Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33386
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鍾添東
dc.contributor.authorChen-Cheng Leeen
dc.contributor.author李臻誠zh_TW
dc.date.accessioned2021-06-13T04:37:46Z-
dc.date.available2006-07-28
dc.date.copyright2006-07-28
dc.date.issued2006
dc.date.submitted2006-07-18
dc.identifier.citation[1] L. A. Schmit, “Structural design by systematic synthesis”, Proceedings of the 2nd Conference on Electronic Computation, New York, American Society of Civil Engineering, pp.105-122, 1960.
[2] D. Kavlie and J. Moe, “Automated design of frame structures”, Journal of Structural Div., ASCE, pp.33-62, 1971.
[3] L. A. Schmit and B. Farshi, “Some approximation concepts for structural synthesis,” AIAA J., Vol. 12, No. 5, pp.692-699, 1974.
[4] P. Hajela, “Genetic search - an approach to the nonconvex optimization problem”, AIAA Journal, Vol. 28, No. 7, pp. 1205-1210, 1990.
[5] J. H. Holland, Adaptation in natural and artificial systems, MIT Press, 1975.
[6] A. G. M. Mitchell, “The limits of economy of material in framed structures”, Phil. Mag., Vol. 6, No. 8, pp.589-597, 1904.
[7] W. Prager and R. T. Shield, “Optimal design of multi-purpose structures”, Int. J. Solids Structures, Vol. 4, pp.469-475, 1968.
[8] W. Prager and J. E. Taylor, “Problems of optimal structural design”, Journal of Applied Mechanics, Vol. 35, pp.102-106, 1968.
[9] P. J. Fleming and C. M. Fonseca, “Genetic algorithms in control systems engineering: A brief introduction”, Genetic Algorithms for Control Systems Engineering, pp. 1-5, 1993.
[10] D. E. Goldberg, Genetic algorithms in search, optimization and machine learning, Addison-Wesley Publishing Co., Reading, Massachusetts, 1989.
[11] L. D. Davis, Handbook of genetic algorithms, Van Nostrand Reinhold, 1991.
[12] D. E. Goldberg and M. P. Samtani, “Engineering optimization via genetic algorithm”, In Ninth Conference on Electronic Computation, New York, N.Y., ASCE, pp. 471-482, 1986.
[13] W. M. Jenkins, “Towards structural optimization via the genetic algorithm”, Computers & Structures, Vol. 40, No. 5, pp.1321-1327, 1991.
[14] S. J. Wu, and P. T. Chow, “The applications of genetic algorithms to discrete optimization problems”, Journal of the Chinese Society of Mechanical Engineers, Vol. 16, No. 6, pp.587-598, 1995.
[15] T. Y. Chen, and C. J. Chen, “Improvements of simple genetic algorithm in structural design”, International Journal for Numerical Methods in Engineering, Vol. 40, No. 7, pp. 1323-1334, 1997.
[16] K. Deb, “Optimal design of a welded beam structure via genetic algorithms”, AIAA Journal, Vol. 29, No. 11, pp. 2013-2015, 1991.
[17] J. L. Chen and Y. C. Tsao, “Optimal design of machine elements using genetic algorithms”, Journal of the Chinese Society of Mechanical Engineers, Vol. 14, No. 2, pp. 193-199, 1993.
[18] S. Rajeev and C. S. Krishnamoorthy, “Discrete optimization of structures using genetic algorithms”, Journal of Structural Engineering, ASCE, Vol. 118, No. 5, pp. 1233-1250, 1992.
[19] Z. Michalewicz, “Genetic algorithms, numerical optimization, and constraints”, In Eshelman, L. J., editor, Proceedings of the Sixth International Conference on Genetic Algorithms, pp. 151-158, 1995.
[20] Z. Michalewicz, “A survey of constraint handling techniques in evolutionary computation methods”, In J. R. McDonnell, R. G. Reynolds, and D. B. Fogel, editors, Proceedings of the 4th Annual Conference on Evolutionary Programming. The MIT Press, Cambridge, Massachusetts, pp. 135-155, 1995.
[21] A. Homaifar, S. H. Y. Lai, and X. Qi, “Constrained optimization via genetic algorithms”, Simulation, Vol. 62, No. 4, pp. 242-254, 1994.
[22] J. Joines, and C. Houck, “On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GAs”, In David Fogel, editor, Proceedings of the first IEEE Conference on Evolutionary Computation, Orlando, Florida, IEEE Press, pp. 579-584, 1994.
[23] A. E. Smith, and D. M. Tate, “Genetic optimization using a penalty function”, In Stephanie Forrest, editor, Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, California, University of Illinois at Urbana-Champaign, Morgan Kaufmann Publishers, pp. 499-503, 1993.
[24] H. J. C. Barbosa, “A coevolutionary genetic algorithm for constrained optimization”, Evolutionary Computation, Vol. 3, pp.1605-1611, 1999.
[25] M. J. Tahk, and B. C. Sun, “Coevolutionary augmented lagrangian methods for constrained optimization”, IEEE Transactions on Evolutionary Computation, Vol. 4, No. 2, pp.114-124, 2000.
[26] 周明,孫樹棟,遺傳算法原理及應用,國防工業出版社,中國,1999。
[27] 林其禹,楊育家,”遺傳演算法之集結區鑑別技術”,中國機械工程學會第十一屆學術研討會,pp. 689-697,1994。
[28] 劉家有,遺傳演算法為基礎之混合式全域最佳化方法,國立台灣工業技術學院碩士論文,1995。
[29] 簡士傑,葉怡成,”以遺傳演算法做鋼桁架結構之離散最佳化設計”,中國土木水利工程學刊,第八卷,第三期,1996。
[30] P. B. Nair, Combining approximation concepts with genetic algorithm-based structural optimization procedures, Ph.D. Thesis, Department of Mechanical Engineering, University of Southampton, 1998.
[31] Y. Jin, “A comprehensive survey of fitness approximation in evolutionary computation”, Soft Computing Journal, Vol. 9, No. 1, pp.3-12, 2005.
[32] J. Branke and C. Schmidt, “Faster convergence by means of fitness estimation”, Soft Computing, Vol. 9, pp. 13-20, 2005.
[33] J. S. Chen, C. Pan, C. T. Wu, and W. K Liu, “Reproducing kernel particle methods for large deformation analysis of non-linear structures”, Comput. Methods Appl. Mech. Engrg., Vol. 139, pp. 195-227, 1996.
[34] J. S. Chen, C. Pan, C. M. O. L. Roque, H. P. Wang, “A lagrangian reproducing kernel particle method for metal forming analysis”, Computer Mechanics, Vol. 22, pp. 289-307, 1998.
[35] J. S. Chen and H. P. Wang, “New boundary condition treatments in meshfree computation of contact problems”, Comput. Methods Appl. Mech. Engrg., Vol. 187, pp. 441-468, 2000.
[36] W. J. Roux, N. Stander and R. T. Haftka, “Response surface approximations for structural optimization”, Int. J. Numer. Meth. Engng, Vol. 42, pp. 517-534, 1998.
[37] U. Kirsch, “Improved stiffness-based first-order approximations for structural optimization”, AIAA Journal, Vol. 33, No. 1, pp. 143-150, 1995.
[38] Y. Jin, M. Olhofer, B. Sendhoff, “A framework for evolutionary optimization with approximate fitness functions”, IEEE Transactions on Evolutionary Computation, Vol. 6, No. 5, pp. 481-494, 2002.
[39] D. Büche, N. Nicol, N. Schraudolph and P. Koumoutsakos, “Accelerating evolutionary algorithms with Gaussian process fitness function models”, IEEE Trans. on Systems, Man, and Cybernetics: Part C, Vol. 35, No. 2, pp. 183-194, 2005.
[40] N. M. Alexandrov, J. E. Dennis, R. M. Lewis and V. Torczon, “A trust-region framework for managing the use of approximation models in optimization”, Structural Optimization, Vol. 15, pp.16-23, 1998.
[41] P. K. S. Nair and K. Deb, “Computationally effective search and optimization procedure using coarse to fine approximation”, In Congress on Evolutionary Computation, pp. 2081-2088, 2003.
[42] Y. K. D. V. Prasad and S. Somasundaram, “CADDS: An automated die design system for sheet-metal blanking”, Computing & Control Engineering Journal, Vol. 3, No, 4, pp.185-191, 1992.
[43] A. Hieke, “Precise chip and package 3D capacitance simulations of realistic interconnects using a general purpose FEM-tool”, Electrical Performance of Electronic Packaging, Vol. 25-27, pp.111-114, 1999.
[44] S. Wang and J. Zhao, “FEM optimization for robot structure”, IEEE International Conference on Industrial Technology, Vol. 1, pp. 510-513, 2002.
[45] A. Schneider, K. H. Diener, E. Ivask, and R. Ubar, “Integrated design and test generation under Internet based environment MOSCITO”, Digital System Design, Vol. 4-6, pp. 187-194, 2002.
[46] A. Schneider, E. Ivask, P. Miklos, J. Raik, K. H. Diener, R. Ubar, T. Cibakova and E. Gramatova, “Internet-based collaborative test generation with MOSCITO”, Design, Automation and Test in Europe Conference and Exhibition, Vol. 4-8, pp. 221-226, 2002.
[47] P. Schneider, A. Schneider, and P. Schwarz, “A modular approach for simulation-based optimization of MEMS”, Microelectronics Journal, Vol. 33, pp. 29-38, 2002.
[48] P. Schneider, A. Schneider, J. Bastian, S. Reitz, and P. Schwarz, “MOSCITO - A program system for MEMS optimization”, Proc. DTIP Conference, 2002.
[49] M. E. Botkin, “Structural optimization of automotive body components based on parametric solid modeling”, Engineering with Computers, Vol. 18, pp.109-115, 2002.
[50] G. N. Vanderplaats, Numerical optimization techniques for engineering design, Mc Graw Hill, 1993.
[51] D. Dasgupta, and Z. Michalewicz, Evolutionary algorithms in engineering applications, Springer-Verlag, Berlin, 1997.
[52] W. Siedlecki and J. Sklanski, “Constrained genetic optimization via dynamic reward-penalty balancing and its use in pattern recognition”, In J. David Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, San Mateo, California, George Mason University, Morgan Kaufmann Publishers, pp. 141-150, Jun 1989.
[53] Z. Michalewicz and G. Nazhiyath, “Genocop III: a co-evolutionary algorithm for numerical optimization with nonlinear constraints”, In David B. Fogel, editor, Proceedings of the Second IEEE International Conference on Evolutionary Computation, Piscataway, New Jersey, IEEE Press, pp. 647-651, 1995.
[54] D. W. Coit and A. E. Smith, “Penalty guided genetic search for reliability design optimization”, Computers and Industrial Engineering, Special Issue on Genetic Algorithms, Vol. 30, No.4, pp. 895-904, September 1996.
[55] D. W. Coit, A. E. Smith and D. M. Tate, “Adaptive penalty methods for genetic optimization of constrained combinatorial problems”, Journal on Computing, Vol. 8, No. 2, pp. 173-182, Spring 1996.
[56] M. Gen and R. Cheng, “Interval programming using genetic algorithms”, Proceedings of the sixth international symposium on robotics and manufacturing, Montpellier, France, 1996.
[57] T. Yokota, M. Gen, K. Ida and T. Taguchi, “Optimal design of system reliability by an improved genetic algorithm”, Transactions of Institute of Electronics, Information and Computer Engineering, J78-A, No. 6, pp. 702-709, 1995.
[58] M. Gen and R. Cheng, Genetic algorithms & engineering design, John Wiley & Sons, Inc, New York, 1997.
[59] A. J. Keane, “Experiences with optimizers in structural design”, Proc. Conf. Adaptive Computing in Engineering Design and Control, pp. 14-27, 1994.
[60] A. Ratle, “Accelerating the convergence of evolutionary algorithms by fitness landscape approximation”, In Parallel Problem Solving from Nature, A. Eiben, Th. Bäck, M. Schoenauer, and H.-P. Schwefel, Eds. Berlin, Germany: Springer, Vol. V, pp. 87–96, 1998.
[61] Y. Jin, M. Olhofer and B. Sendhoff, “A framework for evolutionary optimization with approximate fitness functions”, IEEE Transactions on Evolutionary Computation, Vol. 6. No. 5, pp. 481-494, 2002.
[62] D. Büche, N. N. Schraudolph and P. Koumoutsakos, “Accelerating evolutionary algorithms with Gaussian process fitness function models”, IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, Vol. 35, No. 2, pp. 183-194, 2005.
[63] D. M. Himmelblau, Applied nonlinear programming, McGraw-Hill, New York, 1972.
[64] M. Gen and R. Cheng, “A survey of penalty techniques in genetic algorithms”, In Toshio Fukuda and Takeshi Furuhashi, editors, Proceedings of the 1996 International Conference on Evolutionary Computation IEEE, pp. 804-809, Nagoya, Japan, 1996.
[65] C. A. C. Coello, “Self-adaptive penalties for GA-based optimization”, Evolutionary Computation, Vol.1, pp.573-580, 1999.
[66] U. Kirsch, Structural optimization fundamentals and applications, Springer-Verlag Berlin Heidelberg, 1993.
[67] C. A. C. Coello and E. M. Montes, “Constraint-handling in genetic algorithms through the use of dominance-based tournament selection”, Advanced Engineering Informatics, Vol. 16, No. 3, pp.193-203, July 2002.
[68] E. J. Haug and J. S. Arora, Introduction to optimal design, McGraw Hill, New York, 1989.
[69] K. Deb, and S. Gulati, “Design of truss-structures for minimum weight using genetic algorithms”, Journal of Finite Elements in Analysis and Design, Vol. 37, pp.447-465, 2001.
[70] Y. A. Peter, H. P. Herzing and R. Dandliker, “Microoptical fiber switch for a large number of interconnects: optical design considerations and experimental realizations using microlens arrays”. IEEE Journal on Selected Topics in Quantum Electronics, Vol. 8, pp. 46-57, 2002.
[71] B. K. Hinds and G. M. Treanor, “Analysis of stress in micro-drills using the finite element method”, Internal Journal of Machine Tools & Manufacture, Vol. 40, pp.1443-1456, 2000.
[72] N. E. Dowling, Mechanical behavior of materials-engineering methods for deformation, fracture, and fatigue, Prentice-Hall, Inc, 1993.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33386-
dc.description.abstract本文提出結構最佳化遺傳演算之再生核近似法。首先給定結構的幾何參數,並發展參數化設計程式自動繪製結構的實體模型;然後發展有限元素分析程式自動進行結構分析,並將分析結果當作族群個體的適應度值,以求得族群個體的再生核形狀函數,接著即可建立適應度函數的再生核近似模型。本文利用遺傳演算法來求解最佳化問題,在遺傳演算法的過程中,本文利用改良式可信範圍法,只在某幾個特定世代計算族群個體的適應度正確值,在接下來的數個世代(稱為族群延遲),則使用再生核近似模型計算族群個體的適應度近似值。另外本文利用可適性競爭選擇法,動態調整每一代的競爭規模來減少當代的近似誤差。當搜尋至某一世代中,有90%族群個體具相同適應度值的時候,稱收斂至此最佳化問題的最佳解。最後發展一套整合型程式,結合電腦輔助設計軟體,有限元素分析軟體,再生核近似法及遺傳演算法進行結構最佳化設計。利用此程式,本文對一些結構設計問題進行最佳化設計。由最佳化結果可知,此程式是可信賴的,且對大部分的範例皆能快速地得到滿意的收斂結果。zh_TW
dc.description.abstractThis thesis proposes the reproducing kernel approximation method for structural optimization using genetic algorithms. Firstly, geometric parameters of a structure are defined, and a parametric design program is developed to automatically generate the solid model of the structure. Then, a macro program to automatically analyze structural behaviors of the structure is developed. Analysis results are used as fitnesses of population individuals to generate reproducing kernel shape functions. Then, reproducing kernel approximations of fitnesses are developed. Genetic algorithms are used to solve the optimization problem. In genetic algorithms processes, a modified trust region approach is developed. Fitnesses of population individuals are evaluated exactly only for some specific generations. Fitnesses of population individuals for the following some generations, called the generation delay, are evaluated approximately by reproducing kernel approximations. In addition, an adaptive tournament selection scheme is developed by adjusting the tournament size to reduce approximation errors in each generation. When 90% of population individuals in a certain generation have the same fitness value, the solution of the optimization problem is found. Finally, an integrated program combining computer aided design software, finite element analysis software, reproducing kernel approximation method and genetic algorithms is developed for structural optimization. With the developed program, optimum design processes of several structural design problems are investigated. From optimum results, they show that this proposed program is reliable and results in fast and satisfactory convergent solutions.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:37:46Z (GMT). No. of bitstreams: 1
ntu-95-D88522004-1.pdf: 9743704 bytes, checksum: 811597dafbc733a8e0a3bace99fb35ae (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 viii
符號說明 ix
第一章 緒論 1
1-1 簡介 1
1-2 文獻回顧 2
1-3 研究動機與目的 13
1-4 研究策略與方法 14
1-5 論文大綱介紹 15
第二章 最佳化方法於機械結構之設計與分析 17
2-1 機械結構最佳化設計理論 17
2-1-1 設計變數處理 17
2-1-2 目標函數處理 18
2-1-3 限制條件處理 18
2-2 最佳化方法處理限制條件的方法 20
2-2-1 靜態懲罰函數 21
2-2-2 動態懲罰函數 22
2-2-3 可適性懲罰函數 23
2-3 遺傳演算法概論 25
2-3-1 基本原理 26
2-3-2 運算子 27
2-3-3 型基理論 35
2-3-4 遺傳演算法與傳統最佳化方法的差異 38
2-4 再生核近似法理論 39
2-4-1 離散再生核近似法 40
2-4-2 離散再生核形狀函數的轉換矩陣 43
2-4-3 離散再生核形狀函數的一致性 44
第三章 最佳化遺傳演算之再生核近似法 47
3-1 利用再生核近似法計算遺傳演算法適應度值 47
3-2 檢驗再生核近似法的奇異點與一致性 55
3-3 利用改良式可信範圍法決定近似模型的更新時機 57
3-4 利用可適性競爭選擇法降低近似誤差 59
3-5 最佳化遺傳演算之再生核近似法流程 61
第四章 整合型程式於結構最佳化設計 63
4-1 實體模型建構模組 64
4-2 有限元素分析模擬模組 66
4-3 近似法模組 67
4-4 最佳化模組 68
4-5 執行程式控制模組 68
第五章 函數最佳化及簡單結構最佳化 71
5-1 函數一最佳化 71
5-2 函數二最佳化 74
5-3 函數三最佳化 75
5-4 函數四最佳化 77
5-5 薄壁懸臂軸最佳化設計 78
5-6 三桿結構最佳化設計 81
5-7 十桿結構最佳化設計 82
5-8 二十五桿結構最佳化設計 84
5-9 結果討論 87
第六章 應用實例之設計 89
6-1 1x2光開關(型一)結構最佳設計 90
6-2 1x4光開關結構最佳設計 97
6-3 微鑽頭外形最佳設計 103
6-4 汽車福祉椅升降機構之最佳化設計 108
6-5 汽車福祉椅旋轉機構之最佳化設計 112
6-6 1x2光開關(型二)之設計與分析 117
6-7 1x2光開關(型三)之設計與分析 123
6-8 結果討論 127
第七章 結論與建議 129
7-1 結論 129
7-2 建議 131
參考文獻 133
附錄A GALib常用函數的使用方法 141
附錄B 整合型最佳化程式的使用方法 143
附錄C 再生核近似函數與實際函數比較 148
作者簡歷 153
dc.language.isozh-TW
dc.subject遺傳演算法zh_TW
dc.subject結構最佳化zh_TW
dc.subject參數化設計zh_TW
dc.subject有限元素法zh_TW
dc.subject再生核近似法zh_TW
dc.subjectGenetic algorithmsen
dc.subjectFinite element methoden
dc.subjectReproducing kernel approximation methoden
dc.subjectParametric designen
dc.subjectStructural optimizationen
dc.title結構最佳化遺傳演算之再生核近似法zh_TW
dc.titleReproducing Kernel Approximation Method for Structural Optimization Using Genetic Algorithmsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree博士
dc.contributor.oralexamcommittee林陽泰,范光照,楊耀州,廖運炫,劉正良
dc.subject.keyword參數化設計,有限元素法,再生核近似法,遺傳演算法,結構最佳化,zh_TW
dc.subject.keywordParametric design,Finite element method,Reproducing kernel approximation method,Genetic algorithms,Structural optimization,en
dc.relation.page152
dc.rights.note有償授權
dc.date.accepted2006-07-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
9.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved