請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33234完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉開溫 | |
| dc.contributor.author | Li-Ru Huang | en |
| dc.contributor.author | 黃麗如 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:30:28Z | - |
| dc.date.available | 2007-07-16 | |
| dc.date.copyright | 2007-07-16 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-20 | |
| dc.identifier.citation | Agrawal, G. K, Rakwal, R., Jwa, N.-S., and Agrawal, V. P. (2001) Signalling molecules and
blast pathogen attack activates rice OsPR1a and OsPR1b genes : a model illustrating components participating during defence/stress response. Plant Physiol. Biochem. 39: 1095-1103. Alborn, H. T. (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276: 945-949. An, G. (1987) Binary Ti vectors for plant transformation and promoter analysis. Method in Enzymol. 153: 292-305. Andresen, I., Becker, W., Schluter, K., Burges, J., Parthier, B., and Apel, K. (1992) The identification of leaf thionin as one of the main jasmonate induced proteins of barley (Hordeum vulgare). Plant Mol. Biol. 19: 193-204. Baba, K., Ogawa, M., Nagano, A., Kuroda, H., and Sumiya, K. (1991) Developmental changes in the bark lectin of Sophora japonica L. Planta 183: 462–470. Barbieri, L., Batelli, G.. B., and Stirpe, F. (1993) Ribosome-inactivating proteins from plants. Biochim. Biophys. Acta 1154: 237–282. Balzarini, J., Schols, D., Neyts, J., Van Damme, E., Peumans, W., and De Clercq, E. (1991) α-(1–3)- and α-(1–6)- D-mannose-specific plant lectins are markedly inhibitory to human im- munodeficiency virus and cytomegalovirus infections in vitro. Antimicrob. Agents Chemother. 35: 410–416. Balzarini, J., Neyts, J., Schols, D., Hosoya, M., Van Damme, E., Peumans, W., and De Clercq, E. (1992) The mannose-specific plant lectins from Cymbidium hybrid and Epipactis helleborine and the (N-Acetylglucosamine)n-specific plant lectin from Urtica 73 dioica are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication in vitro. Antiviral Res. 18: 191–207. Bausch, J. N. and Poretz, R. D. (1977) Purification and properties of the hemagglutinin from Maclura pomifera seeds. Biochem. 16: 5790–5794. Bergey, D. R., How, G. A., and Ryan, C. A. (1996) Polypeptide signaling for plant defensive genes exhibits analogies to defense signaling in animals. Proc. Natl. Acad. Sci. USA 93: 12053-12058. Benhamou, N., Chamberland, H., and Pauz’e, F. J. (1990) Implication of pectic components on cell surface interactions between tomato root cells and Fusarium oxysporum f. sp. Radicis-lycopersici. Plant Physiology 92: 995-1003. Bergey, D. R., Orozco-Cardenas, M., De Moura, D. S., and Ryan, C. A. (1999) A wound- and systemin-inducible polygalacturonase in tomato leaves. Proc. Natl. Acad. Sci. USA 96: 1756-1760. Birkenmeier, G. F. and Ryan, C. A. (1998) Wounding signaling in tomato plants-evidence that ABA is not a primary signal for defense gene activation. Plant physiol. 117: 687-693. Bishop, P. D., Pearce, G., Bryant, J. E., and Ryan, C. A. (1984) Isolation and characterization of the proteinase inhibitor-inducing factor from tomato leaves. J. Biol. Chem. 259: 13172-13177. Bishop, P. D., Makus, D. J., Pearce, G., and Ryan, C. A. (1981) Proteinase inhibitor-inducing factor activity in tomato leaves resides in oligosaccharides enzymically released from cell walls. Proc. Natl. Acad. Sci. USA 78: 3536-3540. Bird, G. W. G. (1954) Observations on the interactions of the erythrocytes of various species with certain seed agglutinins. Br. J. Exp. Pathol. 35: 252. Blechert, S., Brodschelm, W., Holder, S., Kammerer, L., Kutchan, T. M., Mueller, M. J., Xia, Z. Q., and Zenk, M. H. (1995) The octadecanoic pathway : signal molecules for the 74 regulation of secondary pathways. Proc. Natl. Acad. Sci. USA 92: 4099-4105. Bol, J. F., Linthorst, H. J. M., and Cornelissen, B. J. C. (1990) Plant pathogenesis-related proteins induced by virus infection. Annu. Rev.Phytopathol. 28: 113-138. Bouquin, T., Lasserre, E., Pradier, J., Pech, J. C., and Balagu’e C. (1997) Wound and ethylene induction of the ACC oxidase melon gene CM-ACO1 occurs via two direct and independent transduction pathways. Plant Mol. Biol. 35: 1029-1035. Boulter, D., Edwards, G. A., Gatehouse, A. M. R., Gatehouse, J. A., and Hilder, V. A. (1990) Additive protective effects of different plant-derived insect resistance genes in transgenic tobacco plants. Crop Protect. 9: 351–354. Bostwick, D. E., Dannehofer, J. M., Skaggs, M. I., Lister, R. M., Larkins, B. A., and Thompson, G. A. (1992) Pumpkin phloem lectin genes are specifically expressed in companion cells. Plant Cell 4: 1539–1548. Bray, E. A. (1997). Plant response to water deficient. Trends in Plant Science 2: 48-54. Brewin, N. J. and Kardailsky, I. V. (1997) Legume lectins and nodulation by Rhizobium. Trends Plant. Sci. 2: 92-98. Butler, L. G. (1989) Sorghum polyphenols. In : Toxicant of plant orgin, vol. IV, phenolics, pp 95-122. Cheeke, P.R. ed., Boca Roton : CRC Press. Cameron, R. K., Dixon, R., and Lamb, C. (1994) Biological induced systemic acquired resistance in Arabidopsis thaliana. Plant J. 5, 715-725. Chen, H. C., Klein, A., Xiang, M., Backaus, R. A., and Kuntz, M. (1998) Drought- and wound-induced expression in leaves of a gene encoding a chromoplast carotenoid-associated protein. Plant J. 14: 317-326. Chrispeels, M. J. and Raikhel, N. V. (1991) Lectins, lectin genes, and their role in plant defense. Plant Cell 3: 1-9. Clendennen, S. K. and May, G. D. (1997) Differential gene expression in ripening banana fruit. 75 Plant Physiol. 115: 463–469. Cot’e, F. and Hahn, M. G. (1994) Oligosaccharrins: structures and signal transduction. Plant Mol. Biol. 48: 355-381. Constabel, C. P., Bergey, D. R., and Ryan, C. A. (1995) Systemin activates synthesis of wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling pathway. Proc. Natl. Acad. Sci. USA 92: 407-411. Creelman, R.A. and Mullet, J.E. (1997) Biosynthesis and action of jasmonates in plants. Plant Mol. Biol. 48: 355-381. Creelman, R.A., Tierney, M. L., and Mullet, J.E. (1992) Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc. Natl. Acad. Sci. USA 89: 4938-4941. Czapla, T. H. and Lang, B. A. (1990) Effect of plant lectins on the larval development of European corn borer (Lepidoptera: Pyralidae) and southern corn rootworm (Coleoptera:Chrysomelidae). J. Econ. Entomol. 83: 2480–2485. Darvill, A. G. and Albersheim, P. (1984) Phytoalexins and their elicitors:a defence against microbial infection in plants. Annu. Rev. Plant Physiol. 35: 243-276. Dempsey, D. M., Wobbe, K., and Klessig, D. F. (1993) Resistance and susceptible responses of Arabidopsis thaliana to turnip crinkle virus. Phytopathology 83: 1021-1029. de Pater, S., Greco, V., Pham, K., Memlink, J., and Kijne, J. (1996) Characterization of a zinc-dependent transcriptional activator from Arabidopsis. Nucleic Acids Res. 24: 4624-4631. Diaz, C., Melchers, L. S., Hooykaas, P. J. J., Lugtenberg, B. J. J., and Kijne, J. W. (1989) Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338: 579–581. Doares, S.H., Syrovets, T., Weiler, E.W., and Ryan, C.A. (1995) Oligogalacturonides and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad. 76 Sci. USA 92: 4095-4098. Endo, Y., Mitsui, K., Motizuki, M., and Tsurugi, K. (1987) The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. J. Biol. Chem. 262: 5908-5912. Eulgem, T., Rushton, P. J., Schmelzer, E., Hahlbrock, K., and Somssich, I. E. (1999) Early nuclear events in plant defence signaling : rapid gene activation by WRKY transcription factors. The EMBO Journal 18: 4689-4699. Farmer, E.E., and Ryan, C.A. (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 87: 7713-7716. Falkenstein, F., Groth, B., Mithofer, A., and Weiler, E. W. (1991) Methyl jasmonate and linolenic acid are potent inducers oftendril coiling. Planta 185: 316-322. Farmer, E. E., Johnsor, R. R., and Ryan, C. A. (1992) Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol. 98: 995-1002. Feussner, I. (1995) Jasmonate-induced lipoxygenase froms are localized in chloroplasts of barley leaves (Hordeum vulgare cv. Salome). Plant J. 7: 949-957. Friedrich, L., Vernooij, B., Gaffney, T., Morse, A., and Ryals, J. (1995) Characterization of tobacco plants expressing bacterial salicylate hydroxylase gene. Plant Mol. Biol. 29: 959-968. Gatehouse, A. M. R., Powell, K. S., Peumans, W. J., Van Damme, E. J. M., and Gatehouse, J. A. (1995) Insecticidal properties of plant lectins: their potential in plant protection. In: Lectins: Biomedical Perspectives. pp. 35–57. Pusztai, A. and Bardocz, S., Eds., Taylor and Francis, London, UK. Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., and Ryals, J. (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754-756. Gundlach, H., Muller, M. J., Kutchan, T. M., and Zenk, M. H. (1992) Jasmonic acid is a 77 signal transducer in elicitor-induced plant cell cultures. Proc. Natl. Acad. Sci. USA 89: 2389-2393. Habibi, J., Backus, E. A., and Czapla, T. H. (1993) Plant lectins affect survival of the potato leaf- hopper (Homoptera: Cicadellidae). J. Econ. Entomol. 86: 945–951. Herde, O., Atzorn, R., Fisahn, J., Wasternack, C., Willmitzer, L., and Pena-Cortes, H. (1996) Localized wounding by heat initiates the accumulation of proteinase inhibitor II in abscisic acid-deficient plants by triggering jasmonic acid biosynthesis. Plant Physiol. 112: 853-860. Hilder, V. A., Powell, K. S., Gatehouse, A. M. R., Gatehouse, J. A., Gatehouse, L. N., Shi, Y., Hamilton, W. D. O., Merryweather, A., Newell, C., Timans, J. C., Peumans, W. J., Van Damme, E. J. M., and Boulter, D. (1995) Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Res. 4: 18–25. Hildmann, T., Ebneth, M., Pena-Cortes, H., Sanchez-Serrano, J. J., Willmitzer, L., and Part, S. (1992) General roles of abscisic acid and jasmonic acid in gene activation as a result of mechanical wounding. Plant Cell 4: 1157-1170. Hossaini, A. (1968) Hemolytic and hemagglutinating activities of 222 plants. Vox Sang. 15: 410– 417. Howe, G. A. (1996) An octadecanoid pathway mutant (JL5) of tomato is compromised in signaling for defense against insect attack. Plant Cell 8: 2067-2077. Ingram, J. and Bartel, D. (1996) The molecular basis of dehydration tolerance in plant. Annu. Rev. Plant Physiol. 47: 377-403. Ishiguro, S. and Nakamura, K. (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequence in the 5’ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Mol. Gen. Genet. 244: 78 563-571. Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. (1987) GUS fusions: β-Glucuronidase as a sensitive and versatile gene fusion marker. EMBO J. 6: 3901-3908. Jones, J. M., Cawley, L. P., and Teresa, G. W. (1967) Hemagglutinins (lectins) extracted from Maclura pomifera. Vox Sang. 12: 211–214. Kabir, S., Aebersold, R., and Daar, A. S. (1993) Identification of a novel 4 kDa immunoglobulin -A-binding peptide obtained by the limited proteolysis of jacalin. Biochim. Biophys. Acta 1161: 194–200. Kabir, S. and Daar, A. S. (1994) The composition and properties of jacalin, a lectin of diverse applications obtained from the jackfruit (Artocarpus heterophyllus) seeds. Immunol. Invest. 23: 167–188. Klimyuk, V. L., Carroll, B. J., Thomas, C. M., and Jones, J. D. G..(1993) Alkali treatment for rapid preparation of plant material for teliable PCR analysis. Plant J. 3(3): 493-494. Koiwa, H., Bressan, R. A., and Hasegawa, P. M. (1997) Regulation of proteinase ihhibitors and plant defense. Trends in Plant Science 2: 379-384. Koeppe S. J. and Rupnov, J. H. (1988) Purification and characterization of a lectin from the seeds of amaranth (Amaranthus cruentus). J. Food Sci. 53: 1412–1417. Lawton, M. A. and Lamb, C. J. (1987) Transcriptional activation of plant defense gene by fungal elicitor, wounding, and infection. Mol. Cel. Biol. 7: 335-341. Lawton, K., Weymann, K., Friedrich, L., Vernooij, B., Uknes, S., and Ryals, J. (1995) Systemin acquired resistance in Arabidopsis erquires salicylic acid but not ethylene. Mol. Plant-microbe. Interact. 8: 863-870. Leszcynsk, B., Warchol, J., and Niraz, S. (1985) The influence of phenolic compounds on the preference of winter wheat cultivars by central aphaids. Insect Science Applications 6: 157-158. 79 Lin, T. T. -S. and Li, S. S. -L. (1980) Purification and physicochemical properties of ricins and ag- glutinins from Ricinus communis. Eur. J. Biochem. 105: 453–459. Liu, D., Li, N., Dube, S., Kalinski, A., Herman, E., and Matoo, A. K. (1993) Molecular characterization of a rapidly and transiently wound-induced soybean (Glycine max L.) gene encoding 1-aminocyclopropane-1-carboxylate synthase. Plant Cell Physiology 34: 1151-1157. Malone, M. and Alarcon, J. J. (1995) Only xylem-borne factors can account for systemin wound signaling in the tomato plant. Planta 196: 740-746. Malamy, J., Carr, J. P., Klessing, D. F., and Raskin, I. (1990) Salicylic acid : A likely endogenous signal in the resistance response of tobacco to viral infection. Science 250: 1002-1004. Malamy, J., Klessing, D. F., and Raskin, I. (1990) Salicylic acid and plant disease resistance. Plant J. 2: 643-654. Mauch-Main, B. and Slusarenko, A. J. (1996) Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8: 203-212. McConn, M., Creelman, R.A., Bell, E., Mullet, J. E., and Browse, J. (1997) Jasmonate is essential for insect defense in Arabidopsis. Proc. Natl. Acad. Sci. USA 94: 5473-5477. McGurl, B., Pearce, G., and Ryan, C.A. (1994) Polypeptide signalling for plant defence genes. Biochem. Soc. Symp. 60: 149-154. Metraux, J. P., Ahi-Goy, P., Staub, T., Speich, J., Steinemann, A., Ryals, J., McKendree, Jr. W. L., and Ferl, R. J. (1990) Functional elements of the Arabidopsis Adh promoter include the G-box. Plant Mol. Biol. 19: 859-862. Murdock, L. L., Huesing, J. E., Nielsen, S. S., Pratt, R. C., and Shade, R. E. (1990) Biological effects of plant lectins on the cowpea weevil. Phy- tochemistry 29: 85–89. Nachbar, M. S. and Oppenheim, J. D. (1980) Lectins in the United States diet: a survey of 80 lectins in commonly consumed foods and a review of the literature. Am. J. Clin. Nutr. 33: 2338–2345. Ng, C. K. Y. and Hew, C. S. (2000) Orchid pseudobulbs- “false” bulbs with a genuine importance in orchid growth and survival. Scientia Horticulture 83: 165-172. Nsimba-Lubaki, M. and Peumans, W. J. (1986) Seasonal fluctuations of lectins in the barks of elderberry (Sambucus nigra) and black locust (Robinia pseudoacacia). Plant Physiol. 80: 747–751. Nurnberger, T., Nennstiel, D., Jabs, T., Sacks, W., Hahlbrock, K., and Scheel, D. (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78: 449-460. O'Donnell, P.J., Calvert, C., Atzorn, R., Wasternack, C., Leyser, H.M.O., and Bowles, D.J. (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274: 1914-1917. Olsnes, S. (1978) Toxic and nontoxic lectins from Abrus precatorius. Meth. Enzymol. 50: 323– 330. Pearce, G., Johnson, S., and Ryan, C.A. (1993) Purification and characterization from tobacco (Nicotiana tabacum) leaves of six small, wound-inducible, proteinase isoinhibitors of the potato inhibitor II family. Plant Physiol. 102: 639-644. Pearce, G., Johnson, S., and Ryan, C.A. (1992) J. Biol. Chem. 268: 212-216. Pearce, G., Strydom, D., Johnson, S., and Ryan, C.A. (1991) A polypeptide from tomato leaves induceds wound-inducible proyeinase inhibitor proteins. Science 253: 895-898. Pena-Cortes, H., Sanchez-Serrano, J. J., Mertens, R., Prat, S., and Willmitzer, L. (1989) Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene in potato and tomato. Proc. Natl. Acad. Sci. USA 86: 9851-9855. Pena-Cortes, H., Prat, S., Atzorn, R., and Willmitzer, L. (1996) Abscisic acid-deficient plants 81 do not accumulate proteinase inhibitor II gene in potato and tomato. Planta 198: 447-451. Pena-Cortes, H., Albrecht, T., Prat, S., Weiler, E. W., and Willmitzer, L. (1993) Asprin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191: 123-128. Peumans, W. J. and Van Damme, E. J. M. (1995a) The role of lectins in plant defense. Histochem. J. 27: 253–271. Peumans, W. J. and Van Damme, E. J. M. (1995b) Lectins as plant defense proteins. Plant Physiol. 109: 347–352. Peumans, W. J. and Stinissen, H. M. (1983) Gramineae lectins: occurrence, molecular biology, and physiological function. In: Chemical Taxonomy, Molecular Biology and Function of Plant Lectins. pp. 99–116. Goldstein, I. J. and Etzler, M. E., Eds., Alan R. Liss Inc., New York. Peumans, W. J., Smeets, K., Van Nerum, K., Van Leuven, F., and Van Damme, E. J. M. (1997a) Lectin and alliinase are the predominant proteins in the nectar from leek (Allium porrum) flowers. Planta 201: 298–302. Peumans, W. J., Barre, A., Bras, J., Rouge, P., Proost, P., Van Damme, E. J. M. (2002) The liverwort Marchantia polymorpha contains a lectin that is structurally and evolutionary related to the monocot mannose-binding lectins. Plant Physiol. 129: 1054-1065. Pusztai, A. and Bardocz, S. (1996) Biological effects of plant lectins on the gastrointestinal tract: metabolic consequences and applications. Trends Glycosci. Glycotechnol. 8: 149– 165. Rasmussen, J. B., Hammerschmidt, R., and Zook, M. N. (1991) Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv. Syringae. Plant Physiol. 97: 1342-1347. Raikhel, N. V., Lee, H.-I., and Broekaert, W. F. (1993) Structure and function of 82 chitin-binding proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 591–615. Raina, A. and Datta, A. (1992) Molecular cloning of a gene encoding a seed-specific protein with nutritionally balanced amino acid composition from Amaranthus. Proc. Natl. Acad. Sci. USA 89: 11774–11778. Read, S. M. and Northcote, D. H. (1983) Subunit structure and interactions of the phloem pro- teins of Cucurbita maxima (pumpkin). Eur. J. Biochem. 134: 561–569. Rinderle, S. J., Goldstein, I. J., Matta, K. L., and Ratcliffe, R. M. (1989) Isolation and character- ization of amaranthin, a lectin present in the seeds of Amaranthus caudatus, that recognizes the T- (or cryptic T)-antigen. J. Biol. Chem. 264: 16123–16131. Roque-Bareira, M. C. and Campos-Neto, A. (1985) Jacalin: an IgA-binding lectin. J. Immunol. 134: 1740–1743. Rushton, P. J. and Somssich, I. E. (1998) Transcriptional control of plant genes responsive to pathogens. Curr. Opin. Plant Biol. 1: 311-315. Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., and Hunt, M. D. (1996) Systemic acquired resistance. Plant Cell 8: 1809-1819. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular clonging : a laboratory manual 2nd . Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y. Sabnis, D. D. and Hart, J. W. (1978) The isolation and some properties of a lectin (haemagglutinin) from Cucurbita phloem exudate. Planta 142: 97–101. Schaller, A. and Ryan, C. A. (1995) Systemin-a polypeptide defense signal in plants. BioEssays 18: 27-33. Sequeria, J. A., Muraleedharan, G. N., Hammerschmidt, R., and Safir, G. R. (1991) Significance of phenolic compounds in plant- soil-microbial system. Critical Review in Plant Science 10: 63-121. Sequeria, L. (1983) Mechanisms of induced resistance in plants. Annu. Rev. Microbiol. 37: 83 51-79. Sharon, N. and Lis, H. (1990) Legume lectins -a large family of homologous proteins. FASEB J. 4: 3198–3208. Smeets, K., Van Damme, E. J. M., and Peumans, W. J. (1997a) Developmental regulation of lec- tin and alliinase synthesis in garlic bulbs and leaves. Plant Physiol. 113: 765–771. Smeets, K., Van Damme, E. J. M., Verhaert, P., Barre, A., Rougé, P., Van Leuven, F., and Peumans, W. J. (1997c) Isolation, characterization and molecular cloning of the mannose-binding lectins from leaves and roots of garlic (Allium sativum L.). Plant Mol. Biol. 33: 223– 234. Somssich, I.E. and Hahlbrock, K. (1998) Pathogen defense in plants- a paradigm of biological complexity. Trends Plant Sci. 3: 86-90. Stillmark, H. (1888) Über Ricin ein giftiges Ferment aus den Samen von Ricinus communis L. und einige anderen Euphorbiaceen. Inaugural Dissertation Dorpat, Tartu. Stratmann, J. W. and Ryan, C. (1997) Myelin basic protein kinase activity in tomato leaves is induced systemically by wounding and increases in response to systemin and oligosaccharide elicitors. Proc. Natl. Acad. Sci. USA 94: 11085-11089. Stern, W. L. and Morris, M. W. (1992) Vegetative anatomy of Stanhopea (Orchidaceae) with special reference to pseudobulb water-storage cell. Lindleyana 7: 34-53. Transue, T. R., Smith, A. K., Mo, H., Goldstein, I. J., and Saper, M. A. (1997) Structure of benzyl T-antigen disaccharide bound to Amaranthus caudatus lectin. Nature Struct. Biol. 10: 779–783. Ueda, J., Kato, J., Yamane, H., and Takahashi, N. (1981) Inhibitory effect of methyl jasmonate and its related compounds on kinetin-induced retardation of oat leaf senescence. Physiol. Plant. 52 : 305-309. Uknes, S., Mauch-Mani, B., Moyer, M., Potter, S., Williams, S., Dincher, S., Chandler, D., 84 Slusarenko, A., Ward E., and Ryals, J. (1992) Acquired resistance in Arabidopsis. Plant Cell 4: 645-656. Uknes, S., Winter, A., Delaney, T., Vernooij, B., Friedrich, L., Morse, A., Potter, S., Ward E., and Ryals, J. (1993) Biological induction of systemin acquired resistance in Arabidopsis. Mol. Plant-Microbe Interact. 6: 692-698. Van de Berg, J. H. and Ewing, E. E. (1991) Jasmonates and their role in plant growth and development, with special reference to the control of potato tuberization : a review. Am. Potato J. 68: 781-794. Van Damme, E. J. M., Allen, A. K., and Peumans, W. J. (1987) Isolation and characterization of a lectin with exclusive specificity toward mannose from snowdrop (Galanthus nivalis) bulbs. FEBS Lett. 215: 140–144. Van Damme, E. J. M. and Peumans, W. J. (1990a) Developmental changes and tissue distribution of lectin in Galanthus nivalis L. and Narcissus cv. Carlton. Planta 182: 605–609. Van Damme, E. J. M., Smeets, K., Torrekens, S., Van Leuven, F., Goldstein, I. J., and Peumans, W. J. (1992b) The closely related homomeric and heterodimeric mannos-binding lectin from garlic are encoded by one-domain and two-domain lectin genes, respectively. Eur. J. Biochem. 206: 413-420. Van Damme, E. J. M., Smeets, K., and Peumans, W. J. (1995e) The mannose-binding monocot lectins and their genes. In: Lectins: Biomedical Perspectives. pp. 59–80. Pusztai, A. and Bardocz, S., Eds., Taylor and Francis, London, UK. Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., Uknes, S., Kessmann, H., and Ryals, J. (1995) Salicyclic acids is not the translocated signal responsible for inducing systemin acquired resistance but is required in signal transduction. Plant Cell 6: 959-965. Vick, B. A. and Zimmerman, D. C. (1984) Biosynthesis of jasmonic acid by several plants species. Plant Physiol. 75: 458-461. Wasternack, C. and Parthier, B. (1997) Jasmonate-signalled plant gene expression. Trends in Plant Science 2: 302-307. Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, D. L., Alexander, D. C., Ahl-Goy, P., Metraux, J. P., and Ryals, J. A. (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3: 1085-1094. White, R. F. (1979) Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99: 410-412. Wongkham, S., Wongkham, C., Boonsiri, P., Simasathiansophon, S., Trisonthi, C., and Atisook, K. (1995) Isolectins from seeds of Artocarpus lakoocha. Phytochem. 40: 1131– 1134. Xu, Y., Chang, P., Liu, D., Narasimhan, M.L., Raghothama, K.G., Hasegawa, P.M., and Bressan, R.A. (1994) Plant Defense Genes Are Synergistically Induced by Ethylene and Methyl Jasmonate. Plant Cell 6: 1077-1085. Yalpani, N., Leon, J., Lawton, M.A., and Raskin, I. (1993) Pathway of Salicylic Acid Biosynthesis in Healthy and Virus-Inoculated Tobacco. Plant Physiol. 103: 315-321. Yamene, H., Sugawara, J. Suzuki, Y., Shimamura, E., and Takahashi, N. (1980) Synthesis of jasmonic acid related compounds and their structure-activity relationships on the growth of rice seedlings. Agric. Biol. Chem. 44: 2857-2864. Zenteno, E. and Ochoa, J.-L. (1988) Purification of a lectin from Amaranthus leucocarpus by affinity chromatography. Phytochem. 27: 313–317. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33234 | - |
| dc.description.abstract | 儲藏性蛋白會大量存在於植物的儲藏器官如種子、塊莖、球莖和根莖等。它們可幫助植物在逆境期間存活,或是在種植期間提供營養給新生植物。而儲藏性蛋白也表現了生物活性幫助抵抗害蟲、病原體或非生物性逆境。因此儲藏性蛋白可能扮演儲藏和防衛兩種角色。在植物塊莖已知和防衛相關的蛋白有幾丁質酶和凝集素(lectin)。其中許多文獻報導指出,凝集素具有抗蟲、抗真菌、抗微生物等的防禦功能。大部分目前已知的植物凝集素可依據他們的結構和演化相關的蛋白質分為七種家族。在文心蘭假球莖中大量存在之mannose-binding lectin 可歸類於monocot mannose-binding lectins 的家族中。由於本實驗室過去的研究發現,文心蘭的假球莖內含有大量的mannose-binding lectin,但對於其生理功能仍不清楚。因此期望藉由研究mannose-binding lectin 基因之啟動子,進一步了解其調控機制及特性。首先利用genome walking 方法,進行文心蘭mannose-inding lectin(MBL)基因啟動子的選殖,利用實驗室已知的MBL cDNA 序列,設計具專一性的引子,利用文心蘭Genome Walker 基因庫為模板及由Universal Genome Walker Kit 所提供的引子進行二次PCR 釣取MBL 基因上游5’端啟動子的DNA 序列,約2Kb,命名為pOMBL1,我們將此啟動子以PlantCARE 網站進行啟動子cis-acting elements sites 之分析,得知啟動子片段中除了TATA-box 及CAAT-box 外,尚包含2 個ABRE、2 個WUN-motif、3 個TGA-box、3 個W-box、4 個MYB 及6 個MYC protein binding sequence。之後將pOMBL1 構築於雙向載體pBI101 中,用於洋蔥表皮基因槍法轉殖及阿拉伯芥轉殖,也將pOMBL1 構築於雙向載體pCABIA1381z 及pCAMBIA1302 中,用於水稻和菸草轉殖。為了確定pOMBL1 是否可誘導下由基因表現,我將pOMBL1::GUS 載體以基因槍法轉殖至洋蔥表皮細胞中,經組織染色已確定所釣取之pOMBL1 可啟動下游GUS 報導基因的表現。接著,藉由農桿菌進行阿拉伯芥基因轉殖,結果發現GUS 基因在阿拉伯芥不同組織部位之表現量有所差異,其根部和莖部的表現量皆大於葉部。且當阿拉伯芥2、4、7、14、30 天之T3 轉殖株以不同誘導試劑處理並進行組織染色,可得知此啟動子皆可受IAA、ABA、JA 和SA 的誘導,但以前三者之誘導能力較強。若選取三週大之阿拉伯芥轉殖株,以不同誘導試劑處理或病原真菌感染後進行RT-PCR 反應,則顯示此啟動子在ABA100μM 處理或病原真菌感染下會明顯地受到誘導。
另外在水稻轉殖方面,將已轉殖pOMBLl::GUS 之水稻癒合組織以不同誘導試劑處理並進行組織染色,得知此啟動子明顯受ABA 和JA 的誘導。若將水稻不同大小之幼苗進行wounding 處理及組織染色,也顯示此啟動子可被受傷誘導。再者將已轉殖pOMBLl::GFP之水稻癒合組織以不同誘導試劑處理或病原真菌感染後進行RT-PCR 反應,結果顯示此啟動子在ABA、JA 和SA 處理或病原真菌感染下會明顯地受到誘導,卻可能受IAA 抑制。最後在菸草轉殖方面,利用已轉殖pOMBLl::GFP 之菸草葉片進行癒合組織的誘導,並利用共軛焦螢光顯微鏡(Confocal microscope)進行觀察,已經確定pOMBLl::GFP 有插入至菸草genome 中。接著,將已轉殖pOMBLl::GFP 之菸草癒合組織以不同誘導試劑處理或病原真菌感染後進行RT-PCR 反應,結果顯示此啟動子在ABA 和SA 處理或病原真菌感染下會明顯地受到誘導,此結果與阿拉伯芥相似。然而,為了確定MBL 基因在文心蘭假球莖中是否會受到不同賀爾蒙處理而誘導其大量表現,我選取同一時期之文心蘭以ABA、SA、IAA 和JA 處理後進行北方墨漬分析,探討其表現量差異,結果顯示MBL 基因明顯地受到ABA、JA 和SA 誘導,而可能受IAA 抑制,此與轉殖水稻分析的結果相符合。 由轉殖阿拉伯芥、菸草與水稻經分析的結果具有些許的差異,我們認為可能MBL 基因啟動子在雙子葉及單子葉中的調控機制有所不同而導致。另外,MBL 基因啟動子無論在阿拉伯芥、水稻或菸草中皆可受病原真菌感染而誘導,我們推測或許MBL 基因在文心蘭中對抗病原真菌入侵時扮演某些角色。 | zh_TW |
| dc.description.abstract | The monocot mannose-binding lectins are an extended superfamily of structurally and evolutionarily related proteins, which until now have been isolated from species of the Amaryllidaceae, Alliaceae, Araceae, Bromeliaceae, Lilliaceae, and Orchidaceae. Monocot mannose-binding lectins have been found in most vegetative tissues such as leaves, flowers, ovaries, bulbs, tubers, rhizomes, and roots. Previous study showed that monocot mannose-binding lectins are believed to play a role in the plant’s defense against sucking insects, nematodes, other invertebrates and even fungi. A mannose-binding lectin (MBL) has been isolated from Oncidium Gower Ramsey. It is an abundant storage protein in Oncidium pseudobulb.
In order to understand the role of the promoter region of MBL in the regulating of gene expression, the 2Kb 5’-flanking region of MBL was further cloned and sequenced by PCR-based genomic walking method. A number of putative regulatory motifs were identified, including two ABRE, two WUN-motifs, three W-boxes, three TGA-boxes, four MYBs and six MYC protein binding sequences. The promoter of MBL was fused to the GUS and GFP sequences, then the resulting constructs were used to transform Arabidopsis, rice and tobacco. In Arabidopsis transgenic plants, the histochemical analysis revealed the expression of MBL promoter::GUS was detected at high level in shoot apical meristems, hypocotyls and roots at different stages of development. In RT-PCR analysis, we found that the GUS expression in roots and stems were higher than that in leaves. Besides, we found that the GUS activity was induced by IAA, JA and SA, but especially by ABA and Blumeria gramini f.sp. hordei. In rice transgenic calli and plants, the histochemical and RT-PCR analysis indicated that the GUS activity was prominantly induced by JA, ABA, SA and Blumeria gramini f.sp. hordei, but suppressed by IAA. This expression pattern was similar to that of the MBL gene in Oncidium. In addition, histochemical analysis of GUS activity in rice seedlings revealed that the GUS activity was also induced by mechanical wounding treatment. Otherwise, In tobacco calli, the RT-PCR analysis revealed that the GFP activity was induced by ABA, SA and Blumeria gramini f.sp. hordei. This result in tobacco was similar to that in Arabidopsis. In summary, the data suggest that the regulation of the MBL gene may be not the same in monocots and dicots. Moreover, it also suggested that the MBL genes in Oncidium maybe play a role in the plant’s defense against fungi. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:30:28Z (GMT). No. of bitstreams: 1 ntu-95-R93b42003-1.pdf: 1360894 bytes, checksum: 40e558e1c6ed4e0c38782dda6cf62dbd (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 中文摘要………………………………………………………………………………4
英文摘要………………………………………………………………………………6 第一章 前言 第一節 植物的防禦機制…………….………………………………………8 第二節 植物凝集素與文心蘭中的MBL基因………………….………….13 第三節 本論文之研究方向…………………………………………………19 第二章 材料與方法 一、實驗材料………………………………………………………………...…..21 二、實驗方法 第一節 MBL基因啟動子之釣取…………………………………………... 22 第二節 MBL基因啟動子載體之構築………………………………………33 第三節 基因槍法洋蔥表皮細胞之轉殖…………………………………….37 第四節 農桿菌的轉型與鑑定……………………………………………….41 第五節 阿拉伯芥之基因轉殖與轉殖株的鑑定…………………………… 42 第六節 阿拉伯芥轉殖株於環境逆境處理誘導之GUS螢光活性分析……46 第七節 水稻之基因轉殖與轉殖株的鑑定………………………………….48 第八節 轉殖水稻中MBL啟動子受環境逆境處理誘導之分析………….. 50 第九節 菸草之基因轉殖與轉殖株的鑑定………………………………….51 第十節 轉殖菸草中MBL啟動子受環境逆境處理誘導之分析…………...52 第十一節 MBL基因在文心蘭假球莖中之表現分析………………………53 第三章 結果 第一節 MBL基因啟動子之釣取……………………………………………61 第二節 MBL基因啟動子載體之構築與進行洋蔥表皮細胞之轉殖………62 第三節 農桿菌的轉型與鑑定…………………………………………….....62 第四節 阿拉伯芥之基因轉殖與轉殖株的鑑定…………………………….63 第五節 阿拉伯芥轉殖株於環境逆境處理誘導之GUS螢光活性分析…...63 第六節 水稻之基因轉殖…………………………………………………….64 第七節 轉殖水稻中MBL啟動子受環境逆境處理誘導之分析…………...65 第八節 菸草之基因轉殖與轉殖株的鑑定………………………………….65 第九節 轉殖菸草中MBL啟動子受環境逆境處理誘導之分析…………...66 第十節 MBL基因在文心蘭假球莖中之表現分析…………………………66 第四章 討論………………………………………………………………………….68 參考文獻……………………………………………………………………………….72 圖表…………………………………………………………………………………….86 附圖……………………………………………………………………………………108 | |
| dc.language.iso | zh-TW | |
| dc.subject | 甘露糖結合型凝集素 | zh_TW |
| dc.subject | mannose-binding lectins | en |
| dc.title | 文心蘭萳茜品系甘露糖結合型凝集素啟動子的調控機制之分析 | zh_TW |
| dc.title | Functional Analysis of the promoter region of mannose-binding lectins (MBLs) form Oncidium Gower Ramsey | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林長平,王淑珍,謝旭亮 | |
| dc.subject.keyword | 甘露糖結合型凝集素, | zh_TW |
| dc.subject.keyword | mannose-binding lectins, | en |
| dc.relation.page | 112 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-21 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 植物科學研究所 | zh_TW |
| 顯示於系所單位: | 植物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
