1093-1102.
3. Leeper, T. C.; Athanassiou, Z.; Dias, R. L. A.; Robinson, J. A.; Varani, G. TAR
RNA recognition by a cyclic peptidomimetic of Tat protein. Biochemistry 2005, 44,
12362-12372.
4. Ellenberger, T. E.; Brandl, C. J.; Struhl, K.; Harrison, S. C. The GCN4 basic region
leucine zipper binds DNA as a dimer of uninterrupted α-helices - crystal-structure
of the protein-DNA Complex. Cell 1992, 71, 1223-1237.
5. Hollenbeck, J. J.; McClain, D. L.; Oakley, M. G. The role of helix stabilizing
residues in GCN4 basic region folding and DNA binding. Protein Sci. 2002, 11,
2740-2747.
6. Oshea, E. K.; Klemm, J. D.; Kim, P. S.; Alber, T. X-Ray Structure of the GCN4
leucine zipper, a 2-Stranded, parallel coiled coil. Science 1991, 254, 539-544.
7. Yao, S.; Brickner, M.; Pares-Matos, E. I.; Chmielewski, J. Uncoiling c-Jun coiled
coils: Inhibitory effects of truncated fos peptides on jun dimerization and DNA
binding in vitro. Biopolymers 1998, 47, 277-283.
8. Buhrlage, S. J.; Bates, C. A.; Rowe, S. P.; Minter, A. R.; Brennan, B. B.;
Majmudar, C. Y.; Wemmer, D. E.; Al-Hashimi, H.; Mapp, A. K. Amphipathic
small molecules mimic the binding mode and function of endogenous transcription
factors. ACS Chem.Biol. 2009, 4, 335-344.
9. Dervan, P. B.; Burli, R. W. Sequence-specific DNA recognition by polyamides.
Curr. Opin. Chem. Biol. 1999, 3, 688-693.
10. Mapp, A. K.; Ansari, A. Z.; Ptashne, M.; Dervan, P. B. Activation of gene
expression by small molecule transcription factors. Proc. Natl. Acad. Sci. USA
2000, 97, 3930-3935.
11. Lee, L. W.; Mapp, A. K. Transcriptional switches: chemical approaches to gene
regulation. J. Biol. Chem. 2010, 285, 11033-11038.
12. Olenyuk, B. Z.; Zhang, G. J.; Klco, J. M.; Nickols, N. G.; Kaelin, W. G.; Dervan, P.
B. Inhibition of vascular endothelial growth factor with a sequence-specific
hypoxia response element antagonist. Proc. Natl. Acad. Sci. USA 2004, 101,
16768-16773.
13. Talanian, R. V.; Mcknight, C. J.; Rutkowski, R.; Kim, P. S. Minimum length of a
sequence-specific DNA-binding peptide. Biochemistry 1992, 31, 6871-6875.
14. Montminy, M. R.; Bilezikjian, L. M. Binding of a nuclear-protein to the
cyclic-AMP response element of the somatostatin Gene. Nature 1987, 328,
175-178.
15. Peterson, B. R.; Sun, L. J.; Verdine, G. L. A critical arginine residue mediates
cooperativity in the contact interface between transcription factors NFAT and AP-1.
Proc. Natl. Acad. Sci. USA 1996, 93, 13671-13676.
16. Shin, J. A.; Chan, I. S.; Shahravan, S. H.; Fedorova, A. V. The bZIP targets
overlapping DNA subsites within a half-site, resulting in increased binding
affinities. Biochemistry 2008, 47, 9646-9652.
17. Oneil, K. T.; Shuman, J. D.; Ampe, C.; Degrado, W. F. DNA-induced increase in
the α-helical content of C/EBP and GCN4. Biochemistry 1991, 30, 9030-9034.
18. Saudek, V.; Pasley, H. S.; Gibson, T.; Gausepohl, H.; Frank, R.; Pastore, A.
solution structure of the basic region from the transcriptional activator GCN4.
Biochemistry 1991, 30, 1310-1317.
19. Weiss, M. A.; Ellenberger, T.; Wobbe, C. R.; Lee, J. P.; Harrison, S. C.; Struhl, K.
Folding transition in the DNA-binding domain of GCN4 on specific binding to
DNA. Nature 1990, 347, 575-578.
20. Lajmi, A. R.; Lovrencic, M. E.; Wallace, T. R.; Thomlinson, R. R.; Shin, J. A.
minimalist, alanine-based, helical protein dimers bind to specific DNA sites. J. Am.
Chem. Soc. 2000, 122, 5638-5639.
21. Talanian, R. V.; Mcknight, C. J.; Kim, P. S. Sequence-specific DNA-binding by a
short peptide dimer. Science 1990, 249, 769-771.
22. Edelhoch, H. Spectroscopic determination of tryptophan and tyrosine in proteins.
Biochemistry 1967, 6, 1948-1954.
23. Pace, C. N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T. How to measure and predict
the molar absorption-coefficient of a protein. Protein Sci. 1995, 4, 2411-2423.
24. Volkmer-Engert, R.; Landgraf, C.; Schneider-Mergener, J. Charcoal
surface-assisted catalysis of intramolecular disulfide bond formation in peptides. J.
Pept. Res. 1998, 51, 365-369.
25. Chakrabartty, A.; Kortemme, T.; Baldwin, R. L. Helix propensities of the
amino-acids measured in alanine-based peptides without helix-stabilizing
side-chain interactions. Protein Sci. 1994, 3, 843-852.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33473-
dc.description.abstract蛋白質超過30 % 結構含有α螺旋結構.螺旋內離子對作用力可以穩定結構.側鏈長度與正負電荷相對間距會影響螺旋程度.為了研究側鏈長度對於影響程度的影響,利用固向胜肽合成技術合成並設計一系列含有合成出與精氨酸長度不同的非自然界胺基酸S-2-amino-6-guanidinohexanoic acid (Agh), S-2-amino-4-guanidino-butyric acid (Agb), S-2-amino-3-guanidinopropionic acid (Agp)以及與穀胺酸長度不同的天門冬胺酸的胜肽序列,包括AghAsp3, AghGlu3, AspAgp5, GluAgp5, AgbAsp4以及 AgbGlu4. 利用圓二色光譜儀測量不同胜肽在pH 2-12範圍下的螺旋程度,並且將測量結果根據修飾過的 Lifson-Roig 理論下利用nesting block方法計算出穩定能量.圓二色光譜儀測得訊號結果包括個別胺基酸本身對於螺旋喜好程度、胺基酸序列中側鏈之間與的作用力以及胺基酸側鏈與螺旋骨架N端C端作用力.本研究中,根據圓二色光譜儀訊號顯示pH 7情況下,螺旋程度大小依序為AghGlu3 > AghAsp3, GluAgp5 > AspAgp5, AgbGlu4 > AgbAsp4. 當負電荷胺基酸側鏈越長,其表現出的螺旋程度也相對較高.除外,本研究還針對真核生物轉錄活化蛋白質GCN4 其上面基本區域 (basic region)的精氨酸側鏈電荷來探討GCN4上個別精氨酸對於cAMP response element (CRE) DNA辨識能力的影響.本研究利用瓜氨酸取代精氨酸來探討電荷對於結合能力及選擇性影響,並且利用電泳技術分析合成之胜肽對於特定cAMP response element (CRE) 之間作用關係.本研究顯示WtArgGCN4ss和 MinArg11Ass 作為對照組與其不同實驗組對照發現,WtArgGCN4ss 實驗組顯示相對MinArg11Ass較高的結合能力.除外,WtCit18GCN4ss表現出相對於對照組以及其他實驗組較差的專一性; Min11ACit2ss表現出相對於對照組 (MinArg11Ass) 以及其他實驗組較好的專一性. 本研究亦嘗試利用理論計算的方式模擬合成出的實驗組胜肽與CRE之間的結合情形,並計算出相對應之能量.zh_TW
dc.description.abstractMore than 30% of protein residues adopt an α-helical conformation. Intrahelical ion-pairing interactions can stabilize the helix conformation. To investigate how side chain length (of charged residues) and relative spacing (between charged residues) affect helicity, peptides AghAsp3, AghGlu3, AspAgp5, GluAgp5, AgbAsp4, and AgbGlu4 were synthesized. The helical content of the peptides were determined by circular dichorism spectroscopy (CD). The helical content of peptides at pH 7 follows the trend AghGlu3 > AghAsp3, GluAgp5 > AspAgp5, AgbGlu4 > AgbAsp4. This trend is consistent with the helix propensity trend Glu > Asp. Peptides with modified sequences of GCN4 basic region were synthesized to investigate the effects of Arg side chain charge on DNA recognition. Peptides WtArgGCN4ss as well as MinArg11Ass, and the mutants with individual Arg residues replaced with citrulline (Cit) at various positions were synthesized. The binding affinity and specificity of the GCN4-based peptides for cAMP response element (CRE) were determined by gel shift assays. The WtArgGCN4ss mutants showed higher affinity than the MinArg11Ass mutants. Further, WtCit18GCN4ss exhibited lower specificity and affinity than WtArgGCN4ss and other WtArgGCN4ss mutants. Min11ACit2ss showed highest affinity and specificity compared to MinArg11Ass and other MinArg11Ass mutants. The results were further corroborated by molecular mechanics calculations.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:42:30Z (GMT). No. of bitstreams: 1
ntu-100-R98223207-1.pdf: 3412144 bytes, checksum: bb46bf133c0192974817df0d3a0f04f7 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTable of Contents
口試委員會審定書.............................................i
誌謝......................................................ii
Table of Contents.......................................iii
List of Figures...........................................v
List of Tables...........................................vii
中文摘要.................................................viii
Abstract.................................................ix
Abbreviations.............................................x
Chapter 1. Introduction...................................1
I. Central dogma of molecular biology.....................1
II. Protein structure and function........................1
III. Fundamental forces in protein folding...................................................5
IV. Hyperthermophilic proteins............................6
V. Thesis overview........................................9
VI. Reference.............................................10
Chapter 2. Effect of side chain length on glutamate (Glu)-arginine (Arg) ion pairing interaction....................14
I.Introduction............................................14
I-1. Electrostatic interactions to stabilize protein structures................................................14
I-2. α-Helix..............................................15
I-3. Helix propensity of amino acids......................16
I-4. Helix-coil equilibrium model.........................18
I-5. Intrahelical interactions for stabilizing α-helix....21
II. Results and Discussion................................25
II-1. Design of α-helical peptides........................25
II-2. Synthesis of Fmoc-Agh(Boc)2-OH......................26
II-3. Peptide synthesis...................................28
II-4. Circular dichorism spectroscopy.....................32
II-5. Conformational analysis by molecular mechanics calculations..............................................37
III. Conclusion...........................................42
IV. Acknowledgements......................................42
V. Experimental Section...................................43
VI. Appendix..............................................57
VII. Reference............................................63
Chapter 3. Effect of side chain charge on DNA recognition.68
I. Introduction...........................................68
I-1. Arginine.............................................68
I-2. GCN4.................................................68
I-3. Artificial transcription factors (ATF)...............70
I-4. GCN4 based DNA binding ATF...........................72
I-5. Chapter overview.....................................74
II. Results and Discussion................................75
II-1. Peptides design.....................................75
II-2. Peptide synthesis...................................77
II-3. Gel shift assay of peptides with DNA................80
II-4. Circular dichroism spectroscopy.....................87
II-5. Modeling of peptides-DNA complexes by molecular mechanics calculations....................................88
III. Conclusion and Future Aspects........................91
IV. Acknowledgements......................................92
V. Experimental Section...................................92
VI. Reference............................................114
dc.language.isoen
dc.title麩胺酸側鏈長度對α-helix的影響及精胺酸側鏈電荷對辨認DNA的影響zh_TW
dc.titleEffect of Glutamate Side Chain Length on Glutamate-Arginine Ion-Pairing Interaction and Arginine Side Chain Charge on DNA Recognitionen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳佩燁(Rita P.-Y. Chen),黃人則(Jen-Tse Huang)
dc.subject.keywordα螺旋,胺基酸側鏈,離子對作用力,DNA辨識,zh_TW
dc.subject.keywordα-helix,amino acid side chain,ion-pairing interaction,DNA recognition,en
dc.relation.page115
dc.rights.note有償授權
dc.date.accepted2011-07-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
3.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved