請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33394完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂育道(Yuh-Dauh Lyuu) | |
| dc.contributor.author | Shin-Chiang Chen | en |
| dc.contributor.author | 陳欣強 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:38:11Z | - |
| dc.date.available | 2008-07-26 | |
| dc.date.copyright | 2006-07-26 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-18 | |
| dc.identifier.citation | Ait-Sahalia, Y. and Lo, A., (1988) “Nonparametric estimation of state price densities implicit in financial asset prices.” Journal of Finance, 53, 499–547.
Amin, K., (1993) “Jump-diffusion valuation in discrete time.” Journal of Finance, 48(5), 1833–1863. Andersen, T.G., Benzoni, L. And Lund, J., (2002) “An empirical investigation of continuous-time equity return models” Journal of Finance, 62, 1239–1284. Bakshi, G., Cao, C. and Chen, Z. (1997) “Empirical performance of alternative option pricing models.” Journal of Finance, 52, 2003–2049. Ball, C.A. and Torous, W.N., (1985) “On jumps in common stock prices and their impact on call option pricing.” Journal of Finance, 40(1), 155–173. Bates, D., (1996) “Jumps and stochastic volatility: exchange rate processes implicit in Deutsche mark options.” Review of Financial Studies, 9, 69–107. Bates, D., (2000) “Post-’87 crash fears in S&P 500 futures options.” Journal of Econometrics, 94, 181–238. Black, F., (1976) “The pricing of commodity contracts.” Journal of Financial Economics, 3, 167–179. Bollerslev, T., (1986) “Generalized autoregressive conditional heteroskedasticity.” Journal of Economics, 31, 307–327. Bollerslev, T., Chou, R.Y. and Kroner, K., (1992) ”ARCH modelling in finance: a review of the theory and empirical evidence.” Journal of Economics, 52, 5–59. Breeden, D.T., (1979) “An intertemporal asset pricing model with stochastic consumption and investment opportunities.” Journal of Financial Economics, 7, 265–296. Cakici, N. and Topyan, K., (2000) “The GARCH option pricing model: a lattice approach.” Journal of Computational Finance, 3(4), 71–85. Carr, P. and Wu, L.-R., (2003) “What type of process underlies options? A simple robust test.” Journal of Finance, 58, 2581–2610. Chien, H.-H., (2003) “On the complexity of the Ritchken–Sankarasubramanian interest rate model.” MBA thesis, National Taiwan University. Christoffersen, P., Heston, S. and Jacobs, K., (2004) “Option valuation with conditional skewness.” Forthcoming Journal of Econometrics. Christoffersen, P. and Jacobs, K., (2004) “Which GARCH model for option valuation?” Management Science, 50, 1204–1221. Cox, J.C., Ingersoll, J.E. and Ross, S.A., (1985) “A theory of the term structure of interest rates.” Econometrica, 53(2), 385–407. Cox, J.C., and Ross, S.A., (1976) “The valuation of options for alternative stochastic processes.” Journal of Financial Economics, 3, 229–263. Cox, J.C., Ross, S.A. and Rubinstein, M., (1979) “Option pricing: a simplified approach.” Journal of Financial Economics, 7(3), 229–263. Dempster, M.A.H., and Richards, D.G., (2000) “Pricing American options fitting the smile.” Mathematical Finance, 10(4), 157–177. Ding, Z., Granger, R. and Engle, R.F., (1993) “A long memory property of stock market returns and a new model.” Journal of Empirical Finance, 83–106. Duan, J.-C., (1995) “The GARCH option pricing model.” Mathematical Finance, 5(1), 13–32. Duan, J.-C., (1999) “Conditionally fat tailed distributions and the volatility smile in options.” working paper, University of Toronto. Duan, J.-C., Gauthier, G., Sasseville, C. and Simonato, J.-G., (2002) ”Seize the moments: approximating American option prices in the GARCH framework.” Journal of Futures Markets. Duan, J.-C., Ritchken, P. and Sun, Z., (2005) “Jump starting GARCH: Pricing and hedging options with jumps in returns and volatilities.” working paper, University of Toronto. Duan, J.-C. and Simonato, J.-G., (2001) “American option pricing under GARCH by a Markov chain approximation.” Journal of Economic Dynamic Control, 22, 1689–1718. Duffie, D., (1986) “Stochastic equilibria: Existence, spanning number, and the “no expected financial gain from trade” hypothesis.” Econometrica, 54, 1161–1183. Engle, R.F., (2003) “Risk and volatility: Econometric models and financial practice.” Nobel Lecture. Engle, R.F. and Ng, V., (1993) “Measuring and testing the impact of news on volatility.” Journal of Finance, 48, 1749–1778. Engle, R.F. and Patton, A.J., (2001) “What good is a volatility model?” Quantitative Finance, 1(2), 237–245. Eraker, B., (2004) “Do equity prices and volatility jump? Reconciling evidence from spot and option prices.” Journal of Finance, 59, 1367–1403. Eraker, B., Johannes, M. and Polson, N., (2003) “The impact of jumps in volatilities and returns.” Journal of Finance, 3, 1269–1300. Forsyth, P.A., Vetzal, K.R. and Zvan, R., (2002) “Convergence of numerical methods for valuing path-dependent options using interpolation.” Review of Derivatives Research, 5, 273–314. Heston, S.L., (1993) “A closed-form solution for options with stochastic volatility.” Review of Financial Studies, 6, 327–344. Heston, S.L. and Nandi, S., (2000) “A closed-form GARCH option valuation model.” Review of Financial Studies, 13(3), 585–625. Hentschel, L., (1995) “All in the family: nesting symmetric and asymmetric GARCH models.” Journal of Financial Economics, 39, 71–104. Hull, J.C, and White, A., (1987) “The pricing of options on assets with stochastic volatilities.” Journal of Finance, 42, 281–300. Hull, J.C, and White, A., (1993) “One-factor interest-rate models and the valuation of interest-rate derivative securities.” Journal of Financial and Quantitative Analysis, 28(2), 235–254. Jarrow, R. and Rosenfeld, E.R., (1984) “Jump risks and the intertemporal capital asset pricing model.” Journal of Business, 57(3), 337–351. Jarrow, R. and Rudd, A., (1983) “Option Pricing” Richard D. Irwin, Inc., Homewood, Ill. Jorion, P., (1988) “On jump processes in the foreign exchange and stock markets.” Review of Financial Studies, 1, 427–445. Kim, M.-J., Oh, Y.-H. and Brooks, R., (1994) “Are jumps in stock returns diversifiable? Evidnece and implications for option pricing.” Journal of Financial and Quantitative Analysis, 29(4), 609–631. Kou, S.G. and Wang H.,(2004) “Option pricing under a double exponential jump diffusion model.” Management Science, 50(9), 1178–1192. Leisen D.P.J., (1999) “Valuation of barrier options in a Black-Scholes setup with jump risk.” European Financial Review, 3, 319–342. Lucas, R.E., (1978) “Asset prices in an exchange economy.” Econometrica, 46, 1414–1426. Lyuu, Y.-D., (2002) “Financial Engineering & Computation: Principles, Mathematics, Algorithms” Cambridge University Press: Cambridge. Lyuu, Y.-D. and Liou, Y.-F., (2005) “Closed-form solutions for GARCH-jump option pricing models.” MBA thesis, National Taiwan University. Lyuu, Y.-D. and Wu, C.-N., (2005) “On accurate and provably efficient GARCH option pricing algorithms.” Quantitative Finance, 5(2), 181–198. Merton, R., (1976) “Option pricing when underlying stock returns are discontinuous.” Journal of Financial Economics, 3, 125–144. Naik, V. and Lee, M., (1990) “General equilibrium pricing of options on the market portfolio with discontinuous returns.” Review of Financial Studies, 3, 493–521. Nelson, D.B., and Ramaswamy, K., (1990) “Simple binomial processes as diffusion approximations in financial models.” Review of Financial Studies, 3(3), 393–430. Pan, J., (2002) “The jump-risk premia implicit in options: evidence from the integrated time-series study.” Journal of Financial Economics, 63, 3–50. Papadimitriou, C.H., (1995) “Computational Complexity” Addison-Wesley: Reading, MA. Ritchken, P. and Sankarasubramanian, L., (1995) “Volatility structures of forward rates and the dynamics of the term structure.” Mathematical Finance, 5(1), 55–72. Ritchken, P., Sankarasubramanian, L. and Vijh, A.M., (1993) “The valuation of path dependent contracts on the average.” Management Science, 39(10), 1202–1213. Ritchken, P. and Trevor, R., (1999) “Pricing options under generalized GARCH and stochastic volatility processes.” Journal of Finance, 54(1), 377–402. Taylor, S., (1986) “Modelling Financial Time Series” Wiley: New York. Trippi, R.R., Brill, E.A. and Harriff, R.B., (1992) “Pricing options on an asset with Bernoulli jump-diffusion returns.” The Financial Review, 27(1), 59–79. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33394 | - |
| dc.description.abstract | 本篇論文提出文獻上第一個GARCH-跳躍選擇權的樹狀演算法。根據Duan, Ritchken, and Sun (2005)的GARCH-lognormal跳躍模型,修改其中跳躍的分配,我們提出一個新的模型:GARCH-二元跳躍選擇權評價模型。在這個新模型裡,除了變異數異質性,二元跳躍亦發生在pricing kernel,資產報酬以及資產報酬變異數。考慮GARCH-lognormal跳躍模型對於建造樹狀演算法的高度不可追朔性,我們因而採用簡單的二元跳躍。若刪去跳躍的部份,我們的模型將簡化為 Duan (1995)的NGARCH模型。若刪去GARCH效果,在分割越細下,我們的模型將收斂到Amin (1993) 以及 Trippi, Brill, and Harriff (1992)的模型。我們運用類似Amin (1993)的方法,將二元跳躍建構在一個GARCH選擇權評價樹上。而此一GARCH選擇權評價樹,我們的選擇是Lyuu and Wu (2005)的mean-tracking (MT)樹。從而歐式與美式的選擇權皆可以很有效率的利用我們的演算法評價。在這篇論文裡,我們提供此一樹狀演算法不會發生到期日縮短問題的充分條件。此外,我們亦推導出此一樹狀演算法只會隨到期日呈二次方成長的充分條件。這個發現讓我們的演算法效率與Black-Scholes模型下的二元樹狀演算法一致。高效率則代表著此一演算的實用性。另外,我們的演算法將可以簡單推廣到其他的GARCH模型。利用數值分析,我們確認所有的理論推導以及此一演算法的評價的正確性。除此之外,我們也比較了GARCH-lognormal跳躍模型與GARCH-二元跳躍模型所產生的選擇權價格之異同,並由此討論其中的涵義。 | zh_TW |
| dc.description.abstract | This thesis proposes the first tree-based algorithm in the literature for the pricing of options under the GARCH-jump model. Following Duan, Ritchken, and Sun (2005), we propose a new model, the GARCH-binary jump option pricing model, with modifications on their jump distribution. In this new model, besides conditional heteroskedasticity, there are also binary jumps in the pricing kernel and correlated binary jumps in asset returns and volatilities. The high complexity and intractability in constructing a tree-based algorithm for GARCH-lognormal jump processes motivate the simple binary jump distribution assumption. When jumps are suppressed, our model nests Duan’s (1995) NGARCH option pricing model, where conditional returns are posited to be normal. When the GARCH effect is suppressed, the diffusion limit of our model converges to the binary jump-diffusion models of Amin (1993) and Trippi, Brill, and Harriff (1992). Following the binary jump-diffusion tree of Amin (1993), we superimpose binary jumps on a GARCH option pricing tree. Our choice of the tree is the mean-tracking (MT) tree proposed by Lyuu and Wu (2005). Both European and American options can then be priced by our algorithm. We give sufficient conditions for our algorithm to avoid the short-maturity problem inherit in the original GARCH option pricing tree of Ritchken and Trevor (1999) and Cakici and Topyan (2000). Furthermore, the tree size growth is guaranteed to be quadratic if the number of partitions of one day, n, does not exceed a threshold predetermined by the model parameters. This surprising finding places the tree-based GARCH-jump option pricing algorithm in the same complexity class as binomial trees under the Black-Scholes model. The level of efficiency makes the proposed model and algorithm practical. Furthermore, our algorithm can be naturally amended to alternative GARCH specifications. Extensive numerical evaluation is conducted to confirm the analytical results and the numerical accuracy of our algorithm. Numerical comparisons are also conducted between the GARCH-binary and lognormal jump models. Several implications are drawn from these results. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:38:11Z (GMT). No. of bitstreams: 1 ntu-95-R93723045-1.pdf: 1115586 bytes, checksum: 6c06157a55df12391e186918a3b14423 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 1. Introduction........................................1
1.1 Introduction…………………………………………….1 1.2 Organization of This Thesis……………………………6 2. The Binary Jump-Diffusion Model and Tree-Based Algorithms..................................................................................8 2.1 The Binary Jump-Diffusion Model……………………9 2.2 Tree-Based Jump-Diffusion Algorithms……………...11 3. The GARCH Model and the Mean-Tracking (MT) Tree ………………………………………………………………...17 3.1 The GARCH Model………………………………….17 3.2 The Mean-Tracking (MT) Tree………………………19 3.2.1 Tree Building……………………………………19 3.2.2 Interpolated Volatilities and Backward Induction ………………………………………………………...22 4. The Methodology………………………………………….25 5. The GARCH-Binary Jump Model……………………….28 5.1 Dynamics of the Pricing Kernel and the Asset……….28 5.2 The Updating Mechanism for the Local Scaling Factor ……………………………………………………………33 5.3 The Nested Models…………………………………...34 6. Skewness and Kurtosis under the Risk-Neutral Measure ………………………………………………………………...36 6.1 Conditional Skewness and Kurtosis of Jump Innovations…………………………………………...36 6.2 Unconditional Skewness and Kurtosis of Logarithmic Returns………………………………………………..42 6.3 The Impact of Jumps on Unconditional Skewness and Kurtosis………………………………………………43 7. The Mean-Tracking GARCH-Binary Jump (MTGBJ) Tree…………………………………………………………...55 7.1 The MTGBJ Tree……………………………………..55 7.1.1 Tree Building……………………………………55 7.1.2 A Sufficient Condition for Avoiding the Short-Maturity Problem…………………………66 7.1.3 Interpolated Volatilities and Backward Induction ………………………………………………………...70 8. A Sufficient Condition for the Quadratic Growth of MTGBJ……………………………………………………….72 9. Numerical Evaluation of MTGBJ………………………..76 10. Numerical Comparisons with the GARCH-Lognormal Jump Model………………………………………………….80 11. Conclusions………………………………………………83 Bibliography…………………………………………………85 Appendices…………………………………………………...91 | |
| dc.language.iso | en | |
| dc.subject | 選擇權評價 | zh_TW |
| dc.subject | 樹狀演算法 | zh_TW |
| dc.subject | 二元跳躍 | zh_TW |
| dc.subject | 變異數異質性 | zh_TW |
| dc.subject | Tree-Based Algorithm | en |
| dc.subject | GARCH-Jump Process | en |
| dc.subject | Binary Jump | en |
| dc.title | GARCH-二元跳躍選擇權的樹狀評價法 | zh_TW |
| dc.title | A Tree-Based Algorithm for Option Pricing under GARCH-Binary Jump Processes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 戴天時,金國興 | |
| dc.subject.keyword | 樹狀演算法,選擇權評價,變異數異質性,二元跳躍, | zh_TW |
| dc.subject.keyword | GARCH-Jump Process,Tree-Based Algorithm,Binary Jump, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-19 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 財務金融學研究所 | zh_TW |
| 顯示於系所單位: | 財務金融學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
