請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33460完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 石正人(Cheng-Jen Shih),吳文哲(Wen-Jer Wu) | |
| dc.contributor.author | Chin-Cheng Yang | en |
| dc.contributor.author | 楊景程 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:41:45Z | - |
| dc.date.available | 2011-07-27 | |
| dc.date.copyright | 2006-07-27 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-18 | |
| dc.identifier.citation | Abdelkrim, J., J. M. Pascal, C. Calmet, and A. Samadi. 2005. Importance of assessing population genetic structure before eradication of invasive species: examples from insular Norway rat populations. Conser. Biol. 19: 1509-1518.
Barrett, S. C. H., and J. R. Kohn. 1991. Genetic and evolutionary consequences of small population size in plants: implications for conservation. pp. 3-30. In: D. A. Falk, and K. E. Holsinger, eds. Genetics and Conservation of Rare Plants. Oxford University Press, New York. Barton, N. H., and M. Slatkin. 1986. A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity 56: 409-415. Bouwma, A. M., M. E. Ahrens, C. J. DeHeer, and D. D. Shoemaker. 2006. Distribution and prevalence of Wolbachia in introduced populations of the fire ant Solenopsis invicta. Insect Mol. Biol. 15: 89-93. Buczkowski, R., E. L. Vargo, and J. Silverman. 2004. The diminutive supercolony: the Argentine ants of the southeastern United States. Mol. Ecol. 13: 2235-2242. Chen, J. S. C., C. H. Shen, and H. J. Lee. 2006. Monogynous and polygynous red imported fire ants, Solenopsis invicta Buren (Hymenoptera: Formicidae), in Taiwan. Environ. Entomol. 35: 167-172. Cockerham, C. C., and B. S. Weir. 1984. Covariances of relatives stemming from a population undergoing mixed self and random mating. Biometrics 40: 157-164. Cornuet, J. M., and G. Luikart. 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001-2014. Courchamp, F., J. L. Chapuis, and M. Pascal. 2003. Mammalian invaders on islands: Impact, control and control impact. Biol. Rev. 78: 347-383. Davies, N., F. X. Villablanca, and G. K. Roderick. 1999. Determining the source of individuals: multilocus genotyping in nonequilibrium population genetics. Trends Ecol. Evol. 14: 17-21. Dieringer, D., and C. Schlötterer. 2002. Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3: 167-169. DiRienzo, A., A. C. Peterson, J. C. Garza, A. M. Valdes, M. Slatkin, and N. B. Freimer. 1994. Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl. Acad. Sci. USA. 91: 3166-3170. Drake, J. A., H. A. Mooney, F. Castri, R. H. Groves, M. Kruger, M. Rejmánek, and M. Williamson. 1989. Biological Invasion: A Global Perspective. John Wiley and Sons, Chichester, UK. Dress, B. M., and R. E. Gold. 2003. Development of integrated pest management programs for the red imported fire ant (Hymenoptera: Formicidae). J. Entomol. Sci. 38: 170-180. Excoffier, L., P. E. Smouse, and J. M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package, Version 3.6), distributed by the author. Department of Genetics, University of Washington, Seattle, WA. Fonseca, D. M., D. A. LaPointe, and R. C. Fleischer. 2000. Bottlenecks and multiple introductions: population genetics of the vector of avian malaria in Hawaii. Mol. Ecol. 9: 1803-1814. Frankham, R., J. D. Ballou, and D. A. Briscoe. 2002. Introduction to Conservation Genetics. Cambridge University Press, Cambridge, UK. 640 pp. Fritz, G. N., and R. K. Vander Meer. 2003. Sympatry of polygyne and monogyne colonies of the fire ant Solenopsis invicta (Hymenoptera: Formicidae). Ann. Entoml. Soc. Am. 96: 86-92. Genton, B. J., J. A. Shykoff, and T. Giraud. 2005. High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol. Ecol. 14: 4275-4285. Giraud, T., J. S. Pedersen, and L. Keller. 2002. Evolution of supercolonies: the Argentine ants of southern Europe. Proc. Natl. Acad. Sci. USA. 99: 6075-6079. Goodisman, M. A. D., and K. G. Ross. 1997. Relationship of queen number and queen relatedness in multiple-queen colonies of the fire ant Solenopsis invicta. Ecol. Entomol. 22: 150-157. Goodisman, M. A. D., R. W. Matthews, and R. H. Crozier. 2001. Hierarchical genetic structure of the introduced wasp Vespula germanica in Australia. Mol. Ecol. 10: 1423-1432. Goodnight, K. F., and D. C. Queller. 1999. Computer software for performing likelihood tests of pedigree relationship using genetic markers. Mol. Ecol. 8: 1231-1234. Goudet, J. 2001. FSTAT, A Program to Estimate and Test Gene Diversities and Fixation Indices, Version 2.9.3. http:// www.unil.ch / izea/softwares/ fstat.html. Grapputo, A., S. Boman, L. Lindström, A. Lyytinen, and J. Mappes. 2005. The voyage of an invasive species across continents: genetic diversity of USA and European Colorado potato beetle populations. Mol. Ecol. 14: 4207-4219. Greenberg, L., D. J. C. Fletcher, and S. B. Vinson. 1985. Differences in worker size and mound distribution in monogynous and polygynous colonies of the fire ant Solenopsis invicta Buren. J. Kansas Entomol. Soc. 58: 9-18. Hampton, J. O., P. B. S. Spencer, D. L. Alpers, L. E. Twigg, A. P. Woolnough, J. Doust, T. Higgs, and J. Pluske. 2004. Molecular techniques, wildlife management and the importance of genetic population structure and dispersal: a case study with feral pigs. J. Appl. Ecol. 41: 735-743. Hartl, D. L. 2000. A Primer of Population Genetics. 3rd ed. Sinauer Associates, Sunderland, Massachusetts. 221 pp. Hartl, D. L., and A. G. Clark. 1989. Principles of Population Genetics. 2nd ed. Sinauer Associates, Sunderland, Massachusetts. 542 pp. Haverty, M. I., B. T. Forschler, and L. J. Nelson. 1996. An assessment of the taxonomy of Reticulitermes (Isoptera: Rhinotermitidae) from the Southeastern United States based on cuticular hydrocarbons. Sociobiology 28: 287-318. Henshaw, M. T., N. Kunzmann, C. Vanderwoude, M. Sanetra, and R. H. Crozier. 2005. Population genetics and history of the introduced fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), in Australia. Aust. J. Entomol. 44: 37-44. Holway, D. A., A. V. Suarez, and T. J. Case. 1998. Loss of intraspecific aggression in the success of a widespread invasive social insect. Science 282: 949-952. Huang, T. C., Y. C. Chou, and H. C. Chou. 2004. The infestation and control of the red imported fire ant in Taiwan. pp. 1-13. In: C. J. Shih, and W. J. Wu, eds. Proceedings of the Symposium on the Control of the Red Imported Fire Ant. Bureau of Animal and Plant Health Inspection and Quarantine, Council of Agriculture, Executive Yuan, Taipei, Taiwan. (in Chinese). Hufbauer, R. A., S. M. Bogdanowicz, and R. G. Harrison. 2004. The population genetics of a biological control introduction: mitochondrial DNA and microsatellite variation in native and introduced populations of Aphidius ervi, a parasitoid wasp. Mol. Ecol. 13: 337-348. Ingram, K. K., and D. M. Gordon. 2003. Genetic analysis of dispersal dynamics in an invading population of Argentine ants. Ecology 84: 2832-2842. Jeyaprakash, A., and M. A. Hoy. 2000. Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropods. Insect Mol. Biol. 9: 393-405. Johnson, N. R., and P. T. Starks. 2004. A surprising level of genetic diversity in an invasive wasp: Polistes dominulus in the northeastern United States. Ann. Entomol. Soc. Am. 97: 732-737. Keller, L. F., and D. M. Waller. 2003. Inbreeding effects in wild populations. Trends Ecol. Evol. 17: 230-241. Kintz-Early, J., L. Parris, J. Zettler, and J. Bast. 2003. Evidence of polygynous red imported fire ants (Hymenoptera: Formicidae) in South Carolina. Fla. Entomol. 86: 381-382. Klotz, J. H., K. M. Jetter, L. Greenberg, J. Hamilton, J. Kabashima, and D. F. Williams. 2003. An insect pest of agricultural, urban, and wildlife areas: The red imported fire ant. pp. 151-166. In: D. A. Sumner, ed. Exotic Pests and Diseases: Biology and Economics for Biosecurity. Blackwell Publishing, Ames, IA. Krieger, M. J. B. 2004. To b or not to b: a pheromone-binding protein regulates colony social organization in fire ants. BioEssays 27: 91-99. Krieger, M. J. B., and L. Keller. 1997. Polymorphism at dinucleotide microsatellite loci in fire ant Solenopsis invicta populations. Mol. Ecol. 6: 997-999. Krieger, M. J. B., and L. Keller. 1998. Estimation of the proportion of triploids in populations with diploid and triploid individuals. J. Hered. 89: 275-279. Krieger, M. J. B., and L. Keller. 1999. Low polymorphism at 19 microsatellite loci in a French population of Argentine ants (Linepithema humile). Mol. Ecol. 8: 1078-1080. Krieger, M. J. B., and K. G. Ross. 2002. Identification of a major gene regulating complex social behavior. Science 295: 328-332. Krieger, M. J. B., K. G. Ross, C. W. Y. Chang, and L. Keller. 1999. Frequency and origin of triploidy in the fire ant (Solenopsis invicta). Heredity 82: 142-150. Lambrinos, J. G. 2004. How interactions between ecology and evolution influence contemporary invasion dynamics. Ecology 85: 2061-2070. Lee, C. E. 2002. Evolutionary genetics of invasive species. Trends Ecol. Evol. 17: 386-391. Lofgren, C. S. 1986. History of imported fire ants in the United States. pp. 36-47. In: C. S. Lofgren, and R. K. Vander Meer, eds. Fire Ants and Leaf-Cutting Ants: Biology and Management. Westview Press, Boulder, CO. Luikart, G., F. W. Allendorf, J. M. Cornuet, and W. B. Sherwin. 1998. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. 89: 238-247. Manel, S., P. Berthier, and G. Luikart. 2002. Detecting wildlife poaching: identifying the origin of individuals with Bayesian assignment tests and multilocus genotypes. Conser. Biol. 16: 650-659. Morrison, L. W., S. D. Porter, E. Daniels, and M. D. Korzukhin. 2004. Potential global range expansion of the invasive fire ant, Solenopsis invicta. Biol. Invas. 6: 183-191. Nattrass, R., and C. Vanderwoude. 2001. A preliminary investigation of the ecological effects of red imported fire ants (Solenopsis invicta) in Brisbane. Ecol. Manag. Restor. 2: 220-223. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590. Nei, M., T. Maruyama, and R. Chakraborty. 1975. The bottleneck effect and genetic variability in populations. Evolution 29: 1-10. Orr, M. R., S. H. Seike, W. W. Benson, and L. E. Gilbert. 1995. Flies suppress fire ants. Nature 373: 292-293. Page, R. D. M. 1996. TreeView: an application to display phylogenetic trees on personal computers. Comput. Appl. Biol. Sci. 12: 357-358. Piry, S., G. Luikart, and J. M. Cornuet. 1999. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90: 502-503. Porter, S. D., and D. A. Savignano. 1990. Invasion of polygyne fire ants decimates native ants and disrupts arthropod community. Ecology 71: 2095-2106. Porter, S. D., D. F. Williams, R. S. Patterson, and H. G. Fowler. 1997. Intercontinental differences in the abundance of Solenopsis fire ants (Hymenoptera: Formicidae): escape from natural enemies? Environ. Entomol. 26: 373-384. Porter, S. D., A. P. Bhatkar, R. Mulder, S. B. Vinson, and D. J. Clair. 1991. Distribution and density of polygyne fire ants (Hymenoptera: Formicidae) in Texas. J. Econ. Entomol. 84: 866-874. Pritchard, J. K., M. Stefens, and P. Donnelly 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959. Provan, J., S. Murphy, and C. A. Maggs. 2005. Tracking the invasive history of the green alga Codium fragile ssp. tomentosoides. Mol. Ecol. 14: 189-194. Queller, C., and K. F. Goodnight. 1989. Estimating relatedness using genetic markers. Evolution 43: 258-275. Raymond, M., and F. Rousset. 1995. An exact test for population differentiation. Evolution 49: 1280-1283. Reuter, M., J. S. Pedersen, and L. Keller. 2005. Loss of Wolbachia infection during colonization in the invasive Argentine ant Linepithema humile. Heredity 94: 364-369. Robertson, B. C., and N. J. Gemmell. 2004. Defining eradication units to control invasive pests. J. Appl. Ecol. 41: 1042-1048. Ross, K. G. 1997. Multilocus evolution in fire ants: Effects of selection, gene flow and recombination. Genetics 145: 961-974. Ross, K. G., and L. Keller. 1998. Genetic control of social organization in an ant. Proc. Natl. Acad. Sci, USA. 95: 14232-14237. Ross, K. G., and D. D. Shoemaker. 1997. Nuclear and mitochondrial genetic structure in two social forms of the fire ant Solenopsis invicta: insights into transitions to an alternate social organization. Heredity 78: 590-602. Ross, K. G., and J. C. Trager. 1990. Systematics and population genetics of fire ants (Solenopsis saevissima complex) from Argentina. Evolution 4: 2113-2134. Ross, K. G., D. D. Shoemaker, and M. J. B. Krieger. 2003. Alternative genetic foundations for a key social polymorphism in fire ants. Genetics 165: 1853-1867. Ross, K. G., E. L. Vargo, and L. Keller. 1996. Social evolution in a new environment: the case of introduced fire ants. Proc. Natl. Acad. Sci. USA. 93: 3021-3025. Ross, K. G., E. L. Vargo, L. Keller, and J. C. Trager. 1993. Effect of a founder event on variation in the genetic sex-determining system of the fire ant Solenopsis invicta. Genetics 135: 843-854. Ross, K. G., M. J. B. Krieger, D. D. Shoemaker, E. L. Vargo, and L. Keller. 1997. Hierarchical analysis of genetic structure in native fire ant populations: results from three classes of molecular marker. Genetics 147: 643-655. Ross, K. G., D. D. Shoemaker, M. J. B. Krieger, C. J. DeHeer, and L. Keller. 1999. Assessing genetic structure with multiple classes of molecular markers: a case study involving the introduced fire ant Solenopsis invicta. Mol. Biol. Evol. 16: 525-543. Rousset, F. 1997. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145: 1219-1228. Sakai, A. K., F. W. Allendorf, J. S. Holt, D. M. Lodge, J. Molofsky, K. A. With, S. Baughman, R. J. Cabin, J. E. Cohen, N. C. Ellstrand, D. E. McCauley, P. O’Neil, I. M. Parker, J. N. Thompson, and S. G. Weller. 2001. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32: 305-332. Schneider, S., D. Roesslie, and L. Excoffier. 2000. ARLEQUIN Version 2.000: A Software for Population Genetics Data Analysis. Genetics and Biometry Laboratory, University of Geneva, Geneva, Switzerland. Shoemaker, D. D., K. G. Ross, L. Keller, E. L. Vargo, and J. H. Werren. 2000. Wolbachia infections in native and introduced populations of fire ants (Solenopsis spp.). Insect Mol. Biol. 9: 661-673. Shoemaker, D. D., M. E. Ahrens, L. Sheill, M. Mescher, L. Keller, and K. G. Ross. 2003. Distribution and prevalence of Wolbachia infections in native populations of the fire ant Solenopsis invicta (Hymenoptera: Formicidae). Environ. Entomol. 32: 1329-1336. Slatkin, M. 1985. Rare alleles as indicators of gene flow. Evolution 39: 53-65. Slatkin, M. 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47: 264-279. Taber, S. W. 2000. Fire Ants. Texas A&M University Press, College Station, TX. Tsutsui, N. D., and A. V. Suarez. 2003. The colony structure and population biology of invasive ants. Conser. Biol. 17: 48-58. Tsutsui, N. D., S. N. Kauppinen, A. F. Oyafuso, and R. K. Grosberg. 2003. The distribution and evolutionary history of Wolbachia infection in native and introduced populations of the invasive Argentine ant (Linepithema humile). Mol. Ecol. 12: 3057-3068. Tsutsui, N. D., A. V. Suarez, D. A. Holway, and T. J. Case. 2000. Reduced genetic variation and the success of an invasive species. Proc. Natl. Acad. Sci. USA. 97: 5948-5953. Tsutsui, N. D., A. V. Suarez, D. A. Holway, and T. J. Case. 2001. Relationships among native and introduced populations of the Argentine ant (Linepithema humile) and the source of introduced populations. Mol. Ecol. 10: 2151-2161. Valles, S. M., and S. D. Porter. 2003. Identification of polygyne and monogyne fire ant colonies (Solenopsis invicta) by multiplex PCR of Gp-9 alleles. Insectes Soc. 50: 199-200. Vander Meer, R. K., K. Jaffe, and A. Cedeno. 1990. Applied Myrmecology: A World Perspective. Westview Press, Boulder, CO. 741 pp. Vanderwoude, C., M. Elson-Harris, J. R. Hargreaves, E. Harris, and K. P. Plowman. 2004. An overview of the red imported fire ants (Solenopsis invicta) eradication plan for Australia. Rec. Aust. Mus. 7: 11-16. Vargo, E. L., and S. D. Porter. 1989. Colony reproduction by budding in the polygyne form of Solenopsis invicta (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 82: 307-313. Vinson, S. B. 1997. Invasion of the red imported fire ant (Hymenoptera: Formicidae): spread, biology, and impact. Am. Entomol. 43: 23-39. Vitousek, P. M., C. M. D’Antonio, L. L. Loope, and R. Westbrooks. 1996. Biological invasion as global environmental change. Am. Sci. 84: 468-478. Wenseleers, T., L. Sundstrom, and J. Billen. 2002. Deleterious Wolbachia in the ant Formica truncorum. Proc. R. Soc. Lond. B: Biol. Sci. 269: 623-629. Wilcove, D. S., D. Rothstein, J. Dubow, A. Phillips, and E. Losos. 1998. Quantifying threats to imperiled species in the United States. BioScience 48: 607-615. Williams, D. F., ed. 1994. Exotic Ants: Biology, Impact, and Control of Introduced Species. Westview Press, Boulder, CO. 332 pp. Williamson, M. 1994. Impact of the red imported fire ant on native ant species in Florida. pp. 269-281. In: D. F. Williams, ed. Exotic Ants: Biology, Impact, and Control of Introduced Species. Westview, Boulder, CO. Wojcik, D. P., C. R. Allen, R. J. Brenner, E. A. Forys, D. P. Jouvenaz, and R. S. Lutz. 2001. Red imported fire ants: impact on biodiversity. Am. Entomol. 47: 16-23. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33460 | - |
| dc.description.abstract | 入侵紅火蟻(Solenopsis invicta Buren)於2003年10月,首度於桃園及嘉義地區被發現,並分別成功定殖了約26000及8000公頃之面積。為了減少入侵紅火蟻造成之損失擴大,大規模之滅絕計畫(eradication program)迅速地展開。以滅絕的角度而言,立即判定其入侵來源為此計畫成功與否的關鍵部分,因為於確定入侵來源後,可作為檢疫措施的依據,加強檢測由特定管道所進口之物品,防止再次入侵的可能性。本研究採用6個微隨體基因座(microsatellite loci)進行台灣地區內火蟻族群遺傳學之初步研究及世界各主要火蟻發生地之親緣關係之探討。以多重引子聚合連鎖反應(multiplex PCR)增幅各族群內火蟻個體特定對基因,並經由一系列的統計分析後結果顯示,桃園及嘉義族群間之對偶子組成及分子變異度(molecular variance)有相當顯著的差異,且嘉義族群出現了約兩倍於桃園之獨特對偶子(private allele),指出兩地可能為不同之入侵源。就異型合子比例而言,嘉義族群相對於桃園擁有較高的遺傳變異(HO = 0.6902);另一方面,桃園族群呈現較低之遺傳變異(HO = 0.5642),並存在距離隔離模式(isolation by distance),推測可能由單源(次)入侵事件所造成。若進一步以TPM模式(two-phased model)檢測,此族群的確遭受近期瓶頸效應之影響。由親緣關係樹分析之結果得知,桃園及嘉義兩入侵地最有可能皆是由美國所入侵,但推測可能為美國境內不同區域或是來自遺傳組成相異之族群。族群分化指數及遺傳距離皆顯示台灣兩地之火蟻族群只呈現微弱的基因交流,足以視為遺傳上隔離之族群。此現象對於提升整體滅絕計畫之成功率有相當大的助益,並可將兩地火蟻族群各視為單一管理單元(management unit)。此外,根據兩地遺傳多樣性所呈現之不同結果顯示,無論由單次入侵伴隨瓶頸效應之影響或是由多源(次)之入侵,皆能被視為於台灣兩個發生地內火蟻族群入侵成功的重要因素。除了遺傳組成之因素外,以生態觀點而言,未能於入侵紅火蟻體內偵測到潛在天敵Wolbachia之感染,也符合敵解假說(natural enemy-release hypothesis)之論點,即缺少共演化之天敵可能促使入侵紅火蟻於台灣之族群擴張。 | zh_TW |
| dc.description.abstract | Red imported fire ant (Solenopsis invicta Buren) has been discovered in two areas within Taiwan, Taoyuan and Chiayi Counties, in October, 2003 and occupied approximately 26000 and 8000 ha territory, respectively. In order to minimize the loss caused by fire ants, large-scale eradication program should immediately be implemented. For the prospect of eradication, immediately determining the geographic source of invasion becomes one of the most important tasks. It will lead the success of eradication program, because the further introductions or reinvasions will be avoided by applying the intensive quarantine regulations on the given possible invading routes based on the exploration on the origin of invasion. Herein, I applied six microsatellite loci by means of multiplex PCR to investigate the phylogenetic relationship and population structure of S. invicta populations that will suggest the origin of invasion and contribute to the eradication efforts. The Chiayi population possesses significant molecular variance and twofold the number of private alleles as compared with the Taoyuan poopulation, suggesting that both populations were possibly initiated from independent invasions. Taking the genetic diversity into account, the Chiayi population presents relatively higher genetic diversity (HO = 0.6902) and is accordingly presumed to establish by multiple introductions; while the Taoyuan population displays lower genetic diversity (HO = 0.5642) and significant isolation by distance, coupled with remarkable heterozygosity excess under the two-phased model (TPM), the population is suggested to initialize with a single introduction. The combination of allelic distribution and phylogenetic analysis suggests that the two areas most probably experience colonization from different regions or genetically distinct populations of the USA. Furthermore, slight gene flow and pronounced genetic differentiation between infested areas suggest the two populations are quite genetically isolated. Coupled with geographical isolation, it is relatively effective to carry out the eradication program at each small population with negligible connectivity. In addition, either genetic departure from the presumed source population accompanied by bottleneck effect or high genetic variability originating from multiple introductions can be concluded as the crucial characteristic contributing to the successful invasiveness of S. invicta based on the alternative patterns of genetic diversity shown in the two infested areas. The absence of Wolbachia infections corresponds with the natural enemy-release hypothesis and assists the successful invasions of S. invicta in Taiwan. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:41:45Z (GMT). No. of bitstreams: 1 ntu-95-R93632007-1.pdf: 687866 bytes, checksum: e18b70c3a99a224218fcb17d385292b5 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 中文摘要
Abstract Table of Contents I List of Table IV List of Figure V 1. Introduction 1 2. Materials and Methods 6 2.1 Source of ant samples 6 2.2 DNA isolation and Wolbachia detection 7 2.3 General protein-9 (Gp-9) genotyping 8 2.4 Microsatellite analysis 8 2.5 Triploidy estimates 9 2.6 Genetic and statistical analyses 9 2.6.1 Genetic variation 9 2.6.2 Tests for Hardy-Weinberg equilibrium 10 2.6.3 Genetic structure 10 2.6.3.1 F statistics 10 2.6.3.2 Genetic distance 11 2.6.3.3 Analysis of molecular variance 12 2.6.3.4 Reconstruction of phylogenetic relationship 12 2.6.3.5 Relatedness within nests 13 2.6.3.6 Detection of isolation by distance 13 2.6.3.7 Gene flow between the two Taiwanese populations 14 2.6.3.8 Tests for bottleneck effect in the two Taiwanese populations 14 3. Results 16 3.1 Prevalence of Wolbachia infection 16 3.2 Determination of the social form by Gp-9 genotyping 16 3.3 The proportion of triploids from microsatellite data 17 3.4 Microsatellite variability 17 3.4.1 Genetic variation 17 3.4.2 Test for Hardy-Weinberg equilibrium in the two Taiwanese populations 18 3.4.3 Genetic structure 18 3.4.3.1 F statistics 18 3.4.3.2 Genetic divergence among overall populations 19 3.4.3.3 Analysis of molecular variance 19 3.4.3.4 Inference of source population based on phylogenetic analysis 19 3.4.3.5 Relatedness within nests 20 3.4.3.6 Isolation by distance within Taiwan 21 3.4.3.7 Gene flow between the two Taiwanese populations 21 3.4.3.8 Bottleneck effect in the two Taiwanese populations 21 4. Discussion 23 4.1 Infection patterns of Wolbachia in Taiwan 23 4.2 Possible invasion source of S. invicta in Taiwan 24 4.3 Distribution of the two social forms and control strategies 27 4.4 Isolation by distance 28 4.5 Bottleneck and successful invasion in Taoyuan 29 4.6 High genetic diversity and the successful invasion in Chiayi 31 4.7 Other ecological factors related with successful invasion 32 4.8 Human-mediated connectivity but limited gene flow between the two infested areas 33 4.9 Genetic information and eradication program 34 5. Conclusion 37 6. References 38 7. Acknowledgements 49 | |
| dc.language.iso | en | |
| dc.subject | 族群遺傳 | zh_TW |
| dc.subject | 微隨體基因座 | zh_TW |
| dc.subject | 入侵紅火蟻 | zh_TW |
| dc.subject | 滅絕計畫 | zh_TW |
| dc.subject | 分子標記 | zh_TW |
| dc.subject | 入侵種 | zh_TW |
| dc.subject | population genetics | en |
| dc.subject | invasive species | en |
| dc.subject | microsatellite loci | en |
| dc.subject | Solenopsis invicta | en |
| dc.subject | molecular marker | en |
| dc.subject | eradication program | en |
| dc.title | 入侵紅火蟻族群遺傳初探及入侵源之分析-微隨體基因座之應用 | zh_TW |
| dc.title | Population genetics and the origin of invasion of red imported fire ant Solenopsis invicta in Taiwan: evidence from microsatellite loci | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.advisor-orcid | ,吳文哲(wuwj@ntu.edu.tw) | |
| dc.contributor.oralexamcommittee | 張慧羽(Hwei-yu Chang),于宏燦(Hon-Tsen Yu),林宗岐(Chung-Chi Lin) | |
| dc.subject.keyword | 入侵紅火蟻,微隨體基因座,入侵種,族群遺傳,分子標記,滅絕計畫, | zh_TW |
| dc.subject.keyword | Solenopsis invicta,microsatellite loci,invasive species,population genetics,molecular marker,eradication program, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 671.74 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
