Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33234
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉開溫
dc.contributor.authorLi-Ru Huangen
dc.contributor.author黃麗如zh_TW
dc.date.accessioned2021-06-13T04:30:28Z-
dc.date.available2007-07-16
dc.date.copyright2007-07-16
dc.date.issued2006
dc.date.submitted2006-07-20
dc.identifier.citationAgrawal, G. K, Rakwal, R., Jwa, N.-S., and Agrawal, V. P. (2001) Signalling molecules and
blast pathogen attack activates rice OsPR1a and OsPR1b genes : a model illustrating
components participating during defence/stress response. Plant Physiol. Biochem. 39:
1095-1103.
Alborn, H. T. (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science
276: 945-949.
An, G. (1987) Binary Ti vectors for plant transformation and promoter analysis. Method in
Enzymol. 153: 292-305.
Andresen, I., Becker, W., Schluter, K., Burges, J., Parthier, B., and Apel, K. (1992) The
identification of leaf thionin as one of the main jasmonate induced proteins of barley
(Hordeum vulgare). Plant Mol. Biol. 19: 193-204.
Baba, K., Ogawa, M., Nagano, A., Kuroda, H., and Sumiya, K. (1991) Developmental
changes in the bark lectin of Sophora japonica L. Planta 183: 462–470.
Barbieri, L., Batelli, G.. B., and Stirpe, F. (1993) Ribosome-inactivating proteins from plants.
Biochim. Biophys. Acta 1154: 237–282.
Balzarini, J., Schols, D., Neyts, J., Van Damme, E., Peumans, W., and De Clercq, E. (1991)
α-(1–3)- and α-(1–6)- D-mannose-specific plant lectins are markedly inhibitory to human im-
munodeficiency virus and cytomegalovirus infections in vitro. Antimicrob. Agents Chemother.
35: 410–416.
Balzarini, J., Neyts, J., Schols, D., Hosoya, M., Van Damme, E., Peumans, W., and De
Clercq, E. (1992) The mannose-specific plant lectins from Cymbidium hybrid and
Epipactis helleborine and the (N-Acetylglucosamine)n-specific plant lectin from Urtica
73
dioica are potent and selective inhibitors of human immunodeficiency virus and
cytomegalovirus replication in vitro. Antiviral Res. 18: 191–207.
Bausch, J. N. and Poretz, R. D. (1977) Purification and properties of the hemagglutinin from
Maclura pomifera seeds. Biochem. 16: 5790–5794.
Bergey, D. R., How, G. A., and Ryan, C. A. (1996) Polypeptide signaling for plant defensive
genes exhibits analogies to defense signaling in animals. Proc. Natl. Acad. Sci. USA 93:
12053-12058.
Benhamou, N., Chamberland, H., and Pauz’e, F. J. (1990) Implication of pectic components
on cell surface interactions between tomato root cells and Fusarium oxysporum f. sp.
Radicis-lycopersici. Plant Physiology 92: 995-1003.
Bergey, D. R., Orozco-Cardenas, M., De Moura, D. S., and Ryan, C. A. (1999) A wound-
and systemin-inducible polygalacturonase in tomato leaves. Proc. Natl. Acad. Sci. USA 96:
1756-1760.
Birkenmeier, G. F. and Ryan, C. A. (1998) Wounding signaling in tomato plants-evidence that
ABA is not a primary signal for defense gene activation. Plant physiol. 117: 687-693.
Bishop, P. D., Pearce, G., Bryant, J. E., and Ryan, C. A. (1984) Isolation and characterization
of the proteinase inhibitor-inducing factor from tomato leaves. J. Biol. Chem. 259:
13172-13177.
Bishop, P. D., Makus, D. J., Pearce, G., and Ryan, C. A. (1981) Proteinase inhibitor-inducing
factor activity in tomato leaves resides in oligosaccharides enzymically released from cell
walls. Proc. Natl. Acad. Sci. USA 78: 3536-3540.
Bird, G. W. G. (1954) Observations on the interactions of the erythrocytes of various species
with certain seed agglutinins. Br. J. Exp. Pathol. 35: 252.
Blechert, S., Brodschelm, W., Holder, S., Kammerer, L., Kutchan, T. M., Mueller, M. J.,
Xia, Z. Q., and Zenk, M. H. (1995) The octadecanoic pathway : signal molecules for the
74
regulation of secondary pathways. Proc. Natl. Acad. Sci. USA 92: 4099-4105.
Bol, J. F., Linthorst, H. J. M., and Cornelissen, B. J. C. (1990) Plant pathogenesis-related
proteins induced by virus infection. Annu. Rev.Phytopathol. 28: 113-138.
Bouquin, T., Lasserre, E., Pradier, J., Pech, J. C., and Balagu’e C. (1997) Wound and
ethylene induction of the ACC oxidase melon gene CM-ACO1 occurs via two direct and
independent transduction pathways. Plant Mol. Biol. 35: 1029-1035.
Boulter, D., Edwards, G. A., Gatehouse, A. M. R., Gatehouse, J. A., and Hilder, V. A. (1990)
Additive protective effects of different plant-derived insect resistance genes in transgenic
tobacco plants. Crop Protect. 9: 351–354.
Bostwick, D. E., Dannehofer, J. M., Skaggs, M. I., Lister, R. M., Larkins, B. A., and
Thompson, G. A. (1992) Pumpkin phloem lectin genes are specifically expressed in
companion cells. Plant Cell 4: 1539–1548.
Bray, E. A. (1997). Plant response to water deficient. Trends in Plant Science 2: 48-54.
Brewin, N. J. and Kardailsky, I. V. (1997) Legume lectins and nodulation by Rhizobium.
Trends Plant. Sci. 2: 92-98.
Butler, L. G. (1989) Sorghum polyphenols. In : Toxicant of plant orgin, vol. IV, phenolics, pp
95-122. Cheeke, P.R. ed., Boca Roton : CRC Press.
Cameron, R. K., Dixon, R., and Lamb, C. (1994) Biological induced systemic acquired
resistance in Arabidopsis thaliana. Plant J. 5, 715-725.
Chen, H. C., Klein, A., Xiang, M., Backaus, R. A., and Kuntz, M. (1998) Drought- and
wound-induced expression in leaves of a gene encoding a chromoplast carotenoid-associated
protein. Plant J. 14: 317-326.
Chrispeels, M. J. and Raikhel, N. V. (1991) Lectins, lectin genes, and their role in plant
defense. Plant Cell 3: 1-9.
Clendennen, S. K. and May, G. D. (1997) Differential gene expression in ripening banana fruit.
75
Plant Physiol. 115: 463–469.
Cot’e, F. and Hahn, M. G. (1994) Oligosaccharrins: structures and signal transduction. Plant
Mol. Biol. 48: 355-381.
Constabel, C. P., Bergey, D. R., and Ryan, C. A. (1995) Systemin activates synthesis of
wound-inducible tomato leaf polyphenol oxidase via the octadecanoid defense signaling
pathway. Proc. Natl. Acad. Sci. USA 92: 407-411.
Creelman, R.A. and Mullet, J.E. (1997) Biosynthesis and action of jasmonates in plants. Plant
Mol. Biol. 48: 355-381.
Creelman, R.A., Tierney, M. L., and Mullet, J.E. (1992) Jasmonic acid/methyl jasmonate
accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc. Natl.
Acad. Sci. USA 89: 4938-4941.
Czapla, T. H. and Lang, B. A. (1990) Effect of plant lectins on the larval development of
European corn borer (Lepidoptera: Pyralidae) and southern corn rootworm
(Coleoptera:Chrysomelidae). J. Econ. Entomol. 83: 2480–2485.
Darvill, A. G. and Albersheim, P. (1984) Phytoalexins and their elicitors:a defence against
microbial infection in plants. Annu. Rev. Plant Physiol. 35: 243-276.
Dempsey, D. M., Wobbe, K., and Klessig, D. F. (1993) Resistance and susceptible responses of
Arabidopsis thaliana to turnip crinkle virus. Phytopathology 83: 1021-1029.
de Pater, S., Greco, V., Pham, K., Memlink, J., and Kijne, J. (1996) Characterization of a
zinc-dependent transcriptional activator from Arabidopsis. Nucleic Acids Res. 24: 4624-4631.
Diaz, C., Melchers, L. S., Hooykaas, P. J. J., Lugtenberg, B. J. J., and Kijne, J. W. (1989)
Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis.
Nature 338: 579–581.
Doares, S.H., Syrovets, T., Weiler, E.W., and Ryan, C.A. (1995) Oligogalacturonides and
chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Natl. Acad.
76
Sci. USA 92: 4095-4098.
Endo, Y., Mitsui, K., Motizuki, M., and Tsurugi, K. (1987) The mechanism of action of ricin
and related toxic lectins on eukaryotic ribosomes. J. Biol. Chem. 262: 5908-5912.
Eulgem, T., Rushton, P. J., Schmelzer, E., Hahlbrock, K., and Somssich, I. E. (1999) Early
nuclear events in plant defence signaling : rapid gene activation by WRKY transcription
factors. The EMBO Journal 18: 4689-4699.
Farmer, E.E., and Ryan, C.A. (1990) Interplant communication: airborne methyl jasmonate
induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 87:
7713-7716.
Falkenstein, F., Groth, B., Mithofer, A., and Weiler, E. W. (1991) Methyl jasmonate and
linolenic acid are potent inducers oftendril coiling. Planta 185: 316-322.
Farmer, E. E., Johnsor, R. R., and Ryan, C. A. (1992) Regulation of expression of proteinase
inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol. 98: 995-1002.
Feussner, I. (1995) Jasmonate-induced lipoxygenase froms are localized in chloroplasts of
barley leaves (Hordeum vulgare cv. Salome). Plant J. 7: 949-957.
Friedrich, L., Vernooij, B., Gaffney, T., Morse, A., and Ryals, J. (1995) Characterization of
tobacco plants expressing bacterial salicylate hydroxylase gene. Plant Mol. Biol. 29: 959-968.
Gatehouse, A. M. R., Powell, K. S., Peumans, W. J., Van Damme, E. J. M., and Gatehouse,
J. A. (1995) Insecticidal properties of plant lectins: their potential in plant protection. In:
Lectins: Biomedical Perspectives. pp. 35–57. Pusztai, A. and Bardocz, S., Eds., Taylor and
Francis, London, UK.
Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E.,
Kessmann, H., and Ryals, J. (1993) Requirement of salicylic acid for the induction of
systemic acquired resistance. Science 261: 754-756.
Gundlach, H., Muller, M. J., Kutchan, T. M., and Zenk, M. H. (1992) Jasmonic acid is a
77
signal transducer in elicitor-induced plant cell cultures. Proc. Natl. Acad. Sci. USA 89:
2389-2393.
Habibi, J., Backus, E. A., and Czapla, T. H. (1993) Plant lectins affect survival of the potato
leaf- hopper (Homoptera: Cicadellidae). J. Econ. Entomol. 86: 945–951.
Herde, O., Atzorn, R., Fisahn, J., Wasternack, C., Willmitzer, L., and Pena-Cortes, H.
(1996) Localized wounding by heat initiates the accumulation of proteinase inhibitor II in
abscisic acid-deficient plants by triggering jasmonic acid biosynthesis. Plant Physiol. 112:
853-860.
Hilder, V. A., Powell, K. S., Gatehouse, A. M. R., Gatehouse, J. A., Gatehouse, L. N., Shi, Y.,
Hamilton, W. D. O., Merryweather, A., Newell, C., Timans, J. C., Peumans, W. J., Van
Damme, E. J. M., and Boulter, D. (1995) Expression of snowdrop lectin
in transgenic tobacco plants results in added protection against aphids. Transgenic Res. 4:
18–25.
Hildmann, T., Ebneth, M., Pena-Cortes, H., Sanchez-Serrano, J. J., Willmitzer, L., and
Part, S. (1992) General roles of abscisic acid and jasmonic acid in gene activation as a result
of mechanical wounding. Plant Cell 4: 1157-1170.
Hossaini, A. (1968) Hemolytic and hemagglutinating activities of 222 plants. Vox Sang. 15:
410– 417.
Howe, G. A. (1996) An octadecanoid pathway mutant (JL5) of tomato is compromised in
signaling for defense against insect attack. Plant Cell 8: 2067-2077.
Ingram, J. and Bartel, D. (1996) The molecular basis of dehydration tolerance in plant. Annu.
Rev. Plant Physiol. 47: 377-403.
Ishiguro, S. and Nakamura, K. (1994) Characterization of a cDNA encoding a novel
DNA-binding protein, SPF1, that recognizes SP8 sequence in the 5’ upstream regions of
genes coding for sporamin and β-amylase from sweet potato. Mol. Gen. Genet. 244:
78
563-571.
Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. (1987) GUS fusions: β-Glucuronidase as
a sensitive and versatile gene fusion marker. EMBO J. 6: 3901-3908.
Jones, J. M., Cawley, L. P., and Teresa, G. W. (1967) Hemagglutinins (lectins) extracted from
Maclura pomifera. Vox Sang. 12: 211–214.
Kabir, S., Aebersold, R., and Daar, A. S. (1993) Identification of a novel 4 kDa
immunoglobulin -A-binding peptide obtained by the limited proteolysis of jacalin. Biochim.
Biophys. Acta 1161: 194–200.
Kabir, S. and Daar, A. S. (1994) The composition and properties of jacalin, a lectin of diverse
applications obtained from the jackfruit (Artocarpus heterophyllus) seeds. Immunol. Invest.
23: 167–188.
Klimyuk, V. L., Carroll, B. J., Thomas, C. M., and Jones, J. D. G..(1993) Alkali treatment for
rapid preparation of plant material for teliable PCR analysis. Plant J. 3(3): 493-494.
Koiwa, H., Bressan, R. A., and Hasegawa, P. M. (1997) Regulation of proteinase ihhibitors
and plant defense. Trends in Plant Science 2: 379-384.
Koeppe S. J. and Rupnov, J. H. (1988) Purification and characterization of a lectin from the
seeds of amaranth (Amaranthus cruentus). J. Food Sci. 53: 1412–1417.
Lawton, M. A. and Lamb, C. J. (1987) Transcriptional activation of plant defense gene by
fungal elicitor, wounding, and infection. Mol. Cel. Biol. 7: 335-341.
Lawton, K., Weymann, K., Friedrich, L., Vernooij, B., Uknes, S., and Ryals, J. (1995)
Systemin acquired resistance in Arabidopsis erquires salicylic acid but not ethylene. Mol.
Plant-microbe. Interact. 8: 863-870.
Leszcynsk, B., Warchol, J., and Niraz, S. (1985) The influence of phenolic compounds on the
preference of winter wheat cultivars by central aphaids. Insect Science Applications 6:
157-158.
79
Lin, T. T. -S. and Li, S. S. -L. (1980) Purification and physicochemical properties of
ricins and ag- glutinins from Ricinus communis. Eur. J. Biochem. 105: 453–459.
Liu, D., Li, N., Dube, S., Kalinski, A., Herman, E., and Matoo, A. K. (1993) Molecular
characterization of a rapidly and transiently wound-induced soybean (Glycine max L.) gene
encoding 1-aminocyclopropane-1-carboxylate synthase. Plant Cell Physiology 34: 1151-1157.
Malone, M. and Alarcon, J. J. (1995) Only xylem-borne factors can account for systemin
wound signaling in the tomato plant. Planta 196: 740-746.
Malamy, J., Carr, J. P., Klessing, D. F., and Raskin, I. (1990) Salicylic acid : A likely
endogenous signal in the resistance response of tobacco to viral infection. Science 250:
1002-1004.
Malamy, J., Klessing, D. F., and Raskin, I. (1990) Salicylic acid and plant disease resistance.
Plant J. 2: 643-654.
Mauch-Main, B. and Slusarenko, A. J. (1996) Production of salicylic acid precursors is a
major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to
Peronospora parasitica. Plant Cell 8: 203-212.
McConn, M., Creelman, R.A., Bell, E., Mullet, J. E., and Browse, J. (1997) Jasmonate is
essential for insect defense in Arabidopsis. Proc. Natl. Acad. Sci. USA 94: 5473-5477.
McGurl, B., Pearce, G., and Ryan, C.A. (1994) Polypeptide signalling for plant defence genes.
Biochem. Soc. Symp. 60: 149-154.
Metraux, J. P., Ahi-Goy, P., Staub, T., Speich, J., Steinemann, A., Ryals, J., McKendree, Jr.
W. L., and Ferl, R. J. (1990) Functional elements of the Arabidopsis Adh promoter include
the G-box. Plant Mol. Biol. 19: 859-862.
Murdock, L. L., Huesing, J. E., Nielsen, S. S., Pratt, R. C., and Shade, R. E. (1990)
Biological effects of plant lectins on the cowpea weevil. Phy- tochemistry 29: 85–89.
Nachbar, M. S. and Oppenheim, J. D. (1980) Lectins in the United States diet: a survey of
80
lectins in commonly consumed foods and a review of the literature. Am. J. Clin. Nutr. 33:
2338–2345.
Ng, C. K. Y. and Hew, C. S. (2000) Orchid pseudobulbs- “false” bulbs with a genuine
importance in orchid growth and survival. Scientia Horticulture 83: 165-172.
Nsimba-Lubaki, M. and Peumans, W. J. (1986) Seasonal fluctuations of lectins in the barks of
elderberry (Sambucus nigra) and black locust (Robinia pseudoacacia). Plant Physiol. 80:
747–751.
Nurnberger, T., Nennstiel, D., Jabs, T., Sacks, W., Hahlbrock, K., and Scheel, D. (1994)
High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers
multiple defense responses. Cell 78: 449-460.
O'Donnell, P.J., Calvert, C., Atzorn, R., Wasternack, C., Leyser, H.M.O., and Bowles, D.J.
(1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274:
1914-1917.
Olsnes, S. (1978) Toxic and nontoxic lectins from Abrus precatorius. Meth. Enzymol. 50:
323– 330.
Pearce, G., Johnson, S., and Ryan, C.A. (1993) Purification and characterization from tobacco
(Nicotiana tabacum) leaves of six small, wound-inducible, proteinase isoinhibitors of the
potato inhibitor II family. Plant Physiol. 102: 639-644.
Pearce, G., Johnson, S., and Ryan, C.A. (1992) J. Biol. Chem. 268: 212-216.
Pearce, G., Strydom, D., Johnson, S., and Ryan, C.A. (1991) A polypeptide from tomato
leaves induceds wound-inducible proyeinase inhibitor proteins. Science 253: 895-898.
Pena-Cortes, H., Sanchez-Serrano, J. J., Mertens, R., Prat, S., and Willmitzer, L. (1989)
Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene
in potato and tomato. Proc. Natl. Acad. Sci. USA 86: 9851-9855.
Pena-Cortes, H., Prat, S., Atzorn, R., and Willmitzer, L. (1996) Abscisic acid-deficient plants
81
do not accumulate proteinase inhibitor II gene in potato and tomato. Planta 198: 447-451.
Pena-Cortes, H., Albrecht, T., Prat, S., Weiler, E. W., and Willmitzer, L. (1993) Asprin
prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid
biosynthesis. Planta 191: 123-128.
Peumans, W. J. and Van Damme, E. J. M. (1995a) The role of lectins in plant defense.
Histochem. J. 27: 253–271.
Peumans, W. J. and Van Damme, E. J. M. (1995b) Lectins as plant defense proteins. Plant
Physiol. 109: 347–352.
Peumans, W. J. and Stinissen, H. M. (1983) Gramineae lectins: occurrence, molecular biology,
and physiological function. In: Chemical Taxonomy, Molecular Biology and Function of
Plant Lectins. pp. 99–116. Goldstein, I. J. and Etzler, M. E., Eds., Alan R. Liss Inc., New
York.
Peumans, W. J., Smeets, K., Van Nerum, K., Van Leuven, F., and Van Damme, E. J. M.
(1997a) Lectin and alliinase are the predominant proteins in the nectar from leek (Allium
porrum) flowers. Planta 201: 298–302.
Peumans, W. J., Barre, A., Bras, J., Rouge, P., Proost, P., Van Damme, E. J. M. (2002) The
liverwort Marchantia polymorpha contains a lectin that is structurally and evolutionary
related to the monocot mannose-binding lectins. Plant Physiol. 129: 1054-1065.
Pusztai, A. and Bardocz, S. (1996) Biological effects of plant lectins on the gastrointestinal
tract: metabolic consequences and applications. Trends Glycosci. Glycotechnol. 8: 149–
165.
Rasmussen, J. B., Hammerschmidt, R., and Zook, M. N. (1991) Systemic induction of
salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv.
Syringae. Plant Physiol. 97: 1342-1347.
Raikhel, N. V., Lee, H.-I., and Broekaert, W. F. (1993) Structure and function of
82
chitin-binding proteins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 591–615.
Raina, A. and Datta, A. (1992) Molecular cloning of a gene encoding a seed-specific protein
with nutritionally balanced amino acid composition from Amaranthus. Proc. Natl. Acad. Sci.
USA 89: 11774–11778.
Read, S. M. and Northcote, D. H. (1983) Subunit structure and interactions of the phloem pro-
teins of Cucurbita maxima (pumpkin). Eur. J. Biochem. 134: 561–569.
Rinderle, S. J., Goldstein, I. J., Matta, K. L., and Ratcliffe, R. M. (1989) Isolation and
character- ization of amaranthin, a lectin present in the seeds of Amaranthus caudatus, that
recognizes the T- (or cryptic T)-antigen. J. Biol. Chem. 264: 16123–16131.
Roque-Bareira, M. C. and Campos-Neto, A. (1985) Jacalin: an IgA-binding lectin. J. Immunol.
134: 1740–1743.
Rushton, P. J. and Somssich, I. E. (1998) Transcriptional control of plant genes responsive to
pathogens. Curr. Opin. Plant Biol. 1: 311-315.
Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H. Y., and Hunt, M.
D. (1996) Systemic acquired resistance. Plant Cell 8: 1809-1819.
Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular clonging : a laboratory
manual 2nd . Ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.
Sabnis, D. D. and Hart, J. W. (1978) The isolation and some properties of a lectin
(haemagglutinin) from Cucurbita phloem exudate. Planta 142: 97–101.
Schaller, A. and Ryan, C. A. (1995) Systemin-a polypeptide defense signal in plants. BioEssays
18: 27-33.
Sequeria, J. A., Muraleedharan, G. N., Hammerschmidt, R., and Safir, G. R. (1991)
Significance of phenolic compounds in plant- soil-microbial system. Critical Review in Plant
Science 10: 63-121.
Sequeria, L. (1983) Mechanisms of induced resistance in plants. Annu. Rev. Microbiol. 37:
83
51-79.
Sharon, N. and Lis, H. (1990) Legume lectins -a large family of homologous proteins. FASEB
J. 4: 3198–3208.
Smeets, K., Van Damme, E. J. M., and Peumans, W. J. (1997a) Developmental regulation of
lec- tin and alliinase synthesis in garlic bulbs and leaves. Plant Physiol. 113: 765–771.
Smeets, K., Van Damme, E. J. M., Verhaert, P., Barre, A., Rougé, P., Van Leuven, F., and
Peumans, W. J. (1997c) Isolation, characterization
and molecular cloning of the mannose-binding lectins from leaves and roots of garlic (Allium
sativum L.). Plant Mol. Biol. 33: 223– 234.
Somssich, I.E. and Hahlbrock, K. (1998) Pathogen defense in plants- a paradigm of biological
complexity. Trends Plant Sci. 3: 86-90.
Stillmark, H. (1888) Über Ricin ein giftiges Ferment aus den Samen von Ricinus communis L.
und einige anderen Euphorbiaceen. Inaugural Dissertation Dorpat, Tartu.
Stratmann, J. W. and Ryan, C. (1997) Myelin basic protein kinase activity in tomato leaves is
induced systemically by wounding and increases in response to systemin and oligosaccharide
elicitors. Proc. Natl. Acad. Sci. USA 94: 11085-11089.
Stern, W. L. and Morris, M. W. (1992) Vegetative anatomy of Stanhopea (Orchidaceae) with
special reference to pseudobulb water-storage cell. Lindleyana 7: 34-53.
Transue, T. R., Smith, A. K., Mo, H., Goldstein, I. J., and Saper, M. A. (1997) Structure of
benzyl T-antigen disaccharide bound to Amaranthus caudatus lectin. Nature Struct.
Biol. 10: 779–783.
Ueda, J., Kato, J., Yamane, H., and Takahashi, N. (1981) Inhibitory effect of methyl
jasmonate and its related compounds on kinetin-induced retardation of oat leaf senescence.
Physiol. Plant. 52 : 305-309.
Uknes, S., Mauch-Mani, B., Moyer, M., Potter, S., Williams, S., Dincher, S., Chandler, D.,
84
Slusarenko, A., Ward E., and Ryals, J. (1992) Acquired resistance in Arabidopsis. Plant
Cell 4: 645-656.
Uknes, S., Winter, A., Delaney, T., Vernooij, B., Friedrich, L., Morse, A., Potter, S., Ward E.,
and Ryals, J. (1993) Biological induction of systemin acquired resistance in Arabidopsis.
Mol. Plant-Microbe Interact. 6: 692-698.
Van de Berg, J. H. and Ewing, E. E. (1991) Jasmonates and their role in plant growth and
development, with special reference to the control of potato tuberization : a review. Am.
Potato J. 68: 781-794.
Van Damme, E. J. M., Allen, A. K., and Peumans, W. J. (1987) Isolation and characterization
of a lectin with exclusive specificity toward mannose from snowdrop (Galanthus nivalis)
bulbs. FEBS Lett. 215: 140–144.
Van Damme, E. J. M. and Peumans, W. J. (1990a) Developmental changes and tissue
distribution of lectin in Galanthus nivalis L. and Narcissus cv. Carlton. Planta 182: 605–609.
Van Damme, E. J. M., Smeets, K., Torrekens, S., Van Leuven, F., Goldstein, I. J., and
Peumans, W. J. (1992b) The closely related homomeric and heterodimeric mannos-binding
lectin from garlic are encoded by one-domain and two-domain lectin genes, respectively. Eur.
J. Biochem. 206: 413-420.
Van Damme, E. J. M., Smeets, K., and Peumans, W. J. (1995e) The mannose-binding
monocot lectins and their genes. In: Lectins: Biomedical Perspectives. pp. 59–80. Pusztai, A.
and Bardocz, S., Eds., Taylor and Francis, London, UK.
Vernooij, B., Friedrich, L., Morse, A., Reist, R., Kolditz-Jawhar, R., Ward, E., Uknes, S.,
Kessmann, H., and Ryals, J. (1995) Salicyclic acids is not the translocated signal
responsible for inducing systemin acquired resistance but is required in signal transduction.
Plant Cell 6: 959-965.
Vick, B. A. and Zimmerman, D. C. (1984) Biosynthesis of jasmonic acid by several plants
species. Plant Physiol. 75: 458-461.
Wasternack, C. and Parthier, B. (1997) Jasmonate-signalled plant gene expression. Trends in
Plant Science 2: 302-307.
Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, D. L., Alexander, D.
C., Ahl-Goy, P., Metraux, J. P., and Ryals, J. A. (1991) Coordinate gene activity in response
to agents that induce systemic acquired resistance. Plant Cell 3: 1085-1094.
White, R. F. (1979) Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in
tobacco. Virology 99: 410-412.
Wongkham, S., Wongkham, C., Boonsiri, P., Simasathiansophon, S., Trisonthi, C., and
Atisook, K. (1995) Isolectins from seeds of Artocarpus lakoocha. Phytochem. 40: 1131–
1134.
Xu, Y., Chang, P., Liu, D., Narasimhan, M.L., Raghothama, K.G., Hasegawa, P.M., and
Bressan, R.A. (1994) Plant Defense Genes Are Synergistically Induced by Ethylene and
Methyl Jasmonate. Plant Cell 6: 1077-1085.
Yalpani, N., Leon, J., Lawton, M.A., and Raskin, I. (1993) Pathway of Salicylic Acid
Biosynthesis in Healthy and Virus-Inoculated Tobacco. Plant Physiol. 103: 315-321.
Yamene, H., Sugawara, J. Suzuki, Y., Shimamura, E., and Takahashi, N. (1980) Synthesis
of jasmonic acid related compounds and their structure-activity relationships on the growth of
rice seedlings. Agric. Biol. Chem. 44: 2857-2864.
Zenteno, E. and Ochoa, J.-L. (1988) Purification of a lectin from Amaranthus leucocarpus by
affinity chromatography. Phytochem. 27: 313–317.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33234-
dc.description.abstract儲藏性蛋白會大量存在於植物的儲藏器官如種子、塊莖、球莖和根莖等。它們可幫助植物在逆境期間存活,或是在種植期間提供營養給新生植物。而儲藏性蛋白也表現了生物活性幫助抵抗害蟲、病原體或非生物性逆境。因此儲藏性蛋白可能扮演儲藏和防衛兩種角色。在植物塊莖已知和防衛相關的蛋白有幾丁質酶和凝集素(lectin)。其中許多文獻報導指出,凝集素具有抗蟲、抗真菌、抗微生物等的防禦功能。大部分目前已知的植物凝集素可依據他們的結構和演化相關的蛋白質分為七種家族。在文心蘭假球莖中大量存在之mannose-binding lectin 可歸類於monocot mannose-binding lectins 的家族中。由於本實驗室過去的研究發現,文心蘭的假球莖內含有大量的mannose-binding lectin,但對於其生理功能仍不清楚。因此期望藉由研究mannose-binding lectin 基因之啟動子,進一步了解其調控機制及特性。首先利用genome walking 方法,進行文心蘭mannose-inding lectin(MBL)基因啟動子的選殖,利用實驗室已知的MBL cDNA 序列,設計具專一性的引子,利用文心蘭Genome Walker 基因庫為模板及由Universal Genome Walker Kit 所提供的引子進行二次PCR 釣取MBL 基因上游5’端啟動子的DNA 序列,約2Kb,命名為pOMBL1,我們將此啟動子以PlantCARE 網站進行啟動子cis-acting elements sites 之分析,得知啟動子片段中除了TATA-box 及CAAT-box 外,尚包含2 個ABRE、2 個WUN-motif、3 個TGA-box、3 個W-box、4 個MYB 及6 個MYC protein binding sequence。之後將pOMBL1 構築於雙向載體pBI101 中,用於洋蔥表皮基因槍法轉殖及阿拉伯芥轉殖,也將pOMBL1 構築於雙向載體pCABIA1381z 及pCAMBIA1302 中,用於水稻和菸草轉殖。為了確定pOMBL1 是否可誘導下由基因表現,我將pOMBL1::GUS 載體以基因槍法轉殖至洋蔥表皮細胞中,經組織染色已確定所釣取之pOMBL1 可啟動下游GUS 報導基因的表現。接著,藉由農桿菌進行阿拉伯芥基因轉殖,結果發現GUS 基因在阿拉伯芥不同組織部位之表現量有所差異,其根部和莖部的表現量皆大於葉部。且當阿拉伯芥2、4、7、14、30 天之T3 轉殖株以不同誘導試劑處理並進行組織染色,可得知此啟動子皆可受IAA、ABA、JA 和SA 的誘導,但以前三者之誘導能力較強。若選取三週大之阿拉伯芥轉殖株,以不同誘導試劑處理或病原真菌感染後進行RT-PCR 反應,則顯示此啟動子在ABA100μM 處理或病原真菌感染下會明顯地受到誘導。
另外在水稻轉殖方面,將已轉殖pOMBLl::GUS 之水稻癒合組織以不同誘導試劑處理並進行組織染色,得知此啟動子明顯受ABA 和JA 的誘導。若將水稻不同大小之幼苗進行wounding 處理及組織染色,也顯示此啟動子可被受傷誘導。再者將已轉殖pOMBLl::GFP之水稻癒合組織以不同誘導試劑處理或病原真菌感染後進行RT-PCR 反應,結果顯示此啟動子在ABA、JA 和SA 處理或病原真菌感染下會明顯地受到誘導,卻可能受IAA 抑制。最後在菸草轉殖方面,利用已轉殖pOMBLl::GFP 之菸草葉片進行癒合組織的誘導,並利用共軛焦螢光顯微鏡(Confocal microscope)進行觀察,已經確定pOMBLl::GFP 有插入至菸草genome 中。接著,將已轉殖pOMBLl::GFP 之菸草癒合組織以不同誘導試劑處理或病原真菌感染後進行RT-PCR 反應,結果顯示此啟動子在ABA 和SA 處理或病原真菌感染下會明顯地受到誘導,此結果與阿拉伯芥相似。然而,為了確定MBL 基因在文心蘭假球莖中是否會受到不同賀爾蒙處理而誘導其大量表現,我選取同一時期之文心蘭以ABA、SA、IAA 和JA 處理後進行北方墨漬分析,探討其表現量差異,結果顯示MBL 基因明顯地受到ABA、JA 和SA 誘導,而可能受IAA 抑制,此與轉殖水稻分析的結果相符合。
由轉殖阿拉伯芥、菸草與水稻經分析的結果具有些許的差異,我們認為可能MBL 基因啟動子在雙子葉及單子葉中的調控機制有所不同而導致。另外,MBL 基因啟動子無論在阿拉伯芥、水稻或菸草中皆可受病原真菌感染而誘導,我們推測或許MBL 基因在文心蘭中對抗病原真菌入侵時扮演某些角色。
zh_TW
dc.description.abstractThe monocot mannose-binding lectins are an extended superfamily of structurally and evolutionarily related proteins, which until now have been isolated from species of the Amaryllidaceae, Alliaceae, Araceae, Bromeliaceae, Lilliaceae, and Orchidaceae. Monocot mannose-binding lectins have been found in most vegetative tissues such as leaves, flowers, ovaries, bulbs, tubers, rhizomes, and roots. Previous study showed that monocot mannose-binding lectins are believed to play a role in the plant’s defense against sucking insects, nematodes, other invertebrates and even fungi. A mannose-binding lectin (MBL) has been isolated from Oncidium Gower Ramsey. It is an abundant storage protein in Oncidium pseudobulb.
In order to understand the role of the promoter region of MBL in the regulating of gene expression, the 2Kb 5’-flanking region of MBL was further cloned and sequenced by PCR-based genomic walking method. A number of putative regulatory motifs were identified, including two ABRE, two WUN-motifs, three W-boxes, three TGA-boxes, four MYBs and six MYC protein binding sequences. The promoter of MBL was fused to the GUS and GFP sequences, then the resulting constructs were used to transform Arabidopsis, rice and tobacco. In Arabidopsis transgenic plants, the histochemical analysis revealed the expression of MBL promoter::GUS was detected at high level in shoot apical meristems, hypocotyls and roots at different stages of development. In RT-PCR analysis, we found that the GUS expression in roots and stems were higher than that in leaves. Besides, we found that the GUS activity was induced by IAA, JA and SA, but especially by ABA and Blumeria gramini f.sp. hordei. In rice transgenic calli and plants, the histochemical and RT-PCR analysis indicated that the GUS activity was prominantly induced by JA, ABA, SA and Blumeria gramini f.sp. hordei, but suppressed by IAA. This expression pattern was similar to that of the MBL gene in Oncidium. In addition, histochemical analysis of GUS activity in rice seedlings revealed that the GUS activity was also induced by mechanical wounding treatment. Otherwise, In tobacco calli, the RT-PCR analysis revealed that the GFP activity was induced by ABA, SA and Blumeria gramini f.sp. hordei. This result in tobacco was similar to that in Arabidopsis. In summary, the data suggest that the regulation of the MBL gene may be not the same in monocots and dicots. Moreover, it also suggested that the MBL genes in Oncidium maybe play a role in the plant’s defense against fungi.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:30:28Z (GMT). No. of bitstreams: 1
ntu-95-R93b42003-1.pdf: 1360894 bytes, checksum: 40e558e1c6ed4e0c38782dda6cf62dbd (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要………………………………………………………………………………4
英文摘要………………………………………………………………………………6
第一章 前言
第一節 植物的防禦機制…………….………………………………………8
第二節 植物凝集素與文心蘭中的MBL基因………………….………….13
第三節 本論文之研究方向…………………………………………………19
第二章 材料與方法
一、實驗材料………………………………………………………………...…..21
二、實驗方法
第一節 MBL基因啟動子之釣取…………………………………………... 22
第二節 MBL基因啟動子載體之構築………………………………………33
第三節 基因槍法洋蔥表皮細胞之轉殖…………………………………….37
第四節 農桿菌的轉型與鑑定……………………………………………….41
第五節 阿拉伯芥之基因轉殖與轉殖株的鑑定…………………………… 42
第六節 阿拉伯芥轉殖株於環境逆境處理誘導之GUS螢光活性分析……46
第七節 水稻之基因轉殖與轉殖株的鑑定………………………………….48
第八節 轉殖水稻中MBL啟動子受環境逆境處理誘導之分析………….. 50
第九節 菸草之基因轉殖與轉殖株的鑑定………………………………….51
第十節 轉殖菸草中MBL啟動子受環境逆境處理誘導之分析…………...52
第十一節 MBL基因在文心蘭假球莖中之表現分析………………………53
第三章 結果
第一節 MBL基因啟動子之釣取……………………………………………61
第二節 MBL基因啟動子載體之構築與進行洋蔥表皮細胞之轉殖………62
第三節 農桿菌的轉型與鑑定…………………………………………….....62
第四節 阿拉伯芥之基因轉殖與轉殖株的鑑定…………………………….63
第五節 阿拉伯芥轉殖株於環境逆境處理誘導之GUS螢光活性分析…...63
第六節 水稻之基因轉殖…………………………………………………….64
第七節 轉殖水稻中MBL啟動子受環境逆境處理誘導之分析…………...65
第八節 菸草之基因轉殖與轉殖株的鑑定………………………………….65
第九節 轉殖菸草中MBL啟動子受環境逆境處理誘導之分析…………...66
第十節 MBL基因在文心蘭假球莖中之表現分析…………………………66
第四章 討論………………………………………………………………………….68
參考文獻……………………………………………………………………………….72
圖表…………………………………………………………………………………….86
附圖……………………………………………………………………………………108
dc.language.isozh-TW
dc.subject甘露糖結合型凝集素zh_TW
dc.subjectmannose-binding lectinsen
dc.title文心蘭萳茜品系甘露糖結合型凝集素啟動子的調控機制之分析zh_TW
dc.titleFunctional Analysis of the promoter region of mannose-binding lectins (MBLs) form Oncidium Gower Ramseyen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林長平,王淑珍,謝旭亮
dc.subject.keyword甘露糖結合型凝集素,zh_TW
dc.subject.keywordmannose-binding lectins,en
dc.relation.page112
dc.rights.note有償授權
dc.date.accepted2006-07-21
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
1.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved