Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33319
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江金倉
dc.contributor.authorXiao-Wei Linen
dc.contributor.author林曉薇zh_TW
dc.date.accessioned2021-06-13T04:34:26Z-
dc.date.available2006-07-21
dc.date.copyright2006-07-21
dc.date.issued2006
dc.date.submitted2006-07-19
dc.identifier.citation[1]Cai, Z. and Sun, Y. (2003). Local linear estimation for time-dependent coefficients
in Cox's regression models. Scandinavian Journal of Statistics. 30, 93-111.
[2]Casella, G. and Robert, C. P. (1996). Rao-Blackwellisation of sampling schemes. Biometrika.83, 81-94.
[3]Chiang, C. T., Rice, J. A., and Wu, C. O. (2000). Smoothing spline estimation for
varying coefficient models with repeatedly measured dependent variable. Journal of the American Statistical Association.96, 605-619.
[4]Cook, R. J., and Lawless, J. F. (1997). Marginal analysis of recurrent events and a terminating event. Statistics in Medicine. 16, 911-924.
[5]Cook, R. J., and Lawless, J. F. (1997). Analysis of repeated events. Statistical Methods in Medical Research. 11, 141-166.
[6]Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete observations. Journal of the Royal Statistical Society. B39, 1-38.
[7]Fan, J. Q. and Zhang, J. T. (2000). Functional linear models for longitudinal data. Journal of the Royal Statistical Society.B62, 303-322.
[8]Ghosh, D. and Lin, D. Y. (2000). Nonparametric analysis of recurrent and death.
Biometrics.56, 554-562.
[9]Ghosh, D. and Lin, D. Y. (2002). Marginal regression models for recurrent and terminal events. Statistica Sinica. 12, 663-688.
[10]Gray, R. J. (1992). Flexible methods for analyzing survival data using splines, with applications to breast cancer prognosis. Journal of the American Statistical Association.87, 942-951.
[11]Gruttola, D. V. and Tu, X. M. (1994). Modelling progression of CD4-lymphocyte count and its relationship to survival time. Biometrics. 50, 1003-1014.
[12]Hammerlin, G. and Hoffmann, K. (1991).Numerical Mathematics.Springer-Verlag, New York.
[13]Henderson, R., Diggle, P., and Dobson, A. (2000). Joint modeling of longitudinal measurements and event time data. Biostatistics. 4, 465-480.
[14]Hoover, D. R., Rice, J. A., Wu, C. O. and Yang, L. P. (1998). Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data. Biometrika. 85, 809-822.
[15]Huang J. Z., Wu C. O., and Zhuo L. (2002). Varying-coefficient models and basis
function approximations for the analysis of repeated measurements. Biometrika. 89, 111-128.
[16]Huang, C. Y. and Wang, M. C. (2004). Joint modeling and estimation for recurrent event processes and failure time data. Journal of the American Statistical Association. 99, 1153-1165.
[17]Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics. 38, 963-974.
[18]Lancaster, A. and Intrator, O. (1998). Panel data with survival: Hospitalization of HIV-positive patients. Journal of the American Statistical Association. 93, 46-53.
[19]Li, Q. and Lagakos, S. (1997). Use of the WEi-Lin-Weissfeld method for the analysis of a recurring and a terminating event. Statistics in Medicine. 16, 925-940.
[20]Lin, D. Y., Feure, E. J., Etzioni, R. and Wax, Y. (1997). Estimating medical costs from incomplete follow-up data. Bimetrics. 53, 419-434.
[21]Lin, D. Y., Wei, L. J., Yang, I. and Ying, Z. (2000). Semiparametric regression for the mean and rate functions of recurrent events. Journal of the Royal Statistical Society. B62, 711-730.
[22]Liu, L., Wolfe, R. A. and Huang, X. (2004). Shared frailty models for recurrent events and a terminal event. Bimoetrics. 60, 747-756.
[23]Martinussen, T. and Scheike, T. H. (2002). A flexible additive multiplicative hazard model. Biometrika. 89, 283-298.
[24]Murphy, S. and Sen, P. (1991). Time-dependent coefficients in a Cox-type regression model. Stochastic Processes an Their Applications. 39, 153-180.
[25]Nielsen, J. D. and Dean, C. B. (2005). Regression splines in the quasi-likelihood analysis of recurrent event data. Journal of Statistical Planning and Inference. 134, 521-535.
[26]Nurnberger, G. (1989). Approximation by Spline. Springer-Verlag, New York.
[27]Sammel, M. D. and Ryan, L. M. (1996). Latent variable models with fixed effects. Biometrics. 52, 650-663.
[28]Tian, L., Zucker, D., and Wei, L. J. (2005). On the Cox model with time-varying regression coefficients. Journal of the American Statistical Association. 100, 172-183.
[29]Tesng, Y. K., Hsieh, F. and Wang, J. L. (2005). Joint modelling of accelerated failure time and longitudinal data. Biometrika. 92, 587-603.
[30]Tsiatis, A. A. (1981). A large sample study of Cox's regression model. The Annals of Statistics. 9, 93-108.
[31]Tsiatis, A. A., DeGruttola, V., and Wulfsohn, M. S. (1995). Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS. Journal of the American Statistical Association. 90, 27-37.
[32]Tsiatis, A. A. and Davidian, M. (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika. 88, 447-458.
[33]Tsiatis, A. A. and Davidian, M. (2004). Joint modeling of longitudinal
and time-to-event data: an overiew. Statica Sinica. 14, 809-834.
[34]Wang, M. C., Qin, J. and Chiang, C. T. (2001). Analyzing recurrent event data with informative censoring. Journal of the American Statistical Association. 96, 1057-1065.
[35]Winnett, A. and Sasieni, P. (2003). Iterated residuals and time-varying covariate effect in Cox regression. Journal of the Royal Statistical Society. B62, 473-488.
[36]Wu, C. O., Chiang, C. T., and Hoover, D. R. (1998). Asymptotic confidence regions for kernel smoothing of a varying coefficient model with longitudinal data. Journal of the American Statistical Association. 93, 1388-1402.
[37]Wu, C. F. J. (1983). On the convergence of the EM algorithm. The Annals of Statistics.11, 95-103.
[38]Wulfsohn, M. S. and Tsiatis, A. A. (1997). A joint model for survival and longitudinal data measured with error. Biometrics. 53, 330-339.
[39]Zuuker D. M. and Karr A. F. (1990). Nonparametric survival analysis with time-dependent cvariates: a penalized partial likelihood approach. The Annals of Statistics. 18, 329-353.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33319-
dc.description.abstract本論文主要針對時間函數之反應值,重覆量測時間及存活時間建立一變異係數潛藏因子模型。藉由半參數化之潛藏因子建立這些過程之內部相關,彼此之相關性以及非齊一性質。在長期追蹤以及存活資料結構下,我們利用基底展式估計值作為參數函數之估計。更進一步,我們推導所提出估計函數之大樣本性質,並藉助模擬檢視估計式之有限樣本性質。zh_TW
dc.description.abstractIn this thesis, a joint latent varying-coefficient model is proposed to establish the relationship among processes of time-dependent response, measurement time or recurrent event time, and terminal time. The dependence within and among these processes and the heterogeneity on each process are modelled through partially nonparametric latent variables. Based on the longitudinal and survival time data, an estimation approach is proposed for the
parameter functions in the considered joint latent model. In our estimation procedure, each parameter function is first substituted by the corresponding basis function expansions, and, hence, the approximated likelihood
function is induced. By implementing the expectation and
maximization (EM) algorithm or directly using the integration technique, the estimates of parameters in the basis function expansions are obtained. It is naturally to use the estimated functions of basis function expansions as the estimators of the corresponding parameter functions. In this thesis, the asymptotic and finite sample properties of the estimated functions are also derived and examined through a Monte-Carlo simulation, respectively.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:34:26Z (GMT). No. of bitstreams: 1
ntu-95-R93221014-1.pdf: 745875 bytes, checksum: 269a033cbb334b205a0716138425e802 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsTable of Contents ii
List of Tables iii
List of figures iv
Acknowledgements vi
Abstract vii
摘要 viii
1 Introduction 1
2 Joint Latent Model and Estimation 4
2.1 Model 5
2.2 Estimation 8
3 Asymptotic Properties 10
4 Numerical Study 20
5 Further Study 30
Bibliography 31
dc.language.isoen
dc.subject存活時間zh_TW
dc.subject重覆量測時間zh_TW
dc.subject潛藏因子zh_TW
dc.subject基底展式zh_TW
dc.subject長期追蹤資料zh_TW
dc.subjectbasis function expansionen
dc.subjectvarying-coefficienten
dc.subjectlongitudinal dataen
dc.subjectrecurremt evemten
dc.subjectlatent variableen
dc.subjectmeasurement timesen
dc.subjectterminal timeen
dc.subjectB-splineen
dc.title長期追蹤,重覆量測時間及存活時間之潛藏因子結合模型zh_TW
dc.titleA Joint Latent Model for Time-dependent Response, Measurement Time, and Terminal Time Processesen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃冠華,陳宏
dc.subject.keyword基底展式,長期追蹤資料,重覆量測時間,存活時間,潛藏因子,zh_TW
dc.subject.keywordbasis function expansion,B-spline,terminal time,measurement times,latent variable,recurremt evemt,longitudinal data,varying-coefficient,en
dc.relation.page34
dc.rights.note有償授權
dc.date.accepted2006-07-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
728.39 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved