Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33337
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉瑞芬
dc.contributor.authorGuo-Cih Linen
dc.contributor.author林國詞zh_TW
dc.date.accessioned2021-06-13T04:35:18Z-
dc.date.available2011-07-20
dc.date.copyright2006-07-20
dc.date.issued2006
dc.date.submitted2006-07-19
dc.identifier.citation王誌偉。2005。靈芝β葡聚醣生合成相關基因glp5-1及glp5-2之選殖與分析。國立台灣大學植物病理與微生物學系碩士論文。
張東柱、周文能、吳美麗、王也珍。2000。福山大型真菌。行政院農業委員會出版。
Adaskaveg, J. E., and Gilbertson, R. L. 1988. Basidiospores, pilocystidia, and other basidiocarp characters in several species of the Ganoderma lucidum complex. Mycologia 80, 429-507.
Adaskaveg, J. E., blanchette, R. A., and Gilbertson, R. L. 1991. Decay of date palm wood by white-rot and brown-rot fungi. Can. J. Bot. 615-629.
Adaskaveg, J. E., Miller, R. W. and Gilbertson, R. L. 1993. Wood decay, lignicolous fungi, and decline of peach trees in South Carolina. Plant Dis. 69(3), 707-711.
Arellano, M., Duran, A., and Perez, P. 1996. Rho 1 GTPase activates the (1-3)beta-D-glucan synthase and is involved in Schizosaccharomyces pombe morphogenesis. EMBO J. 15, 4584-4591.
Beauvais, A., Bruneau, J. M., Mol, P. C., Buitrago, M. J., Legrand, R., and Latge, J. P. 2001. Glucan synthase complex of Aspergillus fumigatus. J. Bacteriol. 183, 2273-2279.
Beier, D. R., and Young, E. T. 1982. Characterization of a regulatory region upstream of the ADR2 locus of S. cerevisiae. Nature 300, 724-728.
Blanton, R. L., and Northcote, D. H. 1990. A 1-4-β-D-glucan synthase system from Dictyostelium discoideum. Planta 324-332.
Blaudez, D., Botton, B., and Chalot, M. 2000. Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiology 146 ( Pt 5), 1109-1117.
Brown, G. D., and Gordon, S. 2001. Immune recognition. A new receptor for beta-glucans. Nature 413, 36-37.
Brown, G. D., and Gordon, S. 2003. Fungal beta-glucans and mammalian immunity. Immunity 19, 311-315.
Brown, G. D., Taylor, P. R., Reid, D. M., Willment, J. A., Williams, D. L., Martinez-Pomares, L., Wong, S. Y., and Gordon, S. 2002. Dectin-1 is a major beta-glucan receptor on macrophages. J. Exp. Med. 196, 407-412.
Chang, Y. C., and Penoyer, L. A. 2000. Properties of various Rho1 mutant alleles of Cryptococcus neoformans. J. Bacteriol. 182, 4987-4991.
Chihara, G., Hamuro, J., Maeda, Y., Arai, Y., and Fukuoka, F. 1970. Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (Berk.) Sing. (an edible mushroom). Cancer Res. 30, 2776-2781.
Cunningham, K. W., and Fink, G. R. 1994. Calcineurin-dependent growth control in Saccharomyces cerevisiae mutants lacking PMC1, a homolog of plasma membrane Ca2+ ATPases. J. Cell Biol. 124, 351-363.
Czop, J. K. 1986. The role of β-glucan receptprs on blood and tissue leukocytes in phagocytosis and metabolic-activation. Pathol. Immunopathol. Res. 5(3-5), 286-296.
De Keersmaecker, S. C., Marchal, K., Verhoeven, T. L., Engelen, K., Vanderleyden, J., and Detweiler, C. S. 2005. Microarray analysis and motif detection reveal new targets of the Salmonella enterica serovar Typhimurium HilA regulatory protein, including hilA itself. J. Bacteriol. 187, 4381-4391.
Delmer, D. P. 1987. Cellulose biosynthesis. Annu. Rev. Plant Physiol. 259-290.
Denis, C. L., Ferguson, J., and Young, E. T. 1983. mRNA levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease upon growth on a nonfermentable carbon source. J. Biol. Chem 258(2), 1165-1171.
Douglas, C. M., D'Ippolito, J. A., Shei, G. J., Meinz, M., Onishi, J., Marrinan, J. A., Li, W., Abruzzo, G. K., Flattery, A., Bartizal, K., Mitchell, A., and Kurtz, M. B. 1997. Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-D-glucan synthase inhibitors. Antimicrob. Agents Chemother. 41, 2471-2479.
Douglas, C. M., Foor, F., Marrinan, J. A., Morin, N., Nielsen, J. B., Dahl, A. M., Mazur, P., Baginsky, W., Li, W., el-Sherbeini, M., and et al. 1994a. The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-beta-D-glucan synthase. Proc. Natl. Acad. Sci. U.S.A. 91, 12907-12911.
Douglas, C. M., Marrinan, J. A., Li, W., and Kurtz, M. B. 1994b. A Saccharomyces cerevisiae mutant with echinocandin-resistant 1,3-beta-D-glucan synthase. J. Bacteriol. 176, 5686-5696.
Drgonova, J., Drgon, T., Tanaka, K., Kollar, R., Chen, G. C., Ford, R. A., Chan, C. S., Takai, Y., and Cabib, E. 1996. Rho1p, a yeast protein at the interface between cell polarization and morphogenesis. Science 272, 277-279.
el-Sherbeini, M., and Clemas, J. A. 1995. Cloning and characterization of GNS1: a Saccharomyces cerevisiae gene involved in synthesis of 1,3-beta-glucan in vitro. J. Bacteriol. 177, 3227-3234.
Eng, W. K., Faucette, L., McLaughlin, M. M., Cafferkey, R., Koltin, Y., Morris, R. A., Young, P. R., Johnson, R. K., and Livi, G. P. 1994. The yeast FKS1 gene encodes a novel membrane protein, mutations in which confer FK506 and cyclosporin A hypersensitivity and calcineurin-dependent growth. Gene 151, 61-71.
Ernst, WHO., Verkleij, JAC., and Schat, H. 1992. Metal tolerance in plants. Acta Bot. Neerl. 41, 229-248.
Foor, F., Parent, S. A., Morin, N., Dahl, A. M., Ramadan, N., Chrebet, G., Bostian, K. A., and Nielsen, J. B. 1992. Calcineurin mediates inhibition by FK506 and cyclosporin of recovery from alpha-factor arrest in yeast. Nature 360, 682-684.
Gadd, G. M. 1993. Tansley Review No. 47: Interactions of fungi with toxic metals. New Phytol. 124, pp25-60.
Gantner, B. N., Simmons, R. M., Canavera, S. J., Akira, S., and Underhill, D. M. 2003. Collaborative induction of inflammatory responses by Dectin-1 and Toll-like receptor 2. J. Exp. Med. 197, 1107-1117.
Halachmi, D., and Eilam, Y. 1993. Calcium homeostasis in yeast cells exposed to high concentrations of calcium. Roles of vacuolar H+-ATPase and cellular ATP. FEBS Lett. 316, 73-78.
Harada, T., Miura, N.N., Adachi, Y., Nakajima, M., Yadomae, T., and Ohno, N. 2002. IFN-gamma induction by SCG, 1,3-beta-D-glucan from Sparassis crispa, in DBA/2 mice in vitro. J. Interferon Cytokine Res. 22, 1227-1239.
Hartmann, E., Rapoport, T.A., and Lodish, H. F. 1989. Predicting the orientation of eukaryotic membrane-spanning proteins. Proc. Natl. Acad. Sci. U.S.A. 86, 5786-5790.
Hikino, H., Ishiyama, M., Suzuki, Y., and Konno, C. 1989. Mechanisms of hypoglycemic activity of ganoderan B: a glycan of Ganoderma lucidum fruit bodies. Planta Med. 55, 423-428.
Horton, P., and Nakai, K. 1997. Better prediction of protein cellular localization sites with the k nearest neighbors classifier. Proc. Int. Conf. Intell. Syst. Mol. Biol. 5, 147-152.
Ikekawa, T., Ikeda, Y., Yoshioka, Y., Nakanishi, K., Yokoyama, E., and Yamazaki, E. 1982. Studies on antitumor polysaccharides of Flammulina velutipes (Curt. ex Fr.) Sing.II. The structure of EA3 and further purification of EA5. J. Pharmacobio-dyn. 5, 576-581.
Ikekawa, T., Nakanishi, M., Uehara, N., Chihara, G., and Fukuoka, F. (1968). Antitumor action of some Basidiomycetes, especially Phllinus inteus. Gann 59, 155-157.
Ikekawa, T., Uehara, N., Maeda, Y., Nakanishi, M., and Fukuoka, F. (1969). Antitumor activity of aqueous extracts of edible mushrooms. Cancer Res. 29, 734-735.
Inoue, S. B., Takewaki, N., Takasuka, T., Mio, T., Adachi, M., Fujii, Y., Miyamoto, C., Arisawa, M., Furuichi, Y., and Watanabe, T. 1995. Characterization and gene cloning of 1,3-beta-D-glucan synthase from Saccharomyces cerevisiae. Eur. J. Biochem. 231, 845-854.
Ishiguro, J., Saitou, A., Duran, A., and Ribas, J. C. 1997. cps1+, a Schizosaccharomyces pombe gene homolog of Saccharomyces cerevisiae FKS genes whose mutation confers hypersensitivity to cyclosporin A and papulacandin B. J. Bacteriol. 179, 7653-7662.
Jacob, S. R., and Northcote, D. H. 1985. In vitro glucan synthesis by membranes of celery petioles: the role of the membrane in determining the type of linkage formed. J. Cell Sci. Suppl. 2, 1-11.
Jamois, F., Ferrieres, V., Guegan, J. P., Yvin, J. C., Plusquellec, D., and Vetvicka, V. 2005. Glucan-like synthetic oligosaccharides: iterative synthesis of linear oligo-beta-(1,3)-glucans and immunostimulatory effects. Glycobiology 15, 393-407.
Kamada, Y., Jung, U. S., Piotrowski, J., and Levin, D. E. 1995. The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev. 9, 1559-1571.
Kang, M. S., and Cabib, E. 1986. Regulation of fungal cell wall growth: a guanine nucleotide-binding, proteinaceous component required for activity of (1-3)-beta-D-glucan synthase. Proc. Natl. Acad. Sci. U.S.A. 83, 5808-5812.
Karsten, P. A. (1881) Enumeratio Boleinerarum et Polyporearum Fennicum systmati novo dispositorum. Rev. Mycol. 1-19.
Kelly, R., Register, E., Hsu, M. J., Kurtz, M., and Nielsen, J. 1996. Isolation of a gene involved in 1,3-beta-glucan synthesis in Aspergillus nidulans and purification of the corresponding protein. J. Bacteriol. 178, 4381-4391.
Kiho, T., Katsuragawa, M., Nagai, K., Ukai, S., and Haga, M. 1992. Structure and antitumor activity of a branched (1-3)-beta-D-glucan from the alkaline extract of Amanita muscaria. Carbohydr. Res. 224, 237-243.
Kim, K. C., and Kim, I. G. 1999. Ganoderma lucidum extract protects DNA from strand breakage caused by hydroxyl radical and UV irradiation. Int. J. Mol. Med. 4, 273-277.
Kim, S. W., and Kim, E. S. 1997. Studies on the immunomdulating effects of polysaccharide extracted from Ganoderma lucidum on macrophage. Korean Soc. Food Sci. Nutr. 1226-3311.
Kondoh, O., Tachibana, Y., Ohya, Y., Arisawa, M., and Watanabe, T. 1997. Cloning of the RHO1 gene from Candida albicans and its regulation of beta-1,3-glucan synthesis. J. Bacteriol. 179, 7734-7741.
Kottom, T. J., and Limper, A. H. 2000. Cell wall assembly by Pneumocystis carinii. Evidence for a unique gsc-1 subunit mediating beta-1,3-glucan deposition. J. Biol. Chem. 275, 40628-40634.
Kyte, J., and Doolittle, R. F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105-132.
Le Goff, X., Woollard, A., and Simanis, V. 1999. Analysis of the cps1 gene provides evidence for a septation checkpoint in Schizosaccharomyces pombe. Mol. Gen. Genet. 262, 163-172.
Lee, S. S., Wei, Y. H., Chen, C. F., Wang, S. Y., and Chen, K. Y. 1995. Antitumor effects of polysaccharides of Ganoderma lucidum. J. Chin. Med. 1-12.
Lieu, C. W., Lee, S. S., and Wang, S. Y. 1992. The effect of Ganoderma lucidum on induction of differentiation in leukemic U937 cells. Anticancer Res. 12, 1211-1215.
Lin, Y. 1997. Study on extraction and structure of polysaccharide from Ganoderma lucidum strain GL8801 by liquid fermentation. Fuzhou Daxue Xuebao, Ziran Kexueban. 25, 124-128.
Liu, J., Farmer, J. D., Jr., Lane, W. S., Friedman, J., Weissman, I., and Schreiber, S. L. 1991. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66, 807-815.
Liu, J., Tang, X., Wang, H., and Balasubramanian, M. 2000. Bgs2p, a 1,3-beta-glucan synthase subunit, is essential for maturation of ascospore wall in Schizosaccharomyces pombe. FEBS Lett. 478, 105-108.
Liu, J., Wang, H., McCollum, D., and Balasubramanian, M. K. 1999. Drc1p/Cps1p, a 1,3-beta-glucan synthase subunit, is essential for division septum assembly in Schizosaccharomyces pombe. Genetics 153, 1193-1203.
Martin, V., Ribas, J.C., Carnero, E., Duran, A., and Sanchez, Y. 2000. bgs2+, a sporulation-specific glucan synthase homologue is required for proper ascospore wall maturation in fission yeast. Mol. Microbiol. 38, 308-321.
Maruyama, H., Yamazaki, K., Murofushi, S., Konda, C., and Ikekawa, T. 1989. Antitumor activity of Sarcodon aspratus (Berk.) S. Ito and Ganoderma lucidum (Fr.) Karst. J. Pharmacobio-dyn. 12, 118-123.
Mazur, P., Morin, N., Baginsky, W., el-Sherbeini, M., Clemas, J.A., Nielsen, J.B., and Foor, F. 1995. Differential expression and function of two homologous subunits of yeast 1,3-beta-D-glucan synthase. Mol. Cell. Biol. 15, 5671-5681.
Meira, D. A., Pereira, P. C. M., Marcondes Machado, J., Mendes, R. P., Barraviera, B., Pellegrino, I., daSilva, C. L., Foss, N. T., and Curi, P. R. 1996. The use of glucan as immunostimulant in the treatment of paracoccidioidomycosis. Am. J. Trop. Med. Hyg. 496-503.
Mio, T., Adachi-Shimizu, M., Tachibana, Y., Tabuchi, H., Inoue, S.B., Yabe, T., Yamada-Okabe, T., Arisawa, M., Watanabe, T., and Yamada-Okabe, H. 1997. Cloning of the Candida albicans homolog of Saccharomyces cerevisiae GSC1/FKS1 and its involvement in beta-1,3-glucan synthesis. J. Bacteriol. 179, 4096-4105.
Miyanishi, N., Iwamoto, Y., Watanabe, E., and Odaz, T. 2003. Induction of TNF-alpha production from human peripheral blood monocytes with beta-1,3-glucan oligomer prepared from laminarin with beta-1,3-glucanase from Bacillus clausii NM-1. J. Biosci. Bioeng. 95, 192-195.
Mumberg, D., Muller, R., and Funk, M. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156, 119-122.
Nakano, K., Arai, R., and Mabuchi, I. 1997. The small GTP-binding protein Rho1 is a multifunctional protein that regulates actin localization, cell polarity, and septum formation in the fission yeast Schizosaccharomyces pombe. Genes Cells 2, 679-694.
Ostergaard, L., Petersen, M., Mattsson, O., and Mundy, J. 2002. An Arabidopsis callose synthase. Plant Mol. Biol. 49, 559-566.
Osumi, M. 1998. The ultrastructure of yeast: cell wall structure and formation. Micron 29, 207-233.
Osumi, M., Yamada, N., Yaguchi, H., Kobori, H., Nagatani, T., and Sato, M. 1995. Ultrahigh-resolution low-voltage SEM reveals ultrastructure of the glucan network formation from fission yeast protoplast. J Electron Microsc (Tokyo) 44, 198-206.
Parent, S. A., Nielsen, J. B., Morin, N., Chrebet, G., Ramadan, N., Dahl, A. M., Hsu, M. J., Bostian, K. A., and Foor, F. 1993. Calcineurin-dependent growth of an FK506- and CsA-hypersensitive mutant of Saccharomyces cerevisiae. J. Gen. Microbiol. 139, 2973-2984.
Park, E. J., Ko, G., Kim, J., and Sohn, D. H. 1997. Antifibrotic effects of a polysaccharide extracted from Ganoderma lucidum, glycyrrhizin, and pentoxifylline in rats with cirrhosis induced by biliary obstruction. Biol. Pharm. Bull. 20, 417-420.
Pfaffl, M. W., Horgan, G. W., and Dempfle, L. 2002. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 30, e36.
Pivarcsi, A., Bodai, L., Rethi, B., Kenderessy-Szabo, A., Koreck, A., Szell, M., Beer, Z., Bata-Csorgoo, Z., Magocsi, M., Rajnavolgyi, E., Dobozy, A., and Kemeny, L. 2003. Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. Int. Immunol. 15, 721-730.
Qadota, H., Python, C. P., Inoue, S. B., Arisawa, M., Anraku, Y., Zheng, Y., Watanabe, T., Levin, D. E., and Ohya, Y. 1996. Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-beta-glucan synthase. Science 272, 279-281.
Ram, A. F., Brekelmans, S. S., Oehlen, L. J., and Klis, F. M. 1995. Identification of two cell cycle regulated genes affecting the beta 1,3-glucan content of cell walls in Saccharomyces cerevisiae. FEBS Lett. 358, 165-170.
Ram, A. F., Wolters, A., Ten Hoopen, R., and Klis, F. M. 1994. A new approach for isolating cell wall mutants in Saccharomyces cerevisiae by screening for hypersensitivity to calcofluor white. Yeast 10, 1019-1030.
Rodriguez, A. M., and Spormann, A. M. 1999. Genetic and molecular analysis of cglB, a gene essential for single-cell gliding in Myxococcus xanthus. J. Bacteriol. 181, 4381-4390.
Ross, IS 1993. Membrane transport processes and response to exposure to heavy metals. In: Jennigs DH (ed) Stress Tolerance of Fungi. Marcel Dekker, New York, NY. pp 97-125.
Ryvarden, L. 1994. Can we trust morphology in Ganoderma? In: Buchanan, P. K., Hseu, R. S., and Moncalvo, J. M. (eds) Ganoderma-Systematics, Phytophathology and Phamacology. Proceedings of contributed symposia 59A, B, Fith International Mycological Congress. Vancouver, Auguest 14-21, 1994, pp. 19-24.
Schreiber, S. L. 1992. Immunophilin-sensitive protein phosphatase action in cell signaling pathways. Cell 70, 365-368.
Seo, G. S., and Kirk, P. M. 2000. Ganodermataceae: Nomenclature and Classification, p.3-22. In Ganoderma Disease of Perennial Crops. CABI Publishing, New York, USA.
Shiao, M. S. 2003. Natural products of the medicinal fungus Ganoderma lucidum: Occurrence, biological activities, and pharmacological functions. Chem. Rec. 3(3), 172-80.
Shibata, S., Nishikawa, Y., Mei, C. F., Fukuoka, F., and Nakanishi, F. 1968. Antitumor studies on some extracts of Basidiomycetes. Gann 59, 159-161.
Shin, G. C., and Seo, G. S. 1988. Classification of strains of Ganoderma lucidum. Karean Journal of Mycology 16, 235-241.
Sigal, N. H., and Dumont, F. J. 1992. Cyclosporin A, FK-506, and rapamycin: pharmacologic probes of lymphocyte signal transduction. Annu. Rev. Immunol. 10, 519-560.
Sikorski, R. S., and Hieter, P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19-27.
Smits, G. J., Kapteyn, J. C., van den Ende, H., and Klis, F. M. 1999. Cell wall dynamics in yeast. Curr. Opin. Microbiol. 2, 348-352.
Sone, Y., Okuda, R., Wada, N., Kishida, E., and Misaki, K. 1985. Structures and antitumor activities of the polysaccharides isolated from fruiting body and the growing culture of mycelium of Ganoderma lucidum. Agric. Biol. Chem. 2641-2653.
Stamets, P. 1993. Evaluating a mushroom strain: Photosensitivity. In Growing Gourmet and Medical Mushrooms. (Berkely, California: Ten Speed Press.), pp. 117-126.
Stewart, A. A., Ingebritsen, T. S., Manalan, A., Klee, C. B., and Cohen, P. 1982. Discovery of a Ca2+- and calmodulin-dependent protein phosphatase: probable identity with calcineurin (CaM-BP80). FEBS Lett. 137, 80-84.
Sugiura, M., Ohno, H., Kunihisa, M., Hirata, F., and Ito, H. 1980. Studies on antitumor polysaccharides, especially D-II, from mycelium of Coriolus versicolor. Jpn. J. Pharmacol. 30, 503-513.
Takeo, K., Maki, K., Wada, Y., and Kitamura, S. 1993. Synthesis of the laminara-oligosaccharide methyl beta-glycosides of dp 3-8. Carbohydr. Res. 245, 81-96.
Tam PCF. 1995. Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus-tinctorius. Mycorrhiza 5, 181-187.
Tanaka, K., Nambu, H., Katoh, Y., Kai, M., and Hidaka, Y. 1999. Molecular cloning of homologs of RAS and RHO1 genes from Cryptococcus neoformans. Yeast 15, 1133-1139.
Tang, R. J., and Cheng M. P. 1992. Reserch on medium on Ganoderma spp. Replacement of yeast extract. Journal Institute of Technology. 145-156.
Tao, J., and Feng, K. Y. 1990. Experimental and clinical studies on inhibitory effect of ganoderma lucidum on platelet aggregation. J. Tongji Med. Univ. 10, 240-243.
Thompson, J. R., Douglas, C. M., Li, W., Jue, C. K., Pramanik, B., Yuan, X., Rude, T. H., Toffaletti, D.L., Perfect, J.R., and Kurtz, M. 1999. A glucan synthase FKS1 homolog in Cryptococcus neoformans is single copy and encodes an essential function. J. Bacteriol. 181, 444-453.
Underhill, D. M., Ozinsky, A., Hajjar, A. M., Stevens, A., Wilson, C. B., Bassetti, M., and Aderem, A. 1999. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401, 811-815.
Wang, S. Y., Hsu, M. L., Hsu, H. C., Tzeng, C. H., Lee, S. S., Shiao, M. S., and Ho, C. K. 1997. The anti-tumor effect of Ganoderma lucidum is mediated by cytokines released from activated macrophages and T lymphocytes. Int. J. Cancer 70, 699-705.
Xiao, Z., Trincado, C. A., and Murtaugh, M. P. 2004. Beta-glucan enhancement of T cell IFNgamma response in swine. Vet. Immunol. Immunopathol. 102, 315-320.
Yalin, W., Ishurd, O., Cuirong, S., and Yuanjiang, P. 2005. Structure analysis and antitumor activity of (1-3)-beta-d-glucans (cordyglucans) from the mycelia of Cordyceps sinensis. Planta Med. 71, 381-384.
Yoshioka, Y., Sano, T., and Ikekawa, T. 1973. Studies on antitumor polysaccharides of Flammulina velutipes (Curt. ex Fr.) Sing. I. Chem. Pharm. Bull. (Tokyo) 21, 1772-1776.
Zekovic, D. B., Kwiatkowski, S., Vrvic, M. M., Jakovljevic, D., and Moran, C. A. 2005. Natural and modified (1-3)-beta-D-glucans in health promotion and disease alleviation. Crit. Rev. Biotechnol. 25, 205-230.
Zhao, C., Jung, U. S., Garrett-Engele, P., Roe, T., Cyert, M. S., and Levin, D. E. 1998. Temperature-induced expression of yeast FKS2 is under the dual control of protein kinase C and calcineurin. Mol. Cell. Biol. 18, 1013-1022.
Zhao, J. D., and Zhang, X. Q. 1994. Importance, distribution and taxonomy of Ganodermataceae in China. In: Buchanan, P. K., Hseu, R. S., and Moncalvo, J. M.(eds) Ganoderma-Systematics, Phytopathology and Pharmacology. Proceedings of Contributed Symposia 59A, B. Fifth International Mycologucal Cogress, Vancouver, August 14-21, 1994. pp. 1-2.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33337-
dc.description.abstract靈芝(Ganoderma lucidum)雖是樹木的病原真菌,也一直是中國醫藥中一種極為珍貴的藥用真菌。靈芝具有抗腫瘤活性、降血糖作用、清除自由基與增加免疫調節等保健功效,而其中最受矚目的便是抗腫瘤活性,故成為現今研究抗癌的重要材料之ㄧ。近年來對靈芝有效成分之分析研究,主要包括多醣(polysaccharides)、三萜類(triterpenes)、腺嘌呤核苷與有機鍺,並且發現其中具抗腫瘤活性的主要成份為多醣體。靈芝的多醣體為細胞壁的主要成份,除α-(1,4)-link的基丁質(chitin)外,還有β-(1,3)-D-葡聚醣(glucan)及β-(1,6)-D-葡聚醣及其它少量的醣類,而許多的研究已指出β-(1,3)-D-葡聚醣具有抗腫瘤活性與增強免疫力的效應,所以找出β-(1,3)-D-葡聚醣相關合成酶變成一很重要的課題。β-(1,3)-D-葡聚醣合成酶為具有相當保守性之酵素,真菌與植物中均普遍的發現其酵素之存在,如在Saccharomyces cerevisiae、Neurospora crassa、Aspergllius niger及Hordeum vulgare cv. Clipper等物種上都發現了相關的基因與蛋白質,其主要功能是將UDP-Glucose聚合成長鏈的β-(1,3)-D-葡聚醣,為構成細胞壁之主要成份。為找出靈芝的β-(1,3)-D-葡聚醣合成酶之基因,利用靈芝基因體網站所提共之資料,搜尋與S. cerevisiae相關之β-(1,3)-D-葡聚醣合成酶基因fks相似之序列,並將其選殖出來,分別得到glfks1與glfks2,利用hydropathy分析,顯示GlFks1與GlFks2分別具有16個與14個transmembrane helix,且推測GlFks1與GlFks2應也是屬於嵌入的membrane protein。另外利用南方雜合分析發現glfks1與glfks2於靈芝的基因體中各只有一個copy number。利用Real-Time RT-PCR來分析gfks1與glfks2的表現,gfks1與glfks2在添加Ca+之情況下,都無被誘導表現。在缺乏碳素原葡萄糖與有galactose時,可誘導glfks2表現。若將培養溫度升至39℃,已可誘導glfks2表現,但若升至42℃,可使誘導的表現量更高。若添加重金屬元素,發現glfks1在有重金屬鎘(Cd)與(Pb)鉛存在之情況下被誘導,而鋅(Zn)可以短暫的誘導增加glfks2表現,接著便會使glfks2的表現量減少,此外,在子實體之glfks1與glfks2表現量均比菌絲之表現量高。為進一步求證glfks1與glfks2基因之功能,利用S. cerevisiae的fks1突變株進行互補性分析實驗,來確認GlFks1與GlFks2具有合成β-(1,3)-D-葡聚醣的能力,實驗結果glfks1與glfks2基因分別都能部份地使S. cerevisiae fks1突變株缺失的Fks1的功能恢復,證實靈芝的β-(1,3)-D-葡聚醣合成酶可在S. cerevisiae中表現以合成 β-(1,3)-D-葡聚醣。zh_TW
dc.description.abstractGanoderma lucidum is a Chinese tranditional herbal fungi, tough it is also a pathogenic fungi of trees. The immunomodulation function of G. lucidum was reported to be effective in the treatment of hypertension, hyperglycemia, neoplasia, eliminating harmful free redicals and stimulatimg immunity. The anti-tumor efficacy of G. lucidum is much interested in the modern times. For the past few years, the enchancing immune matter of G. lucidum was separated and characterized, including polysaccharides, triterpenes,nucleic acid and organic germanium. Polysaccharides had anti-tumor activity was reported. Polysaccharides was the major component of the cell wall in G. lucidum. Excluding the α-(14)-link chitin, polysaccharides contained β-(1,3)-D-glucan, β-(1,6)-glucan and other small content saccharides.Since β-(1,3)- D-glucan had immunostimulating and antitumoral properties was reported, it is interest to find and study β-(1,3)-D-glucan synthase. β-(1,3)-D-glucan synthase was very conserved. The gene and protein of β-(1,3)-D-glucan synthase was identified and found in fungi and plant, for example, Saccharomyces cerevisiae、Neurospora crassa、Aspergllius niger and Hordeum vulgare cv. Clipper etc.. The major function of the enzyme was to transfer glucose from UDP-Glucose in plasma to elongate the poly-β-(1,3)-D-glucosides chain, the major component of the cell wall. I used the fks gene sequence of S. cerevisiae to research the homologous gene of G. lucidum in the network station of G. lucidum. Then we clone the gene, glfks1 and glfks2. Hydropathy analysis predicts that GlFks1 and GlFks2 are integral membrane protein with about 16 and 14 transmembrane helices (TMHs).In genomic southern blot analysis, glfks1 and glfks2 both are single copy gene. I detect the different expression of glfks1 and glfks2 by Real-Time RT-PCR. Both glfks1 and glfks2 cannot be induced by the addition of Ca+ to the growth medium. The glfks2 can be induced in the absence of glucose, and by galactose. The expression of glfks2 is induced at 39℃. At 42℃,the inducble amount is more high. In the addition of the heavy metal, the cadmium (Cd) and lead (Pb) can be to induce the expression of glfks1; the zinc (Zn) can be to induce transiently the expression of glfks2, then decrease the expression. The express quantity of the glfks1 and glfks2 in fruit body were much more than in mycelium. To further establish a functional role of GlFks1 and GlFksS2 in β-(1,3)- glucan synthesis, I find that each glfks1 and glfks2 can complement partially the S. cerevisiae fks1 mutant. The result proves that the β-(1,3)-D-glucan synthase of G. lucidum can express in S. cerevisiae to synthesize β-(1,3)-D-glucan.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:35:18Z (GMT). No. of bitstreams: 1
ntu-95-R92633018-1.pdf: 1370975 bytes, checksum: f9ee245437a3c88ea68805d06931b9df (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要--------------------------------------------------------------------------------1
Abstract -----------------------------------------------------------------------------------3
壹、前人研究--------------------------------------------------------------------5
ㄧ、關於靈芝---------------------------------------------------------------------5
二、靈芝功能性物質------------------------------------------------------------5
三、β-葡聚醣之功能-----------------------------------------------------------7
1. 葡聚醣與免疫效應--------------------------------------------------7
2. 真菌中的葡聚醣------------------------------------------------------------9
3. 靈芝之葡聚醣--------------------------------------------------------------10
4. 合成之(1,3)-β-D-葡聚醣-------------------------------------------------10
四、關於β-(1,3)-D-葡聚醣合成酶(glucan synthase)之相關研究------------11
1. β-(1,3)-D-葡聚醣合成酶的構成-----------------------------------------11
2. S. cerevisiae的β-(1,3)-D-葡聚醣合成酶之催化單元基因----------12
3. 在S. cerevisiae中之Fks1與Fks2的特性------------------------------13
4. 在S. cerevisiae中fks1與fks2基因之功能-----------------------------14
5. 利用S. cerevisiae之fks1突變株,進行跨物種之β-(1,3)-D-葡聚醣合成酶功能性分析-------------------------------------------------------15
貳、材料與方法-------------------------------------------------------------------------17
一、靈芝的來源----------------------------------------------------------------------17
二、靈芝核酸之製備----------------------------------------------------------------17
(一)、靈芝的total RNA之抽取-------------------------------------------------17
(二)、抽取靈芝poly(A)+ RNA--------------------------------------------------17
三、基因之選殖----------------------------------------------------------------------18
(一)、第一股cDNA之合成-----------------------------------------------------18
(二)、5`RACE與3`RACE-------------------------------------------------------19
(三)、自電泳膠體回收DNA片段----------------------------------------------19
(四)、將PCR增幅之DNA選殖至T-Vector (T-A cloning)-----------------20
(五)、質體小量之製備(mini-prep)---------------------------------------------20
(六)、核酸定序與序列分析-----------------------------------------------------21
(七)、利用Reverse transcription PCR(RT-PCR)進行fks2基因全長之增幅-----------------------------------------------------------------------------22
四、北方雜合分析-------------------------------------------------------------------23
(一)、RNA之電泳分析----------------------------------------------------------23
(二)、RNA轉漬-------------------------------------------------------------------23
(三)、核酸探針之製備-----------------------------------------------------------24
(四)、前置雜合反應(Prehybridization)----------------------------------------24
(五)、雜合反應--------------------------------------------------------------------24
(六)、標示核酸探針之冷光偵測 (Detection of DIG-labeled DNA probe)-----------------------------------------------------------------------25
五、基因組南方雜合分析----------------------------------------------------------25
(一)、靈芝之Genomic DNA之抽取-------------------------------------------26
(二)、Genomic DNA之酵解與瓊脂膠體電泳-------------------------------26
(三)、DNA之毛細管轉漬法(Capillary transfer)-----------------------------27
(四)、核酸探針之製備-----------------------------------------------------------27
(五)、前置雜合反應、雜合反應與標示核酸探針之冷光偵測------------28
六、glfks1與glfks2之基因表現情況之偵測------------------------------------28
(一)、靈芝菌絲之培養-----------------------------------------------------------28
(二)、total RNA之抽取與cDNA之合成-------------------------------28
(三)、Real-Time PCR之相對定量---------------------------------------------29
(四)、定量結果之分析-----------------------------------------------------------29
七、利用Saccharomyces cerevisiae之fks1突變株上進行互補實驗分析靈芝之GlFKS1與GlFKS2之功能---------------------------------------------29
(一)、表現載體之製備-----------------------------------------------------------29
(二)、S. cerevisiae的轉形-------------------------------------------------------30
(三)、互補實驗--------------------------------------------------------------------30
叁、結果----------------------------------------------------------------------------------33
一、glfks1與glfks2全長序列之選殖---------------------------------------------33
二、GlFks1與GlFks2之胺基酸序列之特性分析------------------------------34
三、glfks1與glfks2基因在靈芝基因組中之存在情況------------------------35
四、利用Real-Time PCR分析glfks1與glfks2基因的訊息RNA之表現情況---------------------------------------------------------------------------------35
五、利用酵母菌互補實驗分析靈芝之GlFks1與GlFks2之功能-----------------------------------------------------------------------------------38
肆、討論----------------------------------------------------------------------------------41
伍、參考文獻----------------------------------------------------------------------------47
陸、圖-------------------------------------------------------------------------------------59
柒、附錄----------------------------------------------------------------------------------77
dc.language.isozh-TW
dc.subject靈芝zh_TW
dc.subjectβ-(1zh_TW
dc.subject3)-D-葡聚糖合成&#37238zh_TW
dc.subjectβ-(1en
dc.subject3)-D-glucan synthaseen
dc.subjectGanoderma lucidumen
dc.title靈芝β-(1,3)-D-葡聚糖合成酶基因之選殖與特性分析zh_TW
dc.titleCloning and Characterization of a gene encoding the catalytic subunit of β-(1,3)-D-glucan synthase of Ganoderma lucidumen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee沈偉強,曾顯雄,羅秀容
dc.subject.keywordβ-(1,3)-D-葡聚糖合成&#37238,靈芝,zh_TW
dc.subject.keywordβ-(1,3)-D-glucan synthase,Ganoderma lucidum,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2006-07-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved