Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33327
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭克聲
dc.contributor.authorYun-Ching Linen
dc.contributor.author林昀靜zh_TW
dc.date.accessioned2021-06-13T04:34:49Z-
dc.date.available2006-07-28
dc.date.copyright2006-07-28
dc.date.issued2006
dc.date.submitted2006-07-19
dc.identifier.citation1. 王如意、易任,(2001),『應用水文學(上冊)』,國立編譯館出版,茂昌圖書有限公司發行。
2. 吳進龍,(2002),『暴雨歷程連續模擬之研究』,國立台灣大學生物環境系統工程學研究所碩士論文。
3. 林清豐,(1993),『雨量空間分佈特性之研究』,國立台灣大學土木工程研究所碩士論文。
4. 侯如真、鄭克聲,(2003),『訊息熵應用於雨量站網設計之理論探討』,台灣水利季刊,第51卷,第2期,pp. 10-21。
5. 許敏楓,(1993),『雨量空間變異及站網設計之研究』,國立台灣大學農業工程學研究所碩士論文。
6. 莊愷瑋,(1995),『地理統計預測污染土壤中重金屬的空間分布』,國立台灣大學農業化學研究所碩士論文。
7. 黃文政、王慶藏,(1996),『克利金法於雨量站設置之應用』,農業工程學報,第42卷,第1期,pp. 44-56。
8. 楊富堤,(1996),『濁水溪流域水資源供需之研究』,國立台灣海洋大學河海工程研究所碩士論文。
9. 楊錦釧、湯有光、葉克家,(1996),『台灣水庫集水區極端暴雨及其不定性研究』,台灣電力公司計畫。
10. 葉惠中,(2000),『區域化變數理論與隨機變域模擬在雨量站網設計之研究』,國立台灣大學農業工程學研究所博士論文。
11. 劉昭民,(1996),『台灣的氣象與氣候』,常民文化事業有限公司。
12. 劉俊志,(2000),『克利金空間推估應用於控制點選取與影像幾何校正』,國立台灣大學農業工程學研究所碩士論文。
13. 鄭士仁,(1993),『降雨深度最佳估計方法之研究及其應用於區域雨量站網之規劃設計』,國立台灣大學農業工程學研究所碩士論文。
14. 鄭克聲、許正芳,(1997),『台灣地區降雨之碎形分析』,台灣水利,第45卷,第2期,pp. 38-46。
15. Al-Zahrani, M. and Husain, T., 1998. An algorithm for designing a precipitation network in the south-western region of Saudi Arabia. Journal of Hydrology, Vol. 205, pp. 205-216.
16. André, S. H., Ouarda, T. B. M. J, Lachance, M., Bobée, B., Gaudet, J. and Gignac, C., 2003. Assessment of the impact of meteorological network density on the estimation of basin precipitation and runoff: A case study. Hydrological Processes, Vol. 17, pp. 3561-3580.
17. Bastin, G., Lorent, B., Duque, C. and Gevers, M., 1984. Optimal estimation of the average areal rainfall and optimal selection of rain gauge locations. Water Resources Research, Vol. 20, No. 4, pp. 463-470.
18. Chua, S. H., and Bras, R. L., 1982. Optimal estimators of mean areal precipitation in regions of orographic influence. Journal of Hydrology, Vol. 57, pp. 23-48.
19. Delhomme, J. P., Villeneuve, J. P., Morin, G., Bobee, B. and Leblanc, D., 1979. Kriging in the design of streamflow sampling networks. Water Resources Research, Vol. 15, No. 6, pp. 1833-1840.
20. Drogue, G., Humbert, J., Deraisme, J., Mahr, N. and Freslon, N., 2002. A statistical-topographic model using an omnidirectional parameterization of the relief for mapping orographic rainfall. International Journal of Climatology’, Vol. 22, pp. 599-613.
21. Frei, C. and Schär, C., 1998. A precipitation climatology of the Alps from high-resolution rain-gague observation. International Journal of Climatology, Vol. 18, pp. 873-900.
22. Kassim, A. H. M. and Kottegoda, N. T., 1991. Rainfall network design through comparative kriging methods. Hydrological Sciences-Journal-des Sciences Hydrologiques, Vol. 36, No. 3, pp. 223-240.
23. Krstanovic, P. F. and Singh V. P., 1992. Evaluation of rainfall network using entropy: Ⅰ. Theoretical development. Water Resources Management, Vol. 6, pp. 279-293.
24. Krstanovic, P. F. and Singh V. P., 1992. Evaluation of rainfall network using entropy: Ⅱ. Application. Water Resources Management, Vol. 6, pp. 295-314.
25. Pardo-Igúzquiza, E., 1998. Comparison of geostatistical methods for estimating the areal average climatological rainfall mean using data on precipitation and topography. International Journal of Climatology, Vol. 18, pp. 1031-1047.
26. Prudhomme, C. and Reed, D.W., 1998. Relationships between extreme daily precipitation and topography in a mountainous region. A case study in Scotland. International Journal of Climatology, Vol. 18, pp. 1439-1453.
27. Prudhomme, C. and Reed, D.W., 1999. Mapping extreme rainfall in a mountainous region using geostatistical techniques. A case study in Scotland. International Journal of Climatology, Vol. 19, pp. 1337-1356.
28. Shannon, C. E. and Weaver, W., 1949. Mathematical theory of communication. University of Illinois Press, IL.
29. Shaw, E. M., 1983, Hydrology in Practice. Van Nostrand Reinhold (UK).
30. Tsintikidis, D., Georgakakos, K. P., Sperfslage, J. A., Smith, D. E. and Carpenter, T. M., 2002. Precipitation uncertainty and raingauge network design within Folsom lake watershed. Journal of Hydrologic Engineering, Vol. 7, No. 2, pp.175-184.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33327-
dc.description.abstract雨量資料是水資源開發調配、各項用水供需計畫研擬及水利工程規劃設計最重要之依據,為了充分的了解及掌握降雨事件在時間與空間上之變化特性,因此對於雨量站網應做適當之規劃。由於台灣地區的降雨受到氣候及地理環境的影響甚大,造成降雨在時間與空間上分布不均勻的現象,為了考慮到氣候對降雨的影響,因此本研究將降雨型態劃分為年雨量與梅雨、對流、颱風、鋒面之時雨量及季節性雨量等各種類型;又由於降雨量會隨著高程而有所變化,因此本研究考慮到高程對降雨量之影響並移除降雨量隨高程變化之趨勢,更可以清楚的描述出雨量在空間中的變異特性。
在本研究中利用地理統計法評估淡水河流域下游內27個雨量站之分布情形,首先計算每個網格點上之推估誤差落在 範圍內之機率值α且繪製α等值圖,其中 會隨著不同水資源規劃之站網評估標準而有所變動,在進行站網評估時,則利用研究區域內之機率值α大於門檻值之面積百分比,作為停止加站或減站之標準,在本研究中將門檻值定為0.8及0.9,此法可改善前人的相對加減站策略。本研究亦提出一個新的站網分布位置,可適當的觀測各類型降雨,且較原始站網分布型態有較好的空間推估效果。當門檻值為0.8時,梅雨時雨量有8個測站是可優先被移除且利用剩餘之19個基本站可使控制面積百分比達0.5379,在改變測站位置後27個測站之控制面積百分比為0.8791,在各類型降雨中可發現梅雨時雨量具有較大的空間變異性,因此選擇梅雨時雨量之站網分布作為研究區域中之最佳站網位置。
zh_TW
dc.description.abstractRainfall data is one of the essential data in hydrological analysis and engineering design including water budget analysis, frequency analysis and stormwater drainage design. Direct measurement of rainfall can only be achieved by raingauges and raingauge networks are often installed to provide temporal and spatial variations of rainfall. However, even though raingauges are capable of measuring rainfall rate in real-time and at very fine resolution in time, the spatial variation of rainfall is still difficult to be characterized without a raingauge network of enough density in space. In addition, selection of raingauge locations is affected by many factors such as accessibility, easiness of maintenance, topographical aspects, etc. Furthermore, the density of a raingauge network is dependent on the time resolution (or scale) of the desired rainfall measurements. For example, for the purpose of water resources planning, observation of monthly or annual rainfall is desired; however, for flood mitigation and forecasting, hourly rainfall must be measured. Hourly rainfall exhibits higher spatial variability and thus, as compared to monthly or annual rainfall, a network of higher density is needed. Therefore, a methodology for raingauge network design and performance evaluation of an existing raingauge network is important in that it can help to understand its capability and the quality of the data it provides.
In this study, a geostatistical approach for raingauge network design and evaluation was proposed and a network of 27 raingauges in lower Danshuei River watershed was chosen for evaluation. It first defines the “acceptable precision” for rainfall estimation at ungauged sites using rainfall measurements of the existing raingauges and the ordinary kriging. The rainfall estimates at ungauged sites are considered acceptable if the probability αA that the estimate falls within one standard deviation of the true value exceeds a specified level α, say 0.8 or 0.9. By adopting such a criterion, both the ungauged locations and the area percentage pA within the study area satisfying this criterion can be obtained. A sequential algorithm is also developed to find raingauges that provide only
redundant information and can be eliminated or moved. Relocation of such raingauges can also be suggested using a contour map of αA and the area percentage of pA corresponding to the altered network. It was found that, among the four major storm types in Taiwan, hourly rainfall of Mei-Yu exhibited the highest spatial variability and therefore raingauge network evaluation was conducted based on hourly rainfall of Mei-Yu. It was concluded that at α = 0.8, 8 existing raingauges are redundant and only 19 raingauges are needed to achieve pA=0.5379. After relocating the 27 raingauges, the altered network can achieve pA=0.8791.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:34:49Z (GMT). No. of bitstreams: 1
ntu-95-R93622029-1.pdf: 2073595 bytes, checksum: 1bfa6b672c0e01e4c5108050373e8414 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要 i
英文摘要 ii
目錄 iv
圖目錄 v
表目錄 vii
第一章 緒論 1
第一節 研究動機與目的 1
第二節 研究架構及方法 2
第二章 文獻回顧 4
第三章 區域化變數理論 10
第一節 基本假設 11
第二節 半變異元分析 13
第三節 克利金推估 17
第四節 半變異元模式驗證 20
第四章 研究區域與資料選取 22
第一節 淡水河流域概況 22
第二節 資料選取 22
第五章 雨量空間變異之研究 26
第一節 時雨量尺度之空間分析 26
第二節 年雨量及季節雨量尺度之空間分析 35
第三節 無因次化半變異元 39
第六章 雨量站網設計之研究 48
第一節 方法介紹 49
第二節 方法應用 52
第三節 站網評估 58
第七章 結論與建議 103
參考文獻 105
dc.language.isozh-TW
dc.title地理統計應用於雨量站網設計之研究zh_TW
dc.titleRaingauge Network Design Using Geostatisticsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉天降,黃文政,隋中興
dc.subject.keyword區域化變數理論,站網評估,空間變異,zh_TW
dc.subject.keywordTheory of Regionalized Variables,Raingauge Network Analysis,Spatial Variation,en
dc.relation.page108
dc.rights.note有償授權
dc.date.accepted2006-07-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
2.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved