Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33312
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪宏基
dc.contributor.authorChun-Kai Chuangen
dc.contributor.author莊淳凱zh_TW
dc.date.accessioned2021-06-13T04:34:06Z-
dc.date.available2006-07-25
dc.date.copyright2006-07-25
dc.date.issued2006
dc.date.submitted2006-07-19
dc.identifier.citation[1] Anderson, B. D. O. and Moore, J. B., Linear optimal control, Prentice Hall, New Jersey, 1990.
[2] Arrowsmith, D. K. and Place, C. M., Dynamical systems, Chapman and Hall, London, 1992.
[3] Arthur, E. and Bryson, Jr., Optimal control-1950 to 1985, IEEE Control Systems, Vol.16,
No.3, pp.26-33, 1996.
[4] Basar, T. and Bernhard, P., H1-optimal control and related minimax design problems,
Birkh¨auser, Berlin, 1991.
[5] Cheng, D., Shen, T. and Tran, T. J., Pseudo-Hamiltonian realization and its application,
Communications in Information and System, Vol.2, No.2, pp.91-120, 2002.
[6] Clough, R. W. and Penzien, J., Dynamics of structures, McGraw Hill, Singapore, 1993.
[7] Doyle, J., Francis, B. and Tannenbaum, A., Feedback control theory, Macmillan, 1990.
[8] Doyle, J. C., Glover, K., Khargonekar, P. P. and Francis, B. A., State-space solutions to
standard H2 and H1 control problem, IEEE Transactions on Automatic Control, Vol.34,
No.8, pp.831-847, 1989.
[9] Fang, J. Q., Li, Q. S. and Jeary, A. P., Modified independent modal space control of m.d.o.f
systems, Joirnal of Sound and Vibration, Vol.261, pp.421-441, 2003.
[10] Fujimoto, K., Sugie, Canonical transformation and stabilization of generalized Hamiltonian
systems, Systems and Control Letters 42, pp.217-227, 2001.
[11] Hildebrand, F. B., Methods of applied mathematics, Dover, New York, 1992.
34
[12] Haddad, W. M. and Bernstein, D. S., Controller design with regional pole constraints , IEEE
Transactions on Automatic Control, Vol.37, No.1, pp.54-69, 1992.
[13] Hocking, L. M., Optimal control, Oxford university, Oxford, 1991.
[14] Hong, H.-K., Liu, C.-S. and Liou, D.-Y., Complete state LQ optimal control of earthquakeexcited
structures, Proceedings of National Science Council,Republic of China.Part A,Physical
science and engineering, Vol.18, No.4, pp.386-399, 1994.
[15] Hong, H.-K., Liu, C.-S. and Liou, D.-Y., An IVP formulation for stabilized optimal linear
quadratic control of plants against external disturbances.
[16] Khalil, H. K., Nonlinear systems, Prentice Hall, New Jersey, 1996.
[17] Kobori, T., Koshika, N., Yamada, K. and Ikeda, Y., Seismic-response-controlled Structure
with active mass driver system. Part 1: Design, Earthquake Engineering and Structural Dynamics,
Vol.20, pp.133-149, 1991.
[18] Kobori, T., Koshika, N., Yamada, K. and Ikeda, Y., Seismic-response-controlled Structure
with active mass driver system. Part 2: Verification, Earthquake Engineering and Structural
Dynamics, Vol.20, pp.151-166, 1991.
[19] Khargonekar, P. P., Nagpal, K. M. and Poolla, K. R., H1 control of linear system with
nonzero initial conditions, Proceedings of the 29th Conference of Decision and Control, Hawaii,
pp.1821-1826, 1990.
[20] Khargonekar, P. P. and Petersen, I. R., H1 -optimal control with state-feedback, IEEE Transactions
on Automatic Control, Vol.33, No.8, pp.786-788, 1988.
35
[21] Li, Q. S., Fang, J. Q., Jeary, A. P. and Liu, D. K., Decoupling control law for structual control
implementation, International Journal of Solids and Structures, Vol.38, pp.6147-6162, 2001.
[22] Maschke, B. M. J., Ortega, R. and van der Schaft, A. J., Energy-based Lyapunov functions
for forced Hamiltonian systems with dissipation, Proceedings of the 37th IEEE Conference on
Decision and Control, Vol.4, pp.3599-3604, 1998.
[23] Nagpal, K. M. and Khargonekar, P. P., Filtering and Smoothing in an H1 setting, IEEE
Transactions on Automatic Control, Vol.36, No.2, pp.152-166, 1991.
[24] Petersen, I. R., Complete results for a class of state feedback disturbance attenuation problems,
Proceedings of the 27th Conference of Decision and Control, Texas, pp.1349-1353, 1988.
[25] Siegel, C. L., Symplectic geometry, Academic, New York, 1964.
[26] Soong, T. T., Active structural control theory and practice, John Wiley and Sons, New York,
1990.
[27] Uchida, K. and Fujita, M., Finite horizon H1 control problem with terminal penalties, IEEE
Transactions on Automatic Control, Vol.37, No.11, pp.1762-1767, 1992.
[28] Wang, Y. W. and Bernstein, D. S., H2 / H1 optimal control synthesis with an -shifted pole
constraint , Proceedings of the 31st Conference on Decision and Control, Vol.4, pp.3711-3716,
1992.
[29] Wu, Z. and Soong, T. T., Modified bang-bang control law for structural control lmplementation,
Journal of Engineering mechanics, Vol.221, pp.771-777, 1996.
36
[30] Xi, Z. and Cheng, D., Passivity-based stabilization and H1 control of the Hamiltonian control
systems with dissipation and its application to power systems, International Journal of
Control, Vol.73, No.18, pp.1686-1691, 2000.
[31] Yang, J. N., Lin, S., Kim, J-H. and Agrawal, A. K., Optimal design of passive energy dissipation
systems based on H1 and H2 performances, Earthquake Engineering and Structural
Dynamics, Vol.31, No.4, pp.921-936, 2002.
[32] Zhang, L., Yang, C. Y., Chajes, M. J. and Cheng, A. H-D., Stability of active-tendon structural
control with time delay, Journal of Engineering mechanics, ASCE, Vol.119, No.5, pp.1017-
1024, 1993.
[33]洪宏基, 結構動力辛計算及控制方法, 行政院國家科學委員會補助專題研究計畫成果報告,計畫編號: NSC 89-2211-E-002-033, 執行期間: 88年08月01日至89年07月31日, 國立台灣大學土木工程學研究所.
[34]洪宏基, 結構動力辛計算及控制方法, 行政院國家科學委員會補助專題研究計畫成果報告,計畫編號: NSC 89-2211-E-002-123, 執行期間: 89年08月01日至90年07月31日, 國立台灣大學土木工程學研究所.
[35]鍾萬勰, 辛彈性力學, 高等教育出版社, 北京, 2002.
[36]鍾萬勰, 應用力學對偶體系, 科學出版社, 北京, 2002.
[37]鍾萬勰, 互等定理與共軛辛正交關係, 力學學報, Vol.24, No.4, pp.432-437, 1992.
[38]鍾立來, 結構主動控制之簡介, 結構工程, 第七卷, 第四期, pp.65-70, 1992.
[39]鍾立來, 結構主動控制之狀態空間系統, 結構工程, 第八卷,第二期, pp.89-98, 1993.
[40]鍾立來, 結構主動控制之最佳控制律, 土木工程技術, 第二期, pp.27-42, 1996.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33312-
dc.description.abstract本研究運用振態解耦化的觀念,將H∞ 控制理論引入振態上,完成
振態最佳控制,可以視工程需要考慮重要的振態來施加控制力,控制
器與振態之間的關係達到多控制器多振態的多種變化選擇方式,靈活
度高;而目標函數作適當的修正,以正確的變分法則將結構控制問題
成功轉為工程師所熟悉的初始值問題以利求解;並考慮振態系統陣的
漸進穩定,解決控制參數inf γ 需要利用計算器反覆搜尋的缺點。
另外,本研究亦針對H∞ 控制理論誘導範數的選取以推導證明給
予合理性,解決文獻中對誘導範數如何選取的隱誨不明。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-13T04:34:06Z (GMT). No. of bitstreams: 1
ntu-95-R93521223-1.pdf: 12774505 bytes, checksum: 5576889f5e47569282cb86dc0b2b74d0 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents誌謝………………………………………………………………………… 一
摘要………………………………………………………………………… 二
目錄………………………………………………………………………… 三
表目錄……………………………………………………………………… 五
圖目錄……………………………………………………………………… 七
第一章 導論
1.1 研究動機與目的………………………………………………… 1
1.2 文獻回顧………………………………………………………… 2
1.3 研究方法與內容………………………………………………… 3
第二章 辛空間之最佳H∞ 振態控制
2.1 多自由度結構系統…………………………………………… 4
2.2 相空間之H∞ 控制……………………………………………… 4
2.3 位形空間之振態解耦與辛空間之辛振態解耦……………… 6
2.4 辛空間之最佳H∞ 振態控制…………………………………… 10
2.5 inf ( )i γ 之求解………………………………………………… 19
2.5.1 對振態位移加權………………………………………… 20
2.5.2 對振態速度加權………………………………………… 22
第三章 數值實例……………………………………………………… 25
四
第四章 結論與建議…………………………………………………… 32
參考文獻…………………………………………………………………… 34
附表………………………………………………………………………… 39
附圖………………………………………………………………………… 48
符號對照表………………………………………………………………… 105
附錄A H∞ 控制理論誘導範數之推導證明………………………… 107
附錄B 辛空間V−1 關係討論…………………………………………… 115
dc.language.isozh-TW
dc.subject主動控制zh_TW
dc.subject辛空間zh_TW
dc.subjectH∞控制zh_TW
dc.subjectsymplectic spaceen
dc.subjectactive controlen
dc.subjectH∞ controlen
dc.title以辛振態疊加法探討多自由度結構受震之H∞控制問題zh_TW
dc.titleSymplectic modal superposition method for H∞ control of earthquake-excited structuresen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳明新,鍾立來,吳重成
dc.subject.keyword辛空間,H∞控制,主動控制,zh_TW
dc.subject.keywordsymplectic space,H∞ control,active control,en
dc.relation.page115
dc.rights.note有償授權
dc.date.accepted2006-07-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
12.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved