Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33409
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊偉勛(Wei-Shiung Yang)
dc.contributor.authorYuh-Ling Liuen
dc.contributor.author劉玉玲zh_TW
dc.date.accessioned2021-06-13T04:38:58Z-
dc.date.available2006-08-03
dc.date.copyright2006-08-03
dc.date.issued2006
dc.date.submitted2006-07-19
dc.identifier.citation1. Aitman TJ. 2003. Genetics medicine and obesity. N. Engl. J. Med. 348:2138-2139.
2. Atkinson MA, Maclaren NK. 1994. The pathogenesis of insulin dependent diabetes. N. Eng. J. Med. 331:1428-1436.
3. Banerji M, Lebovitz H. 1989. Insulin sensitive and insulin resistant variants in IDDM. Diabetes 38:784-792.
4. Bellanne-Chantelot C, Chauveau D, Gautier JF, Dubois-Laforgue D, Clauin S, Beaufils S, Wilhelm JM, Boitard C, Noel LH, Velho G, Timsit J. 2004. Clinical spectrum associated with hepatocyte nuclear factor-1B mutations Ann. Intern. Med. 140:510-517.
5. Bogardus C, Lillioja S, Mott DM, Hollenbeck C, Reaven G. 1985. Relationship between degree of obesity and in vivo insulin action in man. Am J Physiol. 248:E286-E291.
6. Byrne MM, Sturis J, Fajans SS, et al. 1995. Altered insulin secretory response to glucose in subjects with a mutation in the MODY 1 gene on chromosome 20. Diabetes 44: 699-704.
7. Canter AB, Krischer JP, Cuthbertson DD, Schatz DA, Riley WJ, Malone J, Schwartz S, Quattrin T, Maclaren NK. 1995. Age and family relationship accentuate the risk of IDDM in relatives of patients with insulin dependent diabetes. J. Clin. Endocrinol. Metab. 80: 3739-3743. ]
8. Cereghini S, 1996. Liver-enriched transcription factors and hepatocyte differentiation. FASEB J 10:267-282.
9. Cockburn BN, Bermano G, Boodram LLG, Teelucksingh S, Tsuchiya T, Mahabir D, Allan AB, Stein R, Docherty K, Bell GI. 2004. Insulin promoter factor-1 mutations and diabetes in Trinidad: identification of a novel diabetes-associated mutation (E224K) in an Indo-Trinidadian family. J. Clin. Endocr. Metab. 89: 971-978.
10. Domínguez-López A, Miliar-García Á, Segura-Kato YX, Riba L, Esparza-López J, Ramírez-Jiménz S, Rodríguez-Torres M, Canizales-Quinteros S, Cabrera-Vásquez S, Fragoso-Ontiveros V, Aguilar-Salinas CA, Altamirano-Bustamante N, Calzada-León R, Robles-Valdés C, Bravo-Ríos LE, Tusié-Luna MT. 2005. Mutations in MODY genes are not common cause of early-onset Type 2 diabetes in Mexican families. J. Pancreas 6(3): 238-245.
11. Ellard S, Beards F, Allen LI, et al. 2000. A high prevalence of glucokinase mutations in gestational diabetes subjects selected by clinical criteria. Diabetologia 43: 250-253.
12. Fajans SS, Conn JW. 1960. Tolbutamide-induced improvement in carbohydrate tolerance of young people with mild diabetes mellitus. Diabetes 9: 83.
13. Fajans SS, 1987. MODY: a model for understanding the pathogeneses and natural history of type II diabetes. Horm Metab Res 19: 591-599.
14. Fajans SS, Brown B. 1993. Adminstration of sulfonylureas can increase glucose-induced insulin secretion for decades in patients with maturity- onset diabetes of the young. Diabetes Care 16: 1254-1261.
15. Fajans SS, Bell GI, Bowden DW, Halter JB, Polonsky KS, 1994. Maturity-onset diabetes of the young. Life Sci 55: 413-422.
16. Fajans SS, Bell GI, Polonsky KS. 2001. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. New Eng. J. Med. 345: 971-980.
17. Frayling TM, Bulman MP, Appleton M, Hattersley AT, Ellard S. 1997. A rapid screening method for hepatocyte nuclear factor 1 alpha frameshift mutations; prevalence in maturity-onset diabetes of the young and late-onset non-insulin dependent diabetes. Hum. Genet. 101:351-354.
18. Frayling TM, Bulman MP, Ellard S, et al. 1997. Mutations in the hepatocyte nuclear factor-1a gene are a common cause of maturity- onset diabetes of the young in U.K. Diabetes. 46: 720-725.
19. Frayling TM, Evans JC, Bulman MP, Pearson E, Allen L, Owen K, Bingham C, Hannemann M, Shepherd M, Ellard S, Hattersley AT. 2001. b-cell genes and diabetes: molecular and clinical characterization of mutations in transcription factors. Diabetes 50: S94-S100.
20. Froguel P, Vaxillaire M, Sun F et al. 1992. Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus. Nature 356:162-164.
21. Froguel P, Zouali H, Vionnet N, Velho G, Vaxillaire M, Sun F et al. 1993. Familial hyperglycemia due to mutations in glucokinase: definition of a subtype of diabetes mellitus. N. Eng. J. Med. 328: 697-702.
22. Froguel P, Vaxillaire M & Velho G. 1997. Genetics and metabolic heterogeneity of maturity onset diabetes of the young. Diabetes Rev. 5: 123-130.
23. Furuta H, Horikawa Y, Iwasaki N. 1998. Mutations in the coding region of the BETA2/NeuroD1 (NEUROD1) and Nkx2.2 (NKX2B) genes are not associated with maturity-onset diabetes of the young in Japanese. Diabetes 47: 1356-1358.
24. Gupta RK, Kaestner KH. HNF-4a: from MODY to late-onset type 2 diabetes. 2004. Trends Mol. Med. 10 (11):521-524.
25. Hara M, Lindner TH, Paz VP. 1998. Mutations in the coding region of the insulin promoter factor 1 gene are not a common cause of maturity-onset diabetes of the young in Japanese subjects. Diabetes 47: 845-846.
26. Hattersley AT, Turner RC, Permutt MA et al. 1992. Linkage of type 2 diabetes to the glucokinase gene. Lancet 339: 1307-1310.
27. Hattersley AT. 1998. Maturity-onset diabetes of the young: Clinical heterogeneity explained by genetics heterogeneity. Diabet. Med. 15:15-24.
28. Herman WH, Fajans SS, Ortiz FJ, et al. 1994. Abnormal insulin secretion, not insulin resistance, is the genetic or primary defect of MODY in the RW pedigree. Diabetes 43: 40-46. [Erratum, Diabetes 1994; 43:1171.]
29. Horen RB, Shuldiner AR. 2004. Genetics of diabetes. Rev. End. Meta. Dis. 5:25-36.
30. Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN, Lindner T, Yamagata K, Ogata M, Tomonaga O, Kuroki H, Kasahara T, Iwamoto Y, Bell GI. 1997. Mutation in hepatocyte nuclear factor-1b gene (TCF2) associated with MODY. Nat Genet 17: 384-385.
31. Huang W, Connor E, DelaRosa T, Muir A, Schaz D, Silverstein J, Crockett S, She JX, Maclaren NK. 1996. Although DR3-DQB1* may be associated with multiple component diseases of the autoimmune polyglandular syndromes, the human leukocyte antigen DR4-DQB1I0302 halotype is implicated only in beta cell autoimmunity. J. Clin. Endocrinol. Metab. 81:1-5.
32. Isomma B, Henricsson M, Lehto M, Forsblom C, Karanko S, Sarelin L, Haggblom M, Groop L. 1998. Chronic diabetic complications in patients with MODY 3 diabetes. Diabetologia 41: 467-473.
33. Iwasaki N, Oda N, Ogata M, Hara M, Hinokio Y, Oda Y, Yamagata K, Kanematsu S, Ohgawara H, Omori Y Bell GI. 1997. Mutations in the hepatocyte nuclear factor-1a/MODY 3 gene in Japanese subjects with early-onset and late-onset NIDDM. Diabetes 46: 1504-1508.
34. Jap TS, Wu YC, Chiou JY, Kwok CF. 2000. A novel mutation in the hepatocyte nuclear factor-1a/MODY3 gene in Chinese subjects with early-onset Type 2 diabetes mellitus in Taiwan. Diabet. Med. 17: 390-393.
35. Ladias JA, Hadzopoulou-Cladaras M, Kardassis D, et al. 1992. Transcriptional regulation of human apolipoprotein genes ApoB, ApoCIII, and ApoAII by members of the steroid hormone receptor superfamily HNF-4, ARP-1, EAR-2, and EAR-3. J. Biol. Chem. 267: 15849-15860.
36. Malecki MT, Jhala US, Antonellis A, Fields L, Doria A, Orban T, Saad M, Warram JH, Montminy M, Krolewski AS. 1999. Mutation in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat Genet 23: 323-328.
37. Matschinsky FM, Glaser B, Magnuson MA. 1998. Pancreaic b-cell glucokinase: closing the gap between theoretical concepts and experimental realities. Diabetes 47: 307-315.
38. Menzel R, Kaisaki PJ, Rjasanowski I, Heinke P, Kerner W, Menzel S. 1998. A low renal threshold for glucose in dabetic patients with a mutation in the hepatocyte nuclear factor-1a (HNF-1a) gene. Diabet. Med. 15:816-820.
39. Moller AM, Dalgaard LT, Pociot F, Nerup J, Hansen T, Pedersen O. 1998. Mutations in the hepatocyte nuclear factor-1 alpha gene in Caucasian families originally classified as having Type 1 diabetes. Diabetologia 41: 1528-1531.
40. Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB, Tsai MJ, DeMayo FJ. 1997. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD deficient mice. Genes Dev. 11: 2323-2334.
41. Nishigori H, Yamada S, Kohama T, Tomura H, Sho K, Horikawa Y, Bell GI, Takeuchi T, Takeda J. 1998. Frameshift mutation, A263fsinsGG, in the hepatocyte nuclear factor-1b gene associated with diabetes and renal dysfunction. Diabetes 47: 1354-1355.
42. Njølstad PR, Søvik O, Guesta-Muñoz A, et al. 2001. Neonatal diabetes mellitus due to complete glucokinase deficiency. N. Eng. J. Med. 344: 1588-1592.
43. Olefsky JM, Kolterman OG, Scarlett JA. 1982. Insulin action and resistance in obesity and noninsulin-dependent type II diabetes mellitus. Am. J. Physiol. 243:E15-E30.
44. O’Rahilly S, Spivey RS, Holman RR, Nugent Z, Clark A, Turner RC. 1987. Type II diabetes of early onset: a distinct clinical and genetic syndrome? Br. Med. J. 294:923-928.
45. Pearson ER, Liddell WG, Shepherd M. 2000. Sensitivity to sulphonylureas in patients with HNF1alpha mutations: evidence for pharmacogenetics in diabetes. Diabetic Med. 17: 543-545.
46. Pearson ER, Velho G, Clark P, et al. 2001. b-Cell genes and diabetes: quantitative and qualitative differences in the pathophysiology of hepatic nuclear factor-1a and glucokinase mutations. Diabetes. 50: S101-S107.
47. Perason ER, Pruhova S, Tack CJ, Johansen A, Castleden HAJ, Lumb PJ, Wierzbicki AS, Clark PM, Lebl J, Pedersen O, Ellard S. Hansen T, Hattersley AT. 2005. Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4a mutations in a large European collection. Diabetologia 48: 878-885.
48. Polonsky KS, Sturis J, Bell, GI. 1996. Non-insulin-dependent diabetes mellitus: a genetically programmed failure of the beta cell to compensate for insulin resistance. N. Engl. J. Med. 334: 777-784.
49. Prisco F, Iafusco D, Franzese A Sulli N, Barbetti F. 2000. MODY 2 presenting as neonatal hyperglycaemia: a need to reshape the definition of “neonatal diabetes”? Diabetologia 43: 1331-1332.
50. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH. 2003. The genetics of gene expression surveyed in maize, mouse and man. Nature 422:297-302.
51. Shih DQ, Dansky HM, Fleisher M, Assmann G, Fajans SS, Stoffel M. 2000. Genotype/phenotype relationships in HNF-4alpha/MOY1: haploinsufficiency is associated with reduced apolipoprotein (AII), apolipoprotein (CIII), lipoprotein(a), and triglyceride levels. Diabetes 49: 832-837.
52. Shepherd M, Hattersley AT, Sparkes AC. 2000. Prediceive genetic testing in diabetes: a case study of multiple perspectives. Qualitative Health. Res. 10 (2): 242-259.
53. Shepherd M, Sparkes AC, Hattersley AT. Genetic testing in maturity onset diabetes of the young (MODY): a new challenge for the diabetic clinic. Pract Diab Int 2001; 18: 16-21.
54. Shepherd M. Genetic testing in maturity onset diabetes of the young (MODY) – practical guidelines for professionals. Pract Diab Int 2003; 20:108-110.
55. Sovik O, Njolstad P, Folling I, Sagen J, Cockburn BN, Bell GI. 1998. Hyperexcitability to sulphonylurea in MODY 3. Diabetologia 41: 607-608.
56. Steiner DF, Tager HS, Chan SJ, Nanjo K, Sanke T & Rubenstein AH. 1990. Lesson learned from molecular biology of insulin-gene mutations. Diabetes Care. 13: 600-609.
57. Stoffel M, Duncan SA. 1997. The maturity-onset diabetes of the young (MODY 1) transcription factor HNF4a regulates expression of genes required for glucose transport and metabolism. Proc. Natl. Acad. Sci. USA. 94: 13209-13214.
58. Stoffer DA, Ferrer J, Clarke WL, Habener JF. 1997. Early-onset type-II diabetes mellitus (MODY 4) linked to IPF1. Nat Genet 17: 138-139.
59. Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF. 1997. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat. Genet. 15: 106-110.
60. Taylor SI, Molecular mechanisms of insulin resistance: lessons from patients with mutations in the insulin-receptor gene. 1992. Diabetes. 41: 1473-1490.
61. Tattersall RB. 1974. Mild familial diabetes with dominant inheritance. Q. J. Med. 43: 339-357.
62. Tattersall RB, Fajans SS. 1975. A difference between the inheritance of classical juvenile-onset and maturity-onset type of diabetes in young people. Diabetes 24:44-53.
63. Tattersall R. 1998. Maturity-onset diabetes of the young: a clinical history. Diabet. Med. 15:11-14.
64. Turner RC, Holman RR, Matthew D, Hockaday TDR, Peto J. 1979. Insulin deficiency and insulin resistance interaction in diabetes: estimation of their relative to contribution by feedback analysis from basal plasma insulin and glucose concentration. Metabolism 28: 1086-1096.
65. The expert committee on the diagnosis and classification of diabetes mellitus. 1997. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 20: 1183-1197.
66. Umpierrez GE, Casals MMC, Gebhart SSP, Mizon PS, Clark WS, Phillips LS. 1995. Diabetic ketoacidiosis in obese African-Americans. Diabetes 44: 79-85.
67. Uusitupaa MIJ, Niskanen LK, Siitonen O, Voutilainen E, Pyorala K. 1993. Ten year cardiovascular mortality in relation to risk factors abnormalities in lipoprotein composition in type 2 (non-insulin-dependent) diabetic and non-diabetic subjects. Diabetologia 18: 1534-1543.
68. Van den Ouweland JMW, Lemkes HHPJ, Ruitenbeek W, Sandkuijl LA, De Vijlder MF, Struyvenberg PAA et al. 1992. Mutation in mitochondrial tRNA Leu (UUR) gene in a large pedigree with maternally transmitted type II diabetes and deafness. Nat Genet. 1: 368-371.
69. Vaxillaire M, Baccio V, Philippi A, Vigou1roux C, Terwillinger J, Passa P, Beckmann JS, Velho G, Lathrop GM, FroguelP. 1995. A gene for maturity onset diabetes of the young (MODY) maps to chromosome 12q. Nature Genetics 9: 418-423.
70. Velho G, Vaxillaire M, Boccio V, Charpentire G, Frogul P. 1996. Diabetes complications in NIDDM kindreds linked to the MODY 3 locus on chromosome 12q. Diabetes Care 19: 915-919.
71. Xu JY, Dan QH, Chan V, Wat N MS, et al. 2005. Genetic and clinical characteristics of maturity-onset diabetes of the young in Chinese patients. Euro. J. Hum. Genet. 13:422-427.
72. Yamada S, Zhu Q, Aihara Y et al. 2000. Cloning of cDNA and the gene encoding human hepatocyte nuclear factor (HNF)-3b and mutation screening in Japanese subjects with maturity-onset diabetes of the young. Diabetologia 43: 121-124.
73. Yamada S, Nishigori H, Onda H, Utsugi T, Yanagawa T, Maruyama T, Onigata K, Nagashima K, Nagai R, Morikawa A, Takeuchi T, Takeda J. 1997. Identification of mutations in the hepatocyte nuclear factor (HNF)-1a gene in Japanese subjects with IDDM. Diabetes 46: 1643-1647.
74. Yamataga K, Oda N, Kaisaki PJ, Menzel S, Furuta H, Vaxillvire M, Southam L, Cox RD, Lathrop GM, Boriraj VV, Chen X, Cox NJ, Oda Y, Yano H, Le Beau MM., Yamada S, Nishigori H, Takeda J, Fajans SS, Hattersley AT, Iwasaki N, Hansen T, Pedersen O, Polonsky KS, Turner RC, Velho G, Chèvre, JC, Froguel P, Bell GI.1996. Mutations in the hepatic nuclear factor 1 alpha gene in maturity onset diabetes of the young (MODY3). Nature 384: 455-458.
75. Yamataga K, Furuta H, Oda N, Kaisaki PJ, Menzel S, Cox NJ, Fajans SS, Signorini S, Stoffel M, Bell GI. 1996. Mutations in the hepatic nuclear factor 4 alpha gene in maturity onset diabetes of the young (MODY1). Nature 384: 458-460.
76. Yamagata K. 2003. Regulation of pancreatic b-cell function by the HNF transcription netweek: Lessons from Maturity-Onset Diabetes of the Young (MODY). Endocrine Journal. 50(5): 491-499.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33409-
dc.description.abstract年輕早發型糖尿病 (Maturity Onset Diabetes of the Young, MODY) 為單一基因遺傳之第二型糖尿病 (非胰島素依賴型)。此疾病以自體顯性遺傳模式傳遞並且於年輕成年時期發病。至目前為止,已知有六種不同的基因突變導致MODY。其中一為糖解酵素葡糖激酶基因 (glucokinase; GCK, 與MODY 2有關),另五種為轉錄因子基因:hepatocyte nuclear factor (HNF) 4a (MODY 1),HNF1a(MODY 3),insulin promoter factor 1(IPF-1【MODY 4】),HNF1b(MODY 5),以及neurogenic differentation factor 1(NEUROD1【MODY 6】)。在MODY中扮演重要角色的五種轉錄因子全部於胰臟表現,並且參與調控胰島素,及其他葡萄糖代謝或是b細胞發育過程中重要蛋白質的表現。在白種人,MODY大部分是HNF1a及GCK突變所引起,意即現今有80%的MODY家族可以進行診斷性及預測性基因檢測。其他約15-20%的MODY家族無法於已知的基因找到突變點,稱為MODY X。然而,在日本人及華人的早發第二型糖尿病中只有10%可以在HNF1a基因找到突變點,大部分無法於已知的MODY基因找到突變點。在此篇研究論文中我們發現一臨床症狀及遺傳特性符合MODY最低診斷標準的家族早發型糖尿病人:家庭成員有連續兩代共三人,於25歲之前被診斷為糖尿病。以直接基因定序法檢測於b細胞分化及成熟過程扮演重要角色的HNF1a及NEUROD1基因突變點。定序基因的編碼區及附近兩側的序列,只於HNF1a發現數個造成氨基酸改變的單一核苷酸多形性 (single nucleotides polymorphism):I27L, S487N, S574G。然而,據之前的報導,這些氨基酸的變異並不與MODY疾病的產生相關。猜測應該還有未被發現的MODY基因,有待進一步研究。雖然MODY於台灣的流行率甚低,但個案對於糖尿病的遺傳訊息以及MODY基因檢測所隱含的意義之瞭解是很重要的。本論文針對基因檢測之議題亦稍做討論,試著為如何有效地與家族成員溝通提供一些參考準則。zh_TW
dc.description.abstractMaturity-onset diabetes of the young (MODY) is a monogenic form of Type 2 (non-insulin-dependent) diabetes mellitus. It is inherited in autosomal dominant fashion and expressed at early adult life. To date, mutations in six different genes are known to cause MODY. One of these genes encodes the glycolytic enzyme glucokinase (GCK, associated with MODY2) and the other five encode transcription factors: hepatocyte nuclear factor (HNF)4a (MODY1), HNF1a (MODY3), insulin promoter factor 1 (IPF-1 [MODY4]), HNF1b (MODY5), and neurogenic differentation factor 1 (NEUROD1 [MODY6]). All five transcription factors that have been shown to have a role in MODY are expressed in pancreatic b cells and regulate the expression of insulin as well as other proteins involved in glucose metabolism and/or b cells development. In Caucasians, MODY is mostly caused by mutations in the HNF1a and GCK genes. It means diagnostic and predictive genetic testing is now possible in 80% of MODY families. Approximately 15-20% of families fitting MODY criteria do not have mutations in any of the known genes (MODY X). However, mutations in the HNF1a gene were only found in 10% of Japanese and Chinese patients with early-onset type 2 diabetes. Most MODY patients cannot be explained by known MODY genes. In this study, we examined the genetic and clinical characteristics of a Taiwanese subject with familial early-onset diabetes which fulfilled the minimum criteria for MODY: two consecutive generations of diabetes with three members diagnosed at≦25 years of age. We screened for mutations in the HNF1a and NEUROD1 that play a key role in b–cell differentiation and maturation by direct sequencing. Mutation screening of the coding regions and the flanking intron sequence of both genes showed single nucleotides polymorphisms in HNF1a, several of which resulted in amino acid substitutions: I27L, S487N, and S574G. However, these amino acid sequence variants were not associated with MODY in previous reports. This suggest that there are still unidentified genes in the MODY family and require further study. Although the prevalence of MODY in Taiwan is low, understanding perceptions of genetic information in diabetes and the implication of genetic testing in MODY is important. In this thesis, we try to establish some guidance for issue of genetic testing to provide insights into how to communicate effectively with family members.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:38:58Z (GMT). No. of bitstreams: 1
ntu-95-P93448011-1.pdf: 470763 bytes, checksum: 98c7debd85c1c26745b5d4869cb87022 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents口試通過證明……………………………………………………………2
誌謝………………………………………………………………………3
目錄………………………………………………………………………4
中文摘要…………………………………………………………………6
英文摘要…………………………………………………………………7
簡稱或縮寫對照表………………………………………………………8
前言……………………………………………………………………10
糖尿病診斷標準及分類………………………………………………11
MODY歷史及定義………………………………………………………12
MODY基因與臨床表現…………………………………………………13
MODY 1…………………………………………………………………14
MODY 2…………………………………………………………………14
MODY 3…………………………………………………………………15
MODY 4…………………………………………………………………16
MODY 5…………………………………………………………………16
MODY 6…………………………………………………………………17
流行病學………………………………………………………………17
基因檢測………………………………………………………………17
研究動機與方向………………………………………………………18
實驗材料………………………………………………………………20
實驗方法………………………………………………………………21
結果……………………………………………………………………24
討論……………………………………………………………………27
圖一、研究個案家族圖譜……………………………………………24
表………………………………………………………………………32
表一 MODY與第二型糖尿病臨床特徵區分……………………………32
表二 不同型MODY的比較………………………………………………33
表三 HNF-1a primer sequence………………………………………34
表四 NEUROD1 primer sequence……………………………………35
表五 HNF-1a PCR condition…………………………………………36
表六 NEUROD1 PCR condition………………………………………37
表七 指標個案最近生化值……………………………………………38
表八 指標個案HNF1a及NEUROD1基因序列多形性……………………39
附錄一:家族早發型糖尿病之基因檢測與遺傳諮詢流程…………40
附錄二:單基因遺傳糖尿病之MODY基因檢測同意書………………41
參考資料……………………………………………………………45
dc.language.isozh-TW
dc.title臺灣家族早發型糖尿病之MODY基因檢測與遺傳諮詢zh_TW
dc.titleGenetic testing and counseling of maturity-onset diabetes of the young (MODY) family in Twiwanen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee賴凌平,蘇怡寧
dc.subject.keyword早發型糖尿病,基因檢測,遺傳諮詢,zh_TW
dc.subject.keywordMODY,genetic testing,genetic counseling,en
dc.relation.page52
dc.rights.note有償授權
dc.date.accepted2006-07-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
459.73 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved