Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33358
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林浩雄(Hao-Hsiung Lin)
dc.contributor.authorChien-Ming Wuen
dc.contributor.author吳建民zh_TW
dc.date.accessioned2021-06-13T04:36:21Z-
dc.date.available2007-01-01
dc.date.copyright2006-07-21
dc.date.issued2006
dc.date.submitted2006-07-19
dc.identifier.citation[1] D. Leonard, D. K. Pond, and P. M. Petroff, Phys. Rev. B 50, 11687 (1994)
[2] 張褔裕 ‘以分子束磊晶法在砷化鎵基板上成長1.3μm砷化銦/砷化銦鎵量子點與雷射’ 國立台灣大學電機工學研究所 博士論文 (2004)
[3] J. Y. Marzin and G. Bastard, Solid State Commun. 92, 437 (1994)
[4] Vasanelli, M. De Giorgi, R. Ferreira, R. Cingolani, and G. Bastard, Physica E 11, 41 (2001)
[5] M. A. Cusack, P. R. Briddon, and M. Jaros, Phys. Rev. B 54, 2300 (1996)
[6] H. Jiang and J. Singh, Phys. Rev. B 56, 4696 (1997)
[7] H. Jiang and J. Singh, IEEE J. Quantum Electron. 34, 1188 (1998)
[8] C. Pryor, Phys. Rev. B 57, 7190 (1998)
[9] R. Santoprete, B. Koiller, R. B. Capaz, P. Kratzer, Q. K. K. Liu, and M. Scheffler, Phys. Rev. B 68, 235311 (2003)
[10] E. P. O’Reilly, A. Lindsay, S. Tomic, and M. K. Saadi, Semicond. Sci. Technol. 17, 870 (2002)
[11] L. W. Wang and A. Zunger, Phys. Rev. B 59, 15806 (1999)
[12] G. A. Narvaez, G. Bester, and A. Zunger, J. Appl. Phys. 98, 43708 (2005)
[13] C. Pryor, M. E. Pistol, and L. Samuelson, Phys. Rev. B 56, 10404 (1997)
[14] M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B 52, 11969 (1995).
[15] M. A. Cusack, P. R. Briddon, and M. Jaros, Phys. Rev. B 56, 4047 (1997)
[16] M. Califano and P. Harrison, Phys. Rev. B 61, 10959 (2000)
[17] J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955)
[18] C. R. Pidgeon and R. N. Brown, Phys. Rev. 146, 575 (1966)
[19] B. Jogai, J. Appl. Phys. 88, 5050 (2000)
[20] E. O. Kane, Phys. Rev. B 31, 7865 (1985)
[21] C. Pryor, J. Kim, L. W. Wang, A. J. Williamson, and A. Zunger, J. Appl. Phys. 83, 2548 (1998)
[22] M. Tadic, F. M. Peeters, and K. L. Janssens, Phys. Rev. B 65, 165333 (2002)
[23] K. L. Janssens, B. Partoens, and, F. M. Peeters, Phys. Rev. B 67, 235325 (2003)
[24] A. D. Andreev, and E. P. O’Reily, Phys. Rev. B 62, 15851 (2000)
[25] E. P. Pokatilov, V. A. Fonoberov, V. M. Fomin, and J. T. Devreese, Phys. Rev. B 64, 245328 (2001)
[26] R. Prasanth, J. Appl. Phys. 99, 54501 (2006)
[27] C. Pryor, Phys. Rev. B 60, 2869 (1999)
[28] L. Seravalli, P. Frigeri, M. Minelli, P. Allegri, V. Avanzini, and S. Franchi, Appl. Phys. Lett. 87, 63101 (2005)
[29] R. Songmuang, S. Kiravittaya, and O. G. Schmidt, J. Cryst. Growth 249, 416 (2003)
[30] Z. Y. Zhang, B. Xu, P. Jin, X. Q. Meng, C. M. Li, X. L. Ye, and Z. G. Wang, J. Appl. Phys. 92, 511 (2002)
[31] P. Lowdin, J. Chem. Phys. 19, 1396 (1951)
[32] L. A. Coldren and S. W. Corzine, ‘Diode Lasers and Photonic Integrated Circuits’ (John Wiley & Sons, Inc, 1995)
[33] J. D. Eshelby, Proc. R. Soc. London, Ser. A 241, 376 (1957)
[34] G. S. Pearson and D. A. Faux, J. Appl. Phys. 88, 730 (2000)
[35] J. H. Davies, J. Appl. Phys. 84, 1358 (1998)
[36] A. D. Andreev, J. R. Downes, D. A. Faux, and E. P. O’Reilly, J. Appl. Phys. 86, 297 (1999)
[37] S. L. Chuang, ‘Physics of optoelectronic device’ (John Wiley & Sons, Inc. 1995)
[38] H. Kleinert, ‘Gauge Fields in Condensed Matter’ (World Scientific, Singapore, 2nd ed. 1989)
[39] G. E. Pikus and G. L. Bir, Fiz. Tverd. Tela (Leningrad) 1, 1642 (1959) [Sov. Phys.—Solid State 1, 1502 (1960)]
[40] J. B. Xia, Phys. Rev. B 43, 9856 (1991)
[41] W. H. Seo and J. F. Donegan, Phys. Rev. B 68, 75318 (2003)
[42] R. H. Henderson and E. Toweal, J. Appl. Phys. 78, 2447 (1995)
[43] Y. Kajikawa, J. Appl. Phys. 86, 5663 (1999)
[44] S. H. Park and S. L. Chuang, J. Appl. Phys. 87, 353 (2000)
[45] D. L. Smith, Solid State Commun. 57, 919 (1986)
[46] E. A. Caridi, T. Y. Chang, K. W. Goosen, and L. F. Eastman, Appl. Phys. Lett. 56, 659 (1990)
[47] J. Los, A. Fasolino, and A. Catellani, Phys. Rev. B 53, 4630 (1996)
[48] F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. Lett. 79, 3958 (1997)
[49] G. J. Rees, Microelectronics Journal 28, 957 (1997)
[50] E. P. Pokatilov, V. A. Fonoberov, V. M. Fomin, and J. T. Devreese, Phys. Rev. B 64, 245328 (2001)
[51] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ‘ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods’ (SIAM Publications, Philadelphia, 1998)
[52] K. Wu, and H. Simon, ‘Thick-Restart Lanczos Method for Symmetry Eigenvalue Problems’ (1998)
[53] J. M. Garcı´a, G. Medeiros-Ribeiro, K. Schmidt, T. Ngo, and P. M. Petroff, Appl. Phys. Lett. 71, 2014 (1997)
[54] A. Rosenauer, D. Gerthsen, D. Van Dyck, M. Arzberger, G. Bohm, and G. Abstreiter, Phys. Rev. B 64, 245334 (2001)
[55] K. Muraki, S. Fukatsu, Y. Shiraki, and R. Ito, Appl. Phys. Lett. 61, 557 (1992)
[56] P. Offermans, P. M. Koenraad, R. Nötzel, J. H. Wolter, and K. Pierz, Appl. Phys. Lett. 87, 111903 (2005)
[57] O. Gunawan, H. S. Djie, and B. S. Ooi, Phys. Rev. B 71, 205319 (2005)
[58] T. Kawai, H. Yonezu, Y. Ogasawara, D. Saito, and K. Pak, J. Appl. Phys. 74, 1770 (1993)
[59] S. W. Ryu, I. Kim, B. D. Choe, and W. G. Jeong, Appl. Phys. Lett. 67, 1417 (1995)
[60] J. M. Garcı´a, J. P. Silveira, and F. Briones, Appl. Phys. Lett. 77, 409 (2000)
[61] A. Madhukar, J. Cryst. Growth 163, 149 (1996)
[62] Y. X. Dang, W. J. Fan, S. T. Ng, S. F. Yoon, and D. H. Zhang, J. Appl. Phys. 97, 103718 (2005)
[63] B. Lita, R. S. Goldman, J. D. Phillips and P. K. Bhattacharya, Appl. Phys. Lett. 75, 2797 (1999)
[64] D. M. Bruls, J. W. A. M. Vugs, P. M. Koenraad, H. W. M. Salemink, J. H. Wolter, M. Hopkinson, M. S. Skolnick, F. Long and S. P. A. Gill, Appl. Phys. Lett. 81, 1708 (2002)
[65] G. Biasiol, S. Heun, G. B. Golinelli, A. Locatelli, T. O. Mentes, F. Z. Guo, C. Hofer, C. Teichert, and L. Sorba, Appl. Phys. Lett. 87, 223106 (2005)
[66] O. Stier, M. Grundmann, and D. Bimberg, Phys. Rev. B 59, 5688 (1999)
[67] X. D. Wang, N. Liu, C. K. Shih, S. Govindaraju, and A. L. Holmes, Appl. Phys. Lett. 85, 1356 (2004)
[68] H. Gotoh and H. Ando, J. Appl. Phys. 82, 1667 (1997)
[69] W. M. McGee, T. J. Krzyzewski, and T. S. Jones, J. Appl. Phys. 99,43505 (2006)
[70] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)
[71] P. Lawaetz, Phys. Rev. B 4, 3460 (1971)
[72] G. Liu and S. L. Chuang, Phys. Rev. B 65, 165220 (2002)
[73] P. Pfeffer and W. Zawadzki, Phys. Rev. B 59, 5312 (1999)
[74] B. F. Zhu and Y. C. Chang, Phys. Rev. B 50, 11932 (1994)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33358-
dc.description.abstract本論文以k.p法來研究砷化銦/砷化鎵量子結構(量子井、量子點)之電子結構。在價電帶的部分,我們採用四能帶的Luttinger k.p 理論,而導電帶的部分,我們採用單能帶的等效質量法。於應變(strain)部分,則是採用由Andreev et al.提出之應變張量於傅立葉空間中的解析解。於數值方法部分,我們採用較簡單的平面波展開法,我們可計算出量子結構於單載子情況下之能階,以及其波函數。而且我們根據單粒子電子結構的計算結果,進一步的計算單激子(exciton)之束縛能。
我們所採用的數值模擬方法,可運用於成長在(001)方向及(111)方向之量子井,和成長在(001)方向之量子點與帽層(capping layer)成份不同於位能障(barrier)之量子點。我們在計算時可考慮系統所受之應變以及壓電場,於位能障與量子點(量子井)界面之界面擴散(interdiffusion)效應也可納入我們的計算。並且把我們的模擬結果與實驗量測結果作個比較,有助於了解以砷化銦鎵為帽層之量子點基態發光波長紅移之現象。
zh_TW
dc.description.abstractIn this thesis, we use k.p theory to study the electronic structure of InAs/GaAs nanostructure, such as quantum well and quantum dot. We present a numerical calculation to calculate the single particle properties of conduction electrons and valence holes of the strained quantum wells (QWs) and quantum dots(QDs), calculated by using one-band effective mass and four-band Luttinger theories, respectively. In the calculation for strain in dots, we adapt the analytic solution of strain tensor in the Fourier representation. In the numerical implementation, we take the plane wave basis to expand the single-particle wave function, and diagonalize the strained Hamiltonian matrix employing the “ARPACK” algorithm. Finally, we can calculate the exciton binding energy from the wave function we obtained.
Our program is applied to two case studies: (001)、 (111)-orientated InGaAs/GaAs QWs and InAs/GaAs self-assembled QDs with InGaAs or GaAs capping layer. In the (111)-orientated QW, the piezoelectric effect reduces the transition energy. We study the InAs QD with InGaAs capping layer and we can find that the transition energy of InAs dots is red shift.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:36:21Z (GMT). No. of bitstreams: 1
ntu-95-R93941027-1.pdf: 4534892 bytes, checksum: 4554f969adb3b8980cf55b4cc23f9446 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents摘要....................................................Ⅰ
Abstract................................................Ⅲ
目錄....................................................Ⅴ
附表索引.................................................Ⅶ
附圖索引.................................................Ⅷ
第一章 序論...............................................1
第二章 原理...............................................7
2.1 k.p 原理............................................7
2.1.1 單能帶模型(One-band model)..........................9
2.1.2 四能帶模型(4-band Luttinger model)..................10
2.2 封包函數近似法(Envelope function approximation)........12
2.3 應變(Strain)..........................................13
2.3.1 量子井中的變 ........................................14
2.3.2 格林函數(Green`s function)..........................15
2.3.3 應變張量的傅立葉轉換..................................18
2.3.4 Strain Hamiltonian.................................19
2.4 (111)方向的Hamiltonian ...............................20
2.5 壓電效應(Piezoelectric effect)........................22
2.5.1 量子井中的壓電場.....................................22
2.5.2 量子點中的壓電效應....................................24
第三章 方法................................................25
3.1量子井.................................................26
3.2量子點.................................................29
3.3介面擴散(Interdiffusion)...............................31
3.4量子點之分析............................................33
3.4.1 基態單基底之分析.....................................34
3.4.2 Px、Py軌域能態之分析................................35
3.5材料參數...............................................36
第四章 結果與討論..........................................42
4.1量子井之模擬...........................................42
4.2量子點中的應變分佈......................................46
4.3量子點之電子結構........................................48
4.3.1 激子(exciton) ......................................48
4.3.2 InAs量子點..........................................50
4.3.3 InAs/InGaAs量子點...................................52
第五章 結論...............................................72
附錄......................................................73
附錄 A QD特徵函數........................................73
附錄 B 應變張量(Strain tensor)的傅立葉轉換.................76
附錄 C 材料參數...........................................81
參考文獻..................................................83
dc.language.isozh-TW
dc.subject砷化銦zh_TW
dc.subject量子點zh_TW
dc.subject應變張量zh_TW
dc.subject砷化銦鎵zh_TW
dc.subjectquantum doten
dc.subjectInGaAsen
dc.subjectstrainen
dc.subjectInAs/GaAsen
dc.title以k.p法研究砷化銦/砷化鎵之奈米結構zh_TW
dc.titleStudies of the Electronic Properties of InAs/GaAs Nanostructure using k.p Methoden
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭舜仁(Shun-Jen Cheng),張文豪(Wen-Hao Chang)
dc.subject.keyword量子點,應變張量,砷化銦鎵,砷化銦,zh_TW
dc.subject.keywordInAs/GaAs,quantum dot,strain,InGaAs,en
dc.relation.page87
dc.rights.note有償授權
dc.date.accepted2006-07-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
4.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved