Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33320
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李志豪
dc.contributor.authorMing-Chieh Chenen
dc.contributor.author陳明傑zh_TW
dc.date.accessioned2021-06-13T04:34:28Z-
dc.date.available2006-07-24
dc.date.copyright2006-07-24
dc.date.issued2006
dc.date.submitted2006-07-20
dc.identifier.citation[1] Pashaev O.K. and Lee J.-H., Resonance solitons as black holes in Madelung fluid. Mod. Phys. Lett. A 17 1601-1619 (2002).
[2] Antonovskii L. K., Phys. Rev. E, 54 (1996) 6285.
[3] L. Martina, O. K. Pashaev and G. Soliani, Integrable Dissipative Structures in the Gauge Theory of Gravity, Class. Quantum Grav. 14 (1997), 3179.
[4] S. Jin, C. D. Levermore and D. W. McLaughlim, Comm. Pure Appl. Math. 52, 613(1999).
[5] de Bloglie, L. Sur le possibilit’e de relier les ph’enom`enes d’interf`ere et de diffraction a`la th’eorie des quanta de lumi`ere. C. R. Acad. Sci.(Paris), 183 447448(1926).
[6] Bohm, D. A suggested interpretation of the quantum theory in terms of ”hidden variables” I. Phys. Rev. 85, 166-179(1952).
[7] Akhmanov, A., Sukhorukov A. P. and Khokhlov, R. V. Self-focussing and diffraction of light in a nonlinear medium, Soviet Physics Uspekhi, 93, 609636(1968).
[8] Nelson E., Derivation of the Sch‥odinger equation from Newtonian mechanics. Phys. Rev. 150, 1079-1085(1966).
[9] Salesi G., Spin and Madelung fluid. Mod. Phys. Lett. A 11, 1815-1823(1996).
[10] Guerra, F. and Pusterla, M. A., A nonlinear Schr‥odinger equation and its relativistic generalization from basic principles.Lett. Nuovo Cimento 34, 351356(1982).
[11] Rogers C. and Schief W. K., The resonant nonlinear Schr‥odinger equation via an integrable capillarity model. Il Phys. Nuovo Cimento 114, 1409-1412(1999).
[12] Bertolami, O. Nonlinear connections to quantum mechanics from quantum gravity. Phys. Lett. A 154, 225-229(1991).
[13] Curevivich, A. V. and Krylov, A. L. A shock wave in dispersive hydrodynamics. Sov. Phys. Dokl. 32, 73-74(1988).
[14] Karpman V. I., Nonlinear Waves in Dispersive Media. Pergamon, Oxford,(1975).
[15] Akhiezer, A. I. Plasma Electrodynamics, Pergamon, Oxford,(1975).
[16] L. Martina, O. K. Pashaev and G. Soliani, Phys. Rev. D58 084025, (1998).
[17] J.-H Lee, O.K. Pashave, C. Rogers, and W.K. Schief, The resonant nonlinear Schr‥odinger equation in cold plasama physics. Application of B‥acklund-Draboux
transformations and superposition Principles, to appear in J. Plasma Physics.
[18] J.-H Lee, O.K. Pashave, RNLS solitons with nontrivial boundary condition by Hirota method.preprint.
[19] R. Jackiw, Teor. Mat. Fiz 92 404, (1992).
[20] Hirota R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27 1192-1194 (1992).
[21] Arnold V I and Avez A 1968 Ergodic Problems of Classical Mechanics.(New York: Benjamin)
[22] Jackiw R 1984 Quantum Theory of Gravity ed S Chirstensen.(Bristol: Hilger)
[23] Teitelboim C 1983 Phys. Lett. 126B 41
[24] Isler K and Trugenberger C A 1989 Phys. Rev. Lett. 63 834
[25] Chamseddine A H and Wyler D 1990 Nucl. Phys. B 340 595
[26] Montano D and Sonnenschein J 1989 Nucl. Phys. B 324 348
[27] Birmingham D, Blau M, Rakowski M and Thompson G 1991 Phys. Rep. 209 129
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33320-
dc.description.abstractIn this paper, we first review the following results of C. Rogers et al: the cold plasma system under some physical constraints is related to Resonant Nonlinear Schr'{o}dinger Equation(RNLS) and the capillarity system under some chemical constraints is also related to RNLScite{roger}, cite{main}. The main result is to obtain one-dissipaton and two-dissipaton solution of the Reaction-Diffusion(RD) system with nonzero boundary condition via
Hirota method. In one-dissipaton case, we make a comparison with the exact solutions derived from B'{a}cklund-Darboux transformation. The Reaction-Diffusion system is related to Resonant Nonlinear Schr'{o}dinger Equationcite{Lee}, which is related to a system of equations in cold plasma physics under special constraintscite{main}. Some plots of the resonant interaction are shown here.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:34:28Z (GMT). No. of bitstreams: 1
ntu-95-R89221015-1.pdf: 547176 bytes, checksum: c6393d20aff43fb32948b7f4a389ac54 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsIntroduction ............................................1

Chapter 1. Translate the cold plasma system into the
resonant nonlinear Schr‥odinger equation................3
Chapter 2. Translate the capillarity system into the
resonant nonlinear Schr‥odinger equation................6
Chapter 3. The Relation between RNLS and RD system.......8
Chapter 4. Exact Solutions of the Reaction-Diffusion system with Nonzero Boundary............................10
Chapter 5. Comparisons of one-soliton Solutions ........17
APPENDIX A. Exact Solutions of the Reaction-Diffusion system with Zero Boundary...............................20
APPENDIX B. A special two-dissipaton solution form via Hirota method with Nonzero Boundary.....................21
APPENDIX C. The Conserved Quantities....................23
APPENDIX D. Exact Solutions of Reaction-Diffusion system..................................................25
References .............................................26
dc.subject毛細現象系統zh_TW
dc.subject廣田方法zh_TW
dc.subject反應擴散方程zh_TW
dc.subject共振薛丁格方程zh_TW
dc.subject冷電漿zh_TW
dc.subjectResonant Nonlinear Schren
dc.subjectCold plasmaen
dc.subjectCapillarity systemen
dc.title具量子位能之非線性薛丁格方程與其在冷電漿方程上的應用zh_TW
dc.titleNonlinear Schrodinger Equations with Quantum Potential and the Applications in Cold Plasma Equationsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張秋俊,邵錦昌,蔡天鉞,李榮耀
dc.subject.keyword冷電漿,毛細現象系統,共振薛丁格方程,反應擴散方程,廣田方法,zh_TW
dc.subject.keywordCold plasma,Capillarity system,Resonant Nonlinear Schr,en
dc.relation.page27
dc.rights.note有償授權
dc.date.accepted2006-07-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
534.35 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved