Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33244
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅?升
dc.contributor.authorCheng-Han Yuen
dc.contributor.author余承翰zh_TW
dc.date.accessioned2021-06-13T04:30:54Z-
dc.date.available2006-08-04
dc.date.copyright2006-08-04
dc.date.issued2006
dc.date.submitted2006-07-20
dc.identifier.citationArad, M., Benson, D. W., Perez-Atayde, A. R., McKenna, W. J., Sparks, E. A., Kanter, R. J., McGarry, K., Seidman, J. G., and Seidman, C. E. (2002). Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J Clin Invest 109, 357-362.
Ashrafi, K., Lin, S. S., Manchester, J. K., and Gordon, J. I. (2000). Sip2p and its partner snf1p kinase affect aging in S. cerevisiae. Genes Dev 14, 1872-1885.
Celenza, J. L., and Carlson, M. (1986). A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233, 1175-1180.
Celenza, J. L., and Carlson, M. (1989). Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with the SNF4 protein. Mol Cell Biol 9, 5034-5044.
Cullen, P. J., and Sprague, G. F., Jr. (2000). Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci U S A 97, 13619-13624.
Dyck, J. R., Gao, G., Widmer, J., Stapleton, D., Fernandez, C. S., Kemp, B. E., and Witters, L. A. (1996). Regulation of 5'-AMP-activated protein kinase activity by the noncatalytic beta and gamma subunits. J Biol Chem 271, 17798-17803.
Estruch, F., Treitel, M. A., Yang, X., and Carlson, M. (1992). N-terminal mutations modulate yeast SNF1 protein kinase function. Genetics 132, 639-650.
Goffrini, P., Ficarelli, A., Donnini, C., Lodi, T., Puglisi, P. P., and Ferrero, I. (1996). FOG1 and FOG2 genes, required for the transcriptional activation of glucose-repressible genes of Kluyveromyces lactis, are homologous to GAL83 and SNF1 of saccharomyces cerevisiae. Curr Genet 29, 316-326.
Hardie, D. G., Carling, D., and Carlson, M. (1998). The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67, 821-855.
Hawley, S. A., Davison, M., Woods, A., Davies, S. P., Beri, R. K., Carling, D., and Hardie, D. G. (1996). Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271, 27879-27887.
Hedbacker, K., Hong, S. P., and Carlson, M. (2004). Pak1 protein kinase regulates activation and nuclear localization of Snf1-Gal83 protein kinase. Mol Cell Biol 24, 8255-8263.
Hedbacker, K., Townley, R., and Carlson, M. (2004). Cyclic AMP-dependent protein kinase regulates the subcellular localization of Snf1-Sip1 protein kinase. Mol Cell Biol 24, 1836-1843.
Hong, S. P., Leiper, F. C., Woods, A., Carling, D., and Carlson, M. (2003). Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci U S A 100, 8839-8843.
Kemp, B. E., Stapleton, D., Campbell, D. J., Chen, Z. P., Murthy, S., Walter, M., Gupta, A., Adams, J. J., Katsis, F., van Denderen, B., et al. (2003). AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans 31, 162-168.
Kim, M. D., Hong, S. P., and Carlson, M. (2005). Role of Tos3, a Snf1 protein kinase kinase, during growth of Saccharomyces cerevisiae on nonfermentable carbon sources. Eukaryot Cell 4, 861-866.
Kron, S. J. (1997). Filamentous growth in budding yeast. Trends Microbiol 5, 450-454.
Kron, S. J., and Gow, N. A. (1995). Budding yeast morphogenesis: signalling, cytoskeleton and cell cycle. Curr Opin Cell Biol 7, 845-855.
Kron, S. J., Styles, C. A., and Fink, G. R. (1994). Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae. Mol Biol Cell 5, 1003-1022.
Kuchin, S., Treich, I., and Carlson, M. (2000). A regulatory shortcut between the Snf1 protein kinase and RNA polymerase II holoenzyme. Proc Natl Acad Sci U S A 97, 7916-7920.
Kuchin, S., Vyas, V. K., and Carlson, M. (2002). Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol 22, 3994-4000.
Kuchin, S., Vyas, V. K., and Carlson, M. (2003). Role of the yeast Snf1 protein kinase in invasive growth. Biochem Soc Trans 31, 175-177.
Lakatos, L., Klein, M., Hofgen, R., and Banfalvi, Z. (1999). Potato StubSNF1 interacts with StubGAL83: a plant protein kinase complex with yeast and mammalian counterparts. Plant J 17, 569-574.
Lin, S. S., Manchester, J. K., and Gordon, J. I. (2003). Sip2, an N-myristoylated beta subunit of Snf1 kinase, regulates aging in Saccharomyces cerevisiae by affecting cellular histone kinase activity, recombination at rDNA loci, and silencing. J Biol Chem 278, 13390-13397.
Lo, W. S., and Dranginis, A. M. (1996). FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J Bacteriol 178, 7144-7151.
Lo, W. S., and Dranginis, A. M. (1998). The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9, 161-171.
Lo, W. S., Duggan, L., Emre, N. C., Belotserkovskya, R., Lane, W. S., Shiekhattar, R., and Berger, S. L. (2001). Snf1--a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 293, 1142-1146.
Lo, W. S., Gamache, E. R., Henry, K. W., Yang, D., Pillus, L., and Berger, S. L. (2005). Histone H3 phosphorylation can promote TBP recruitment through distinct promoter-specific mechanisms. Embo J 24, 997-1008.
Lodi, T., Fontanesi, F., Ferrero, I., and Donnini, C. (2004). Carboxylic acids permeases in yeast: two genes in Kluyveromyces lactis. Gene 339, 111-119.
Lodi, T., Saliola, M., Donnini, C., and Goffrini, P. (2001). Three target genes for the transcriptional activator Cat8p of Kluyveromyces lactis: acetyl coenzyme A synthetase genes KlACS1 and KlACS2 and lactate permease gene KlJEN1. J Bacteriol 183, 5257-5261.
Lovas, A., Sos-Hegedus, A., Bimbo, A., and Banfalvi, Z. (2003). Functional diversity of potato SNF1-related kinases tested in Saccharomyces cerevisiae. Gene 321, 123-129.
Ludin, K., Jiang, R., and Carlson, M. (1998). Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 95, 6245-6250.
McCartney, R. R., Rubenstein, E. M., and Schmidt, M. C. (2005). Snf1 kinase complexes with different beta subunits display stress-dependent preferences for the three Snf1-activating kinases. Curr Genet 47, 335-344.
McCartney, R. R., and Schmidt, M. C. (2001). Regulation of Snf1 kinase. Activation requires phosphorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J Biol Chem 276, 36460-36466.
Minokoshi, Y., Kim, Y. B., Peroni, O. D., Fryer, L. G., Muller, C., Carling, D., and Kahn, B. B. (2002). Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415, 339-343.
Nath, N., McCartney, R. R., and Schmidt, M. C. (2003). Yeast Pak1 kinase associates with and activates Snf1. Mol Cell Biol 23, 3909-3917.
Nayak, V., Zhao, K., Wyce, A., Schwartz, M. F., Lo, W. S., Berger, S. L., and Marmorstein, R. (2006). Structure and dimerization of the kinase domain from yeast Snf1, a member of the Snf1/AMPK protein family. Structure 14, 477-485.
Palecek, S. P., Parikh, A. S., Huh, J. H., and Kron, S. J. (2002). Depression of Saccharomyces cerevisiae invasive growth on non-glucose carbon sources requires the Snf1 kinase. Mol Microbiol 45, 453-469.
Portillo, F., Mulet, J. M., and Serrano, R. (2005). A role for the non-phosphorylated form of yeast Snf1: tolerance to toxic cations and activation of potassium transport. FEBS Lett 579, 512-516.
Rubenstein, E. M., McCartney, R. R., and Schmidt, M. C. (2006). Regulatory domains of Snf1-activating kinases determine pathway specificity. Eukaryot Cell 5, 620-627.
Sanz, P., Alms, G. R., Haystead, T. A., and Carlson, M. (2000). Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase. Mol Cell Biol 20, 1321-1328.
Schmidt, M. C., and McCartney, R. R. (2000). beta-subunits of Snf1 kinase are required for kinase function and substrate definition. Embo J 19, 4936-4943.
Smeal, T., Claus, J., Kennedy, B., Cole, F., and Guarente, L. (1996). Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell 84, 633-642.
Sutherland, C. M., Hawley, S. A., McCartney, R. R., Leech, A., Stark, M. J., Schmidt, M. C., and Hardie, D. G. (2003). Elm1p is one of three upstream kinases for the Saccharomyces cerevisiae SNF1 complex. Curr Biol 13, 1299-1305.
Tonukari, N. J., Scott-Craig, J. S., and Walton, J. D. (2000). The Cochliobolus carbonum SNF1 gene is required for cell wall-degrading enzyme expression and virulence on maize. Plant Cell 12, 237-248.
Treitel, M. A., Kuchin, S., and Carlson, M. (1998). Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol Cell Biol 18, 6273-6280.
Vincent, O., and Carlson, M. (1998). Sip4, a Snf1 kinase-dependent transcriptional activator, binds to the carbon source-responsive element of gluconeogenic genes. Embo J 17, 7002-7008.
Vincent, O., and Carlson, M. (1999). Gal83 mediates the interaction of the Snf1 kinase complex with the transcription activator Sip4. Embo J 18, 6672-6681.
Vincent, O., Kuchin, S., Hong, S. P., Townley, R., Vyas, V. K., and Carlson, M. (2001). Interaction of the Srb10 kinase with Sip4, a transcriptional activator of gluconeogenic genes in Saccharomyces cerevisiae. Mol Cell Biol 21, 5790-5796.
Vincent, O., Townley, R., Kuchin, S., and Carlson, M. (2001). Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. Genes Dev 15, 1104-1114.
Vyas, V. K., Kuchin, S., Berkey, C. D., and Carlson, M. (2003). Snf1 kinases with different beta-subunit isoforms play distinct roles in regulating haploid invasive growth. Mol Cell Biol 23, 1341-1348.
Vyas, V. K., Kuchin, S., and Carlson, M. (2001). Interaction of the repressors Nrg1 and Nrg2 with the Snf1 protein kinase in Saccharomyces cerevisiae. Genetics 158, 563-572.
Wiatrowski, H. A., Van Denderen, B. J., Berkey, C. D., Kemp, B. E., Stapleton, D., and Carlson, M. (2004). Mutations in the gal83 glycogen-binding domain activate the snf1/gal83 kinase pathway by a glycogen-independent mechanism. Mol Cell Biol 24, 352-361.
Wilson, W. A., Hawley, S. A., and Hardie, D. G. (1996). Glucose repression/derepression in budding yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr Biol 6, 1426-1434.
Woods, A., Munday, M. R., Scott, J., Yang, X., Carlson, M., and Carling, D. (1994). Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J Biol Chem 269, 19509-19515.
Yang, X., Jiang, R., and Carlson, M. (1994). A family of proteins containing a conserved domain that mediates interaction with the yeast SNF1 protein kinase complex. Embo J 13, 5878-5886.
Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., Doebber, T., Fujii, N., et al. (2001). Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108, 1167-1174.
Zhou, H., and Winston, F. (2001). NRG1 is required for glucose repression of the SUC2 and GAL genes of Saccharomyces cerevisiae. BMC Genet 2, 5.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33244-
dc.description.abstractSnf1激酶是一個絲胺酸/酥胺酸蛋白質激酶家族的一員。在許多高等真核生物中, Snf1 是高度被保留的。AMP-activated protein kinase (AMPK)AMPK 是酵母菌 Snf1在哺乳動物細胞中的同源蛋白。在酵母菌中,當環境中葡萄糖含量很低或是只存在其它醣類的碳來源時,Snf1 的激酶活性會被活化。當環境中有葡萄糖存在時,Snf1 的激酶活性是被抑制的。在一些寄生性的真菌中,假菌絲生成是一種很重要的致病行為,並且當整個 Snf1 基因被刪除時,假菌絲生成會出現嚴重的缺陷。為了要研究 Snf1 激酶活性和酵母菌假菌絲生成上的關係,我利用了三種已知的激酶突變種 (G53R、K84R 和 T210A) 來觀察激酶活性在假菌絲生成上有何影響,同時也觀察 V222I 和 P251L 這兩個突變種的影響。結果顯示,Snf1激酶活性是被假菌絲生成所需要的。具有功能的 Snf1 激酶必須是一個完整的蛋白複合體,由三個不相同的蛋白所組成,其中包含了 Snf1 激酶本身、活化蛋白 Snf4 和其中一種調節蛋白 Sip1、Sip2 和 Gal83。Gal83 是其中唯一一種被認為可以進入細胞核的調節蛋白。Gal83 基因的刪除會造成細胞生長缺陷。為了解 Snf1 複合體在反應環境改變時,在調控基因方面是否和 Gal83 進入細胞核的現象有關係,我利用間接免疫螢光染色的方法,藉由將 Gal83 的基因刪除掉後和 Gal83 野生型比較,來分析 Snf1 在酵母菌細胞中的分布,之後並放入帶有標定的 Gal83 來做共同螢光染色。結果顯示,Gal83 可能扮演一個束縛蛋白,在葡萄糖存在時,Gal83 將 Snf1 束縛在細胞質中,當葡萄糖不存在或是只存在其它醣類的碳來源時,Gal83 進入細胞核的同時,也將和其結合並具有完整功能的 Snf1 一同帶入。並且結果也暗示著 Snf1 在細胞質和細胞核中扮演著不同的功能。zh_TW
dc.description.abstractSnf1 kinase is a member of serine/threonine protein kinase family. In many advanced eukaryotic organisms, Snf1 is highly conserved. AMP-activated protein kinase (AMPK) is the homolog of yeast Snf1 in mammalian cells. In yeast, Snf1 is a glucose-repressible kinase, and it is activated by the glucose starvation or the alternative carbon sources. In some parasitic fungi, the pseudohyphal formation plays an important role in pathogenetic behavior for their host. To investigate the relationship between the Snf1 kinase activity and pseudohyphal formation, I used three well-known kinase activity mutants (G53R, K84R, and T210A)) to study their effects on pseudohyphal formation. V222I and P251L were also studied. These results said that the Snf1 kinase activity was required for the pseudohyphal formation. The functional Snf1 kinase is also known as a protein complex made up by three different subunits, the Snf1 itself (catalytic alpha subunit), the Snf4 (regulatory gamma subunit), and one of the Sip1, Sip2, or Gal83 (targeting beta subunit). The Gal83 is the only one subunit that can target to nucleus, and the Gal83 deletion causes the growth defects in low glucose condition. To understand the regulatory mechanism of the Snf1 protein complex in responsive of the environmental stresses, I use the indirect immunofluorescence to identify whether the function of the Snf1 kinase is associated with the Gal83 nuclear localization. However, I found that Gal83 may be an anchoring protein catching Snf1 in the cytosol in glucose-repressible condition, and the Gal83 localized to nucleus with the functional Gal83-bound Snf1 in response to the glucose starvation or the alternative carbon sources. Moreover, these results also suggest that Snf1 may play different roles in the cytosol and in the nucleus.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:30:54Z (GMT). No. of bitstreams: 1
ntu-95-R93442013-1.pdf: 4186768 bytes, checksum: 31f1ecc3041e2bafd768b139e32890b7 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目錄 iv
Ⅰ. 背景 (Introduction) 1
Ⅱ. 實驗目的 (Specific Aim) 6
Ⅲ. 材料和方法 (Materials and Methods) 7
Ⅳ. 結果 (Results) 15
Ⅴ. 討論 (Discussion) 23
Ⅵ. 圖片 (Figures) 27
Ⅶ. 附件 (Appendix) 47
Ⅷ. 參考文獻 (Reference) 58
dc.language.isozh-TW
dc.subject假菌絲生成zh_TW
dc.subjectPseudohypheen
dc.subjectSnf1en
dc.subjectGal83en
dc.titleSnf1 複合體在酵母菌生長表現型及假菌絲生成上之功能性鑑定zh_TW
dc.titleFunctional Characterization of the Snf1 Complex in Yeast Growth Phenotype and Pseudohyphal Formationen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王隆祺,許金玉,鄧述諄
dc.subject.keyword假菌絲生成,zh_TW
dc.subject.keywordSnf1,Gal83,Pseudohyphe,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2006-07-21
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
4.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved