請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33312完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪宏基 | |
| dc.contributor.author | Chun-Kai Chuang | en |
| dc.contributor.author | 莊淳凱 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:34:06Z | - |
| dc.date.available | 2006-07-25 | |
| dc.date.copyright | 2006-07-25 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-19 | |
| dc.identifier.citation | [1] Anderson, B. D. O. and Moore, J. B., Linear optimal control, Prentice Hall, New Jersey, 1990.
[2] Arrowsmith, D. K. and Place, C. M., Dynamical systems, Chapman and Hall, London, 1992. [3] Arthur, E. and Bryson, Jr., Optimal control-1950 to 1985, IEEE Control Systems, Vol.16, No.3, pp.26-33, 1996. [4] Basar, T. and Bernhard, P., H1-optimal control and related minimax design problems, Birkh¨auser, Berlin, 1991. [5] Cheng, D., Shen, T. and Tran, T. J., Pseudo-Hamiltonian realization and its application, Communications in Information and System, Vol.2, No.2, pp.91-120, 2002. [6] Clough, R. W. and Penzien, J., Dynamics of structures, McGraw Hill, Singapore, 1993. [7] Doyle, J., Francis, B. and Tannenbaum, A., Feedback control theory, Macmillan, 1990. [8] Doyle, J. C., Glover, K., Khargonekar, P. P. and Francis, B. A., State-space solutions to standard H2 and H1 control problem, IEEE Transactions on Automatic Control, Vol.34, No.8, pp.831-847, 1989. [9] Fang, J. Q., Li, Q. S. and Jeary, A. P., Modified independent modal space control of m.d.o.f systems, Joirnal of Sound and Vibration, Vol.261, pp.421-441, 2003. [10] Fujimoto, K., Sugie, Canonical transformation and stabilization of generalized Hamiltonian systems, Systems and Control Letters 42, pp.217-227, 2001. [11] Hildebrand, F. B., Methods of applied mathematics, Dover, New York, 1992. 34 [12] Haddad, W. M. and Bernstein, D. S., Controller design with regional pole constraints , IEEE Transactions on Automatic Control, Vol.37, No.1, pp.54-69, 1992. [13] Hocking, L. M., Optimal control, Oxford university, Oxford, 1991. [14] Hong, H.-K., Liu, C.-S. and Liou, D.-Y., Complete state LQ optimal control of earthquakeexcited structures, Proceedings of National Science Council,Republic of China.Part A,Physical science and engineering, Vol.18, No.4, pp.386-399, 1994. [15] Hong, H.-K., Liu, C.-S. and Liou, D.-Y., An IVP formulation for stabilized optimal linear quadratic control of plants against external disturbances. [16] Khalil, H. K., Nonlinear systems, Prentice Hall, New Jersey, 1996. [17] Kobori, T., Koshika, N., Yamada, K. and Ikeda, Y., Seismic-response-controlled Structure with active mass driver system. Part 1: Design, Earthquake Engineering and Structural Dynamics, Vol.20, pp.133-149, 1991. [18] Kobori, T., Koshika, N., Yamada, K. and Ikeda, Y., Seismic-response-controlled Structure with active mass driver system. Part 2: Verification, Earthquake Engineering and Structural Dynamics, Vol.20, pp.151-166, 1991. [19] Khargonekar, P. P., Nagpal, K. M. and Poolla, K. R., H1 control of linear system with nonzero initial conditions, Proceedings of the 29th Conference of Decision and Control, Hawaii, pp.1821-1826, 1990. [20] Khargonekar, P. P. and Petersen, I. R., H1 -optimal control with state-feedback, IEEE Transactions on Automatic Control, Vol.33, No.8, pp.786-788, 1988. 35 [21] Li, Q. S., Fang, J. Q., Jeary, A. P. and Liu, D. K., Decoupling control law for structual control implementation, International Journal of Solids and Structures, Vol.38, pp.6147-6162, 2001. [22] Maschke, B. M. J., Ortega, R. and van der Schaft, A. J., Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation, Proceedings of the 37th IEEE Conference on Decision and Control, Vol.4, pp.3599-3604, 1998. [23] Nagpal, K. M. and Khargonekar, P. P., Filtering and Smoothing in an H1 setting, IEEE Transactions on Automatic Control, Vol.36, No.2, pp.152-166, 1991. [24] Petersen, I. R., Complete results for a class of state feedback disturbance attenuation problems, Proceedings of the 27th Conference of Decision and Control, Texas, pp.1349-1353, 1988. [25] Siegel, C. L., Symplectic geometry, Academic, New York, 1964. [26] Soong, T. T., Active structural control theory and practice, John Wiley and Sons, New York, 1990. [27] Uchida, K. and Fujita, M., Finite horizon H1 control problem with terminal penalties, IEEE Transactions on Automatic Control, Vol.37, No.11, pp.1762-1767, 1992. [28] Wang, Y. W. and Bernstein, D. S., H2 / H1 optimal control synthesis with an -shifted pole constraint , Proceedings of the 31st Conference on Decision and Control, Vol.4, pp.3711-3716, 1992. [29] Wu, Z. and Soong, T. T., Modified bang-bang control law for structural control lmplementation, Journal of Engineering mechanics, Vol.221, pp.771-777, 1996. 36 [30] Xi, Z. and Cheng, D., Passivity-based stabilization and H1 control of the Hamiltonian control systems with dissipation and its application to power systems, International Journal of Control, Vol.73, No.18, pp.1686-1691, 2000. [31] Yang, J. N., Lin, S., Kim, J-H. and Agrawal, A. K., Optimal design of passive energy dissipation systems based on H1 and H2 performances, Earthquake Engineering and Structural Dynamics, Vol.31, No.4, pp.921-936, 2002. [32] Zhang, L., Yang, C. Y., Chajes, M. J. and Cheng, A. H-D., Stability of active-tendon structural control with time delay, Journal of Engineering mechanics, ASCE, Vol.119, No.5, pp.1017- 1024, 1993. [33]洪宏基, 結構動力辛計算及控制方法, 行政院國家科學委員會補助專題研究計畫成果報告,計畫編號: NSC 89-2211-E-002-033, 執行期間: 88年08月01日至89年07月31日, 國立台灣大學土木工程學研究所. [34]洪宏基, 結構動力辛計算及控制方法, 行政院國家科學委員會補助專題研究計畫成果報告,計畫編號: NSC 89-2211-E-002-123, 執行期間: 89年08月01日至90年07月31日, 國立台灣大學土木工程學研究所. [35]鍾萬勰, 辛彈性力學, 高等教育出版社, 北京, 2002. [36]鍾萬勰, 應用力學對偶體系, 科學出版社, 北京, 2002. [37]鍾萬勰, 互等定理與共軛辛正交關係, 力學學報, Vol.24, No.4, pp.432-437, 1992. [38]鍾立來, 結構主動控制之簡介, 結構工程, 第七卷, 第四期, pp.65-70, 1992. [39]鍾立來, 結構主動控制之狀態空間系統, 結構工程, 第八卷,第二期, pp.89-98, 1993. [40]鍾立來, 結構主動控制之最佳控制律, 土木工程技術, 第二期, pp.27-42, 1996. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33312 | - |
| dc.description.abstract | 本研究運用振態解耦化的觀念,將H∞ 控制理論引入振態上,完成
振態最佳控制,可以視工程需要考慮重要的振態來施加控制力,控制 器與振態之間的關係達到多控制器多振態的多種變化選擇方式,靈活 度高;而目標函數作適當的修正,以正確的變分法則將結構控制問題 成功轉為工程師所熟悉的初始值問題以利求解;並考慮振態系統陣的 漸進穩定,解決控制參數inf γ 需要利用計算器反覆搜尋的缺點。 另外,本研究亦針對H∞ 控制理論誘導範數的選取以推導證明給 予合理性,解決文獻中對誘導範數如何選取的隱誨不明。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:34:06Z (GMT). No. of bitstreams: 1 ntu-95-R93521223-1.pdf: 12774505 bytes, checksum: 5576889f5e47569282cb86dc0b2b74d0 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 誌謝………………………………………………………………………… 一
摘要………………………………………………………………………… 二 目錄………………………………………………………………………… 三 表目錄……………………………………………………………………… 五 圖目錄……………………………………………………………………… 七 第一章 導論 1.1 研究動機與目的………………………………………………… 1 1.2 文獻回顧………………………………………………………… 2 1.3 研究方法與內容………………………………………………… 3 第二章 辛空間之最佳H∞ 振態控制 2.1 多自由度結構系統…………………………………………… 4 2.2 相空間之H∞ 控制……………………………………………… 4 2.3 位形空間之振態解耦與辛空間之辛振態解耦……………… 6 2.4 辛空間之最佳H∞ 振態控制…………………………………… 10 2.5 inf ( )i γ 之求解………………………………………………… 19 2.5.1 對振態位移加權………………………………………… 20 2.5.2 對振態速度加權………………………………………… 22 第三章 數值實例……………………………………………………… 25 四 第四章 結論與建議…………………………………………………… 32 參考文獻…………………………………………………………………… 34 附表………………………………………………………………………… 39 附圖………………………………………………………………………… 48 符號對照表………………………………………………………………… 105 附錄A H∞ 控制理論誘導範數之推導證明………………………… 107 附錄B 辛空間V−1 關係討論…………………………………………… 115 | |
| dc.language.iso | zh-TW | |
| dc.subject | 主動控制 | zh_TW |
| dc.subject | 辛空間 | zh_TW |
| dc.subject | H∞控制 | zh_TW |
| dc.subject | symplectic space | en |
| dc.subject | active control | en |
| dc.subject | H∞ control | en |
| dc.title | 以辛振態疊加法探討多自由度結構受震之H∞控制問題 | zh_TW |
| dc.title | Symplectic modal superposition method for H∞ control of earthquake-excited structures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳明新,鍾立來,吳重成 | |
| dc.subject.keyword | 辛空間,H∞控制,主動控制, | zh_TW |
| dc.subject.keyword | symplectic space,H∞ control,active control, | en |
| dc.relation.page | 115 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 12.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
