Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33408
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周子賓(Tze-Bin CHou)
dc.contributor.authorChien-Che Chungen
dc.contributor.author鐘健哲zh_TW
dc.date.accessioned2021-06-13T04:38:55Z-
dc.date.available2007-07-21
dc.date.copyright2006-07-21
dc.date.issued2006
dc.date.submitted2006-07-19
dc.identifier.citationAnderson, J. S. & Parker, R. P. The 3' to 5' degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3' to 5' exonucleases of the exosome complex. EMBO J. 17, 1497-1506 (1998).
Andrei, M. A. et al. A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies. RNA. 11, 717-727 (2005).
Baggs, J. E. & Green, C. B. Nocturnin, a deadenylase in Xenopus laevis retina: a mechanism for posttranscriptional control of circadian-related mRNA. Curr. Biol. 13, 189-198 (2003).
Baker, K. E. & Parker, R. Nonsense-mediated mRNA decay: terminating erroneous gene expression. Curr. Opin. Cell Biol. 16, 293-299 (2004).
Beelman, C. A. & Parker, R. Differential effects of translational inhibition in cis and in trans on the decay of the unstable yeast MFA2 mRNA. J. Biol. Chem. 269, 9687-9692 (1994).
Beelman, C. A. et al. An essential component of the decapping enzyme required for normal rates of mRNA turnover. Nature 382, 642-646 (1996).
Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. (2006).
Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363-366 (2001).
Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437-445 (1998).
Bhattacharya, A. et al. Characterization of the biochemical properties of the human Upf1 gene product that is involved in nonsense-mediated mRNA decay. RNA. 6, 1226-1235 (2000).
Bremer, K. A., Stevens, A. & Schoenberg, D. R. An endonuclease activity similar to Xenopus PMR1 catalyzes the degradation of normal and nonsense-containing human beta-globin mRNA in erythroid cells. RNA. 9, 1157-1167 (2003).
Cao, D. & Parker, R. Computational modeling and experimental analysis of nonsense-mediated decay in yeast. Cell 113, 533-545 (2003).
Caponigro, G. & Parker, R. Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae. Microbiol. Rev. 60, 233-249 (1996).
Carter, M. S., Li, S. & Wilkinson, M. F. A splicing-dependent regulatory mechanism that detects translation signals. EMBO J. 15, 5965-5975 (1996).
Chen, C. Y. & Shyu, A. B. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. 20, 465-470 (1995).
Chen, C. Y. et al. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107, 451-464 (2001).
Chen, J., Chiang, Y. C. & Denis, C. L. CCR4, a 3'-5' poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMBO J. 21, 1414-1426 (2002).
Coller, J. M., Tucker, M., Sheth, U., Valencia-Sanchez, M. A. & Parker, R. The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA. 7, 1717-1727 (2001).
Conti, E. & Izaurralde, E. Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr. Opin. Cell Biol. 17, 316-325 (2005).
Cougot, N., Babajko, S. & Seraphin, B. Cytoplasmic foci are sites of mRNA decay in human cells. J. Cell Biol. 165, 31-40 (2004).
Czaplinski, K., Weng, Y., Hagan, K. W. & Peltz, S. W. Purification and characterization of the Upf1 protein: a factor involved in translation and mRNA degradation. RNA. 1, 610-623 (1995).
de, V. T. et al. A second maternally expressed Drosophila gene encodes a putative RNA helicase of the 'DEAD box' family. Proc. Natl. Acad. Sci. U. S. A 88, 2113-2117 (1991).
Dean, J. L., Sully, G., Clark, A. R. & Saklatvala, J. The involvement of AU-rich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilisation. Cell Signal. 16, 1113-1121 (2004).
Decker, C. J. & Parker, R. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7, 1632-1643 (1993).
Denis, C. L. & Chen, J. The CCR4-NOT complex plays diverse roles in mRNA metabolism. Prog. Nucleic Acid Res. Mol. Biol. 73, 221-250 (2003).
Ding, L., Spencer, A., Morita, K. & Han, M. The developmental timing regulator AIN-1 interacts with miRISCs and may target the argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. Mol. Cell 19, 437-447 (2005).
Dunckley, T. & Parker, R. The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J. 18, 5411-5422 (1999).
Dupressoir, A. et al. Identification of four families of y. BMC. Genomics 2, 9 (2001).
Eystathioy, T. et al. A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol. Biol. Cell 13, 1338-1351 (2002).
Eystathioy, T. et al. The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. RNA. 9, 1171-1173 (2003).
Fasken, M. B. & Corbett, A. H. Process or perish: quality control in mRNA biogenesis. Nat. Struct. Mol. Biol. 12, 482-488 (2005).
Fenger-Gron, M., Fillman, C., Norrild, B. & Lykke-Andersen, J. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol. Cell 20, 905-915 (2005).
Ferraiuolo, M. A. et al. A role for the eIF4E-binding protein 4E-T in P-body formation and mRNA decay. J. Cell Biol. 170, 913-924 (2005).
Fillman, C. & Lykke-Andersen, J. RNA decapping inside and outside of processing bodies. Curr. Opin. Cell Biol. 17, 326-331 (2005).
Fischer, N. & Weis, K. The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J. 21, 2788-2797 (2002).
Frischmeyer, P. A. et al. An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science 295, 2258-2261 (2002).
Fukuhara, N. et al. SMG7 is a 14-3-3-like adaptor in the nonsense-mediated mRNA decay pathway. Mol. Cell 17, 537-547 (2005).
Gatfield, D., Unterholzner, L., Ciccarelli, F. D., Bork, P. & Izaurralde, E. Nonsense-mediated mRNA decay in Drosophila: at the intersection of the yeast and mammalian pathways. EMBO J. 22, 3960-3970 (2003).
Gatfield, D. & Izaurralde, E. Nonsense-mediated messenger RNA decay is initiated by endonucleolytic cleavage in Drosophila. Nature 429, 575-578 (2004).
Gonzalez, C. I., Bhattacharya, A., Wang, W. & Peltz, S. W. Nonsense-mediated mRNA decay in Saccharomyces cerevisiae. Gene 274, 15-25 (2001).
He, F. & Jacobson, A. Identification of a novel component of the nonsense-mediated mRNA decay pathway by use of an interacting protein screen. Genes Dev. 9, 437-454 (1995).
He, F., Brown, A. H. & Jacobson, A. Upf1p, Nmd2p, and Upf3p are interacting components of the yeast nonsense-mediated mRNA decay pathway. Mol. Cell Biol. 17, 1580-1594 (1997).
He, F. et al. Genome-wide analysis of mRNAs regulated by the nonsense-mediated and 5' to 3' mRNA decay pathways in yeast. Mol. Cell 12, 1439-1452 (2003).
Karzai, A. W., Roche, E. D. & Sauer, R. T. The SsrA-SmpB system for protein tagging, directed degradation and ribosome rescue. Nat. Struct. Biol. 7, 449-455 (2000).
Kedersha, N. et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. 169, 871-884 (2005).
Keene, J. D. & Tenenbaum, S. A. Eukaryotic mRNPs may represent posttranscriptional operons. Mol. Cell 9, 1161-1167 (2002).
LaGrandeur, T. E. & Parker, R. Isolation and characterization of Dcp1p, the yeast mRNA decapping enzyme. EMBO J. 17, 1487-1496 (1998).
Lall, S., Piano, F. & Davis, R. E. C. elegans Decapping Proteins: Localization and Functional Analysis of Dcp1, Dcp2, and DcpS during Embryogenesis. Mol. Biol. Cell (2005).
Lee, Y., Jeon, K., Lee, J. T., Kim, S. & Kim, V. N.
MicroRNA maturation: stepwise processing and subcellular localization. EMBO J. 21, 4663-4670 (2002).
Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69-81 (2004).
Leeds, P., Peltz, S. W., Jacobson, A. & Culbertson, M. R. The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev. 5, 2303-2314 (1991).
Lejeune, F., Li, X. & Maquat, L. E. Nonsense-mediated mRNA decay in mammalian cells involves decapping, deadenylating, and exonucleolytic activities. Mol. Cell 12, 675-687 (2003).
Lin, M. D., Fan, S. J., Hsu, W. S. & Chou, T. B. Drosophila Decapping Protein 1, dDcp1, Is a Component of the oskar mRNP Complex and Directs Its Posterior Localization in the Oocyte. Dev. Cell 10, 601-613 (2006).
Liu, H., Rodgers, N. D., Jiao, X. & Kiledjian, M. The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases. EMBO J. 21, 4699-4708 (2002).
Liu, J., Valencia-Sanchez, M. A., Hannon, G. J. & Parker,
R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat. Cell Biol. 7, 719-723 (2005).
Liu, S. W. et al. Functional analysis of mRNA scavenger decapping enzymes. RNA. 10, 1412-1422 (2004).
Lykke-Andersen, J. Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol. Cell Biol. 22, 8114-8121 (2002).
Malys, N., Carroll, K., Miyan, J., Tollervey, D. & McCarthy, J. E. The 'scavenger' m7GpppX pyrophosphatase activity of Dcs1 modulates nutrient-induced responses in yeast. Nucleic Acids Res. 32, 3590-3600 (2004).
Maquat, L. E. & Carmichael, G. G. Quality control of mRNA function. Cell 104, 173-176 (2001).
Maquat, L. E. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol. 5, 89-99 (2004).
Mata, J., Marguerat, S. & Bahler, J. Post-transcriptional control of gene expression: a genome-wide perspective. Trends Biochem. Sci. 30, 506-514 (2005).
Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185-197 (2004).
Meyer, S., Temme, C. & Wahle, E. Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev. Biochem. Mol. Biol. 39, 197-216 (2004).
Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M. & Tollervey, D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. Cell 91, 457-466 (1997).
Mitchell, P. & Tollervey, D. mRNA turnover. Curr. Opin. Cell Biol. 13, 320-325 (2001).
Mitchell, P. & Tollervey, D. An NMD pathway in yeast involving accelerated deadenylation and exosome-mediated 3'-->5' degradation. Mol. Cell 11, 1405-1413 (2003).
Muhlrad, D. & Parker, R. Premature translational termination triggers mRNA decapping. Nature 370, 578-581 (1994).
Mukherjee, D. et al. The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J. 21, 165-174 (2002).
Muto, A., Ushida, C. & Himeno, H. A bacterial RNA that functions as both a tRNA and an mRNA. Trends Biochem. Sci. 23, 25-29 (1998).
Nakamura, A., Amikura, R., Hanyu, K. & Kobayashi, S. Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis. Development 128, 3233-3242 (2001).
Nakamura, A., Sato, K. & Hanyu-Nakamura, K. Drosophila cup is an eIF4E binding protein that associates with Bruno and regulates oskar mRNA translation in oogenesis. Dev. Cell 6, 69-78 (2004).
Orban, T. I. & Izaurralde, E. Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA. 11, 459-469 (2005).
Peltz, S. W., Brown, A. H. & Jacobson, A. mRNA destabilization triggered by premature translational termination depends on at least three cis-acting sequence elements and one trans-acting factor. Genes Dev. 7, 1737-1754 (1993).
Petersen, R. & Lindquist, S. The Drosophila hsp70 message is rapidly degraded at normal temperatures and stabilized by heat shock. Gene 72, 161-168 (1988).
Petersen, R. B. & Lindquist, S. Regulation of HSP70 synthesis by messenger RNA degradation. Cell Regul. 1, 135-149 (1989).
Rehwinkel, J., Behm-Ansmant, I., Gatfield, D. & Izaurralde, E. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA. 11, 1640-1647 (2005).
Ross, J. mRNA stability in mammalian cells. Microbiol. Rev. 59, 423-450 (1995).
Schneider, I. Cell lines derived from late embryonic stages of Drosophila melanogaster. J. Embryol. Exp. Morphol. 27, 353-365 (1972).
Sen, G. L. & Blau, H. M. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat. Cell Biol. 7, 633-636 (2005).
Sheth, U. & Parker, R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805-808 (2003).
Sheth, U. & Parker, R. Targeting of aberrant mRNAs to cytoplasmic processing bodies. Cell 125, 1095-1109 (2006).
Steiger, M., Carr-Schmid, A., Schwartz, D. C., Kiledjian, M. & Parker, R. Analysis of recombinant yeast decapping enzyme. RNA. 9, 231-238 (2003).
Stevens, A. Purification and characterization of a Saccharomyces cerevisiae exoribonuclease which yields 5'-mononucleotides by a 5' leads to 3' mode of hydrolysis. J. Biol. Chem. 255, 3080-3085 (1980).
Stevens, A. & Maupin, M. K. A 5'----3' exoribonuclease of Saccharomyces cerevisiae: size and novel substrate specificity. Arch. Biochem. Biophys. 252, 339-347 (1987).
Stoecklin, G., Mayo, T. & Anderson, P. ARE-mRNA degradation requires the 5'-3' decay pathway. EMBO Rep. 7, 72-77 (2006).
Tijsterman, M. & Plasterk, R. H. Dicers at RISC; the mechanism of RNAi. Cell 117, 1-3 (2004).
Till, D. D. et al. Identification and developmental expression of a 5'-3' exoribonuclease from Drosophila melanogaster. Mech. Dev. 79, 51-55 (1998).
Tomari, Y. & Zamore, P. D. Perspective: machines for RNAi. Genes Dev. 19, 517-529 (2005).
Tucker, M. & Parker, R. Mechanisms and control of mRNA decapping in Saccharomyces cerevisiae. Annu. Rev. Biochem. 69, 571-595 (2000).
Tucker, M. et al. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104, 377-386 (2001).
Tucker, M., Staples, R. R., Valencia-Sanchez, M. A., Muhlrad, D. & Parker, R. Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J. 21, 1427-1436 (2002).
Unterholzner, L. & Izaurralde, E. SMG7 acts as a molecular link between mRNA surveillance and mRNA decay. Mol. Cell 16, 587-596 (2004).
van, D. E. et al. Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J. 21, 6915-6924 (2002).
van, D. E., Le, H. H. & Seraphin, B. DcpS can act in the 5'-3' mRNA decay pathway in addition to the 3'-5' pathway. Proc. Natl. Acad. Sci. U. S. A 100, 12081-12086 (2003).
van, H. A. & Parker, R. The exosome: a proteasome for RNA? Cell 99, 347-350 (1999).
van, H. A., Frischmeyer, P. A., Dietz, H. C. & Parker, R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295, 2262-2264 (2002).
Wagner, E. & Lykke-Andersen, J. mRNA surveillance: the perfect persist. J. Cell Sci. 115, 3033-3038 (2002).
Wang, Z. & Kiledjian, M. Functional link between the mammalian exosome and mRNA decapping. Cell 107, 751-762 (2001).
Wilhelm, J. E., Hilton, M., Amos, Q. & Henzel, W. J. Cup is an eIF4E binding protein required for both the translational repression of oskar and the recruitment of Barentsz. J. Cell Biol. 163, 1197-1204 (2003).
Wilusz, C. J. & Wilusz, J. Bringing the role of mRNA decay in the control of gene expression into focus. Trends Genet. 20, 491-497 (2004).
Yang, Z. et al. GW182 is critical for the stability of GW bodies expressed during the cell cycle and cell proliferation. J. Cell Sci. 117, 5567-5578 (2004).
Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33 (2000).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33408-
dc.description.abstract真核生物的訊息核醣核酸裂解在許多不同的生物機能層面扮演了很重要的角色,例如:基因表現的調控(何時啟動或停止)、訊息核醣核酸品質上面的控制(有無受損)、抵抗外來病毒的侵襲。在人類細胞與酵母菌方面,由於過去十幾年來的努力研究,發現訊息核醣核酸的裂解有主要兩條路徑:在去掉poly A之後,分別進行5’端往3’端方向的裂解以及3’端往5’端方向的裂解。
近期研究顯示,在人類細胞與酵母菌中,訊息核醣核酸裂解所需的蛋白質會在細胞質特定位置呈現一種聚集的現象,稱之為裂解體 (Processing bodies, P bodies)。而這些被稱為裂解體的地方,確實是訊息核醣核酸被裂解之處。基於這些參與訊息核醣核酸裂解之蛋白質有其同源物存在於不同的物種間以及整個訊息核醣核酸裂解途徑機制的相似性,我們因而推測在果蠅的細胞中理應存在著類似於人類與酵母菌裂解體之構造。
本篇論文著眼於定義與確認果蠅S2細胞中是否有相似於人類與酵母菌裂解體的存在。在觀察一些參與果蠅訊息核醣核酸裂解時所需的蛋白質時,如dDcp1, dDcp2, Me31B, Pacman, Xrn1…等,發現他們在S2細胞質中也有聚集的現象產生。然而,造成此一現象的原因不見得就是訊息核醣核酸裂解所造成,亦有可能其本身的存在只是這些蛋白質的一個儲存場所。我們將以一連串的實驗來釐清這些可能性,例如:對於這些不同的蛋白質加以定位觀察是否處於同一構造中、破壞參與訊息核醣核酸裂解的蛋白質並觀察對於這些假設性的裂解體的影響、觀察進行裂解中的訊息核醣核酸是否出現在這些構造中…等等。實驗結果證明,這些出現在S2細胞質中的構造絕非單純的只是這些蛋白質暫時存放的處所。相反的,我們認為這些假定的裂解體與在人類細胞或是酵母菌中發現的構造具有相似的功能:也就是訊息核醣核酸裂解發生的地方,尤其是對於進行5’端往3’端方向的訊息核醣核酸裂解而言。
zh_TW
dc.description.abstractThe degradation of eukaryotic mRNAs plays important roles in the modulation of gene expression, quality control of mRNA biogenesis and antiviral defenses. Two general pathways of mRNA decay have been identified in eukaryotic cells. After shortening of the poly(A) tail at the 3′ end of the mRNA, mRNA may be degraded in a 5’ to 3’ direction or in a 3’ to 5’ direction.
Recently, in yeast and human cells, many enzymes of the basic decay machinery are found in the cytoplasmic foci, called processing bodies (P bodies). Further experiments have proved that P-bodies are actual sites of mRNA decay, especially for 5’ to 3’ decay pathway. Based on the conserved mRNA decay factors and the similar mRNA decay mechanisms between species, we suggest that the processing body related structure probably also exists in Drosophila.
Here, we observed that the mRNA decay factors, such as Ccr4, dDcp1, dDcp2, Me31B, and Pacman, are concentrated in the cytoplasmic foci of Drosophila S2 cells. Whether these proteins are in a unique set of structures? We construct a series of proteins which involve in the different mRNA decay pathways to transfect the cells then co-immunostain the transfected protein and endogenous dDcp1 (as a marker of putative P bodies). It was found that proteins that involved in the 5’ to 3’ mRNA decay all localize to the same cytoplasmic foci, we called as dDcp1-containing bodies.
However, we can not exclude the possibility that these foci are sites for protein storage rather than mRNA decay. To answer this question, a series of experiments such as dsRNA silencing the mRNA decay factors, translational inhibitor treatment, and the visible mRNA decay intermediates are required. Finally, we may identify these dDcp1-containing bodies are the “processing bodies” in Drosophila cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:38:55Z (GMT). No. of bitstreams: 1
ntu-95-R93b43016-1.pdf: 1016308 bytes, checksum: de13a1492cecd19cea7275a0fa8aef51 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要……………………………………1
Abstract……………………………….2
Table of Content………………3
List of Figures………………5
Introduction………………………..6
I.mRNA turnover………………..6
II.mRNA decay pathways..……7
1.Deadenylation-dependent mRNA decay…………8
A.5′to 3′ decay…………….9
B.3′to 5' decay..........10
C.ARE-mediated mRNA decay……………….12
2.mRNA surveillance pathway…………………..13
A.Nonsense-mediated decay…………………..13
B.Nonstop decay………………………………....17
3.RNA interference (miRNA and siRNA)……………….18
III.mRNA turnover process takes place in cytoplasmic foci, called P-bodies, in eukaryotes………………………..20
Materials and Methods……………..23
1.Drosophila S2 cells maintenance…………………………...23
2.Heat inactivation of FBS……………………23
3.Freezing S2 cells………………………………24
4.Thawing S2 cells……………………..25
5.Transient transfection of S2 cells…………...26
6.Fluorescence antibody staining of S2 cells…………………27
7.Treat the S2 cells with drugs………………..27
8.dsRNA synthesis……………………………………28
9.dsRNA treatment of S2 cells……………………………..30
10.Western blot of S2 cells……………………..31
11.Membrane stripping……………………………...32
12.pAc5.1/V5-HisA mRNA decay factors constructs………….32
13.Visible mRNA intermediates constructs…………….34
14.pGEM3Z constructs as DNA template for in vitro transcription ..34
Result……………………36
1.dDcp1, dDcp2, Me31B, and Pacman localize to cytoplasmic foci in S2 cells….36
2.Tagged fusion dDcp2, Me31B, and Pacman colocalize in dDcp1-containing bodies……………………………….38
3.The localization of visible mRNA decay intermediates………………………….40
4.The cytoplasmic dDcp1-containing bodies are sensitive to cycloheximide…41
5.RNAi of mRNA factors influence the size and number of dDcp1 bodies……….43
6.Distribution pattern of additional mRNA decay factors…46
7.Location of additional mRNA decay factors in dDcp1-containing bodies………49
8.Over-expression of dDcpS recruits dDcp1, dDcp2 into nuclei…………………50
Discussion……………………51
1.dDcp1-containing bodies are putative P bodies………….51
2.Chimeric mRNA decay intermediate does not localize to dDcp1 bodies…..……53
3.miRNA pathway may associate with dDcp1-containing bodies transiently……..55
4.NMD pathway in different steps may have different loci..………………………57
5.Potential interactions between dDcpS and dDcp1, dDcp2 proteins……….…….59
Acknowledgement……………62
Reference…………………..63
Figures……………..72
dc.language.isoen
dc.title果蠅S2細胞內訊息核醣核酸裂解體(Processing-bodies)之定義與探討zh_TW
dc.titleProcessing-bodies in Drosophila S2 cellsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊宏,黃偉邦,董桂書
dc.subject.keyword裂解體,訊息核醣核酸,果蠅,zh_TW
dc.subject.keywordP-bodies,mRNA decay,Drosophila,en
dc.relation.page90
dc.rights.note有償授權
dc.date.accepted2006-07-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
992.49 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved