請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33232完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 符文美 | |
| dc.contributor.author | Hsiao-Ching Yu | en |
| dc.contributor.author | 余曉青 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:30:23Z | - |
| dc.date.available | 2009-08-02 | |
| dc.date.copyright | 2006-08-02 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-20 | |
| dc.identifier.citation | Altar CA, Boylan CB, Jackson C, Hershenson S, Miller J, Wiegand SJ, Lindsay RM and Hyman C (1992) Brain-derived neurotrophic factor augments rotational behavior and nigrostriatal dopamine turnover in vivo. Proc Natl Acad Sci U S A 89(23):11347-11351.
Andrew R, Watson DG, Best SA, Midgley JM, Wenlong H and Petty RK (1993) The determination of hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal controls. Neurochem Res 18(11):1175-1177. Ashkenazi A and Dixit VM (1998) Death receptors: signaling and modulation. Science 281(5381):1305-1308. Barger SW, Fiscus RR, Ruth P, Hofmann F and Mattson MP (1995) Role of cyclic GMP in the regulation of neuronal calcium and survival by secreted forms of beta-amyloid precursor. J Neurochem 64(5):2087-2096. Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R and Verna JM (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol 65(2):135-172. Bove J, Prou D, Perier C and Przedborski S (2005) Toxin-induced models of Parkinson's disease. NeuroRx 2(3):484-494. Bruchelt G, Schraufstatter IU, Niethammer D and Cochrane CG (1991) Ascorbic acid enhances the effects of 6-hydroxydopamine and H2O2 on iron-dependent DNA strand breaks and related processes in the neuroblastoma cell line SK-N-SH. Cancer Res 51(22):6066-6072. Canals S, Casarejos MJ, de Bernardo S, Rodriguez-Martin E and Mena MA (2001) Glutathione depletion switches nitric oxide neurotrophic effects to cell death in midbrain cultures: implications for Parkinson's disease. J Neurochem 79(6):1183-1195. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S and Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282(5392):1318-1321. Chien WL, Liang KC, Teng CM, Kuo SC, Lee FY and Fu WM (2003) Enhancement of long-term potentiation by a potent nitric oxide-guanylyl cyclase activator, 3-(5-hydroxymethyl-2-furyl) -1-benzyl-indazole. Mol Pharmacol 63(6):1322-1328. Chien WL, Liang KC, Teng CM, Kuo SC, Lee FY and Fu WM (2005) Enhancement of learning behaviour by a potent nitric oxide-guanylate cyclase activator YC-1. Eur J Neurosci 21(6):1679-1688. Choi WS, Canzoniero LM, Sensi SL, O'Malley KL, Gwag BJ, Sohn S, Kim JE, Oh TH, Lee EB and Oh YJ (1999) Characterization of MPP(+)-induced cell death in a dopaminergic neuronal cell line: role of macromolecule synthesis, cytosolic calcium, caspase, and Bcl-2-related proteins. Exp Neurol 159(1):274-282. Chun YS, Yeo EJ, Choi E, Teng CM, Bae JM, Kim MS and Park JW (2001) Inhibitory effect of YC-1 on the hypoxic induction of erythropoietin and vascular endothelial growth factor in Hep3B cells. Biochem Pharmacol 61(8):947-954. Chun YS, Yeo EJ, and Park JW (2004) Versatile pharmacological actions of YC-1:anti-platelet to anticancer. Cancer Lett. 207(1):1-7. Cohen G and Heikkila RE (1974) The generation of hydrogen peroxide, superoxide radical, and hydroxyl radical by 6-hydroxydopamine, dialuric acid, and related cytotoxic agents. J Biol Chem 249(8):2447-2452. Curtius HC, Wolfensberger M, Steinmann B, Redweik U and Siegfried J (1974) Mass fragmentography of dopamine and 6-hydroxydopamine. Application to the determination of dopamine in human brain biopsies from the caudate nucleus. J Chromatogr 99(0):529-540. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y and Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91(2):231-241. Dauer W and Przedborski S (2003) Parkinson's disease: mechanisms and models. Neuron 39(6):889-909. Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM and Kopin IJ (1979) Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1(3):249-254. Desole MS, Esposito G, Fresu L, Migheli R, Enrico P, Miele M, De Natale G and Miele E (1993) Correlation between 1-methyl-4-phenylpyridinium ion (MPP+) levels, ascorbic acid oxidation and glutathione levels in the striatal synaptosomes of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated rat. Neurosci Lett 161(2):121-123. Dexter DT, Wells FR, Lees AJ, Agid F, Agid Y, Jenner P and Marsden CD (1989) Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease. J Neurochem 52(6):1830-1836. Fadeel B, Orrenius S and Zhivotovsky B (1999) Apoptosis in human disease: a new skin for the old ceremony? Biochem Biophys Res Commun 266(3):699-717. Fahn S and Cohen G (1992) The oxidant stress hypothesis in Parkinson's disease: evidence supporting it. Ann Neurol 32(6):804-812. Farinelli SE, Park DS and Greene LA (1996) Nitric oxide delays the death of trophic factor-deprived PC12 cells and sympathetic neurons by a cGMP-mediated mechanism. J Neurosci 16(7):2325-2334. Fiscus RR (2002) Involvement of cyclic GMP and protein kinase G in the regulation of apoptosis and survival in neural cells. Neurosignals 11(4):175-190. Fiscus RR, Tu AW and Chew SB (2001) Natriuretic peptides inhibit apoptosis and prolong the survival of serum-deprived PC12 cells. Neuroreport 12(2):185-189. Friebe A and Koesling D (1998) Mechanism of YC-1-induced activation of soluble guanylyl cyclase. Mol Pharmacol 53(1):123-127. Friebe A and Koesling D (2003) Regulation of nitric oxide-sensitive guanylyl cyclase. Circ Res 93(2):96-105. Garthwaite G, Goodwin DA, Neale S, Riddall D and Garthwaite J (2002) Soluble guanylyl cyclase activator YC-1 protects white matter axons from nitric oxide toxicity and metabolic stress, probably through Na(+) channel inhibition. Mol Pharmacol 61(1):97-104. Glinka YY and Youdim MB (1995) Inhibition of mitochondrial complexes I and IV by 6-hydroxydopamine. Eur J Pharmacol 292(3-4):329-332. Golbe LI (1991) Young-onset Parkinson's disease: a clinical review. Neurology 41(2 ( Pt 1)):168-173. Hail N, Jr., Carter BZ, Konopleva M and Andreeff M (2006) Apoptosis effector mechanisms: A requiem performed in different keys. Apoptosis in press. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770-776. Hughes AJ, Daniel SE, Blankson S and Lees AJ (1993) A clinicopathologic study of 100 cases of Parkinson's disease. Arch Neurol 50(2):140-148. Hwang TL, Hung HW, Kao SH, Teng CM, Wu CC and Cheng SJ (2003) Soluble guanylyl cyclase activator YC-1 inhibits human neutrophil functions through a cGMP-independent but cAMP-dependent pathway. Mol Pharmacol 64(6):1419-1427. Javitch JA and Snyder SH (1984) Uptake of MPP(+) by dopamine neurons explains selectivity of parkinsonism-inducing neurotoxin, MPTP. Eur J Pharmacol 106(2):455-456. Jin K, Mao XO, Zhu Y and Greenberg DA (2002) MEK and ERK protect hypoxic cortical neurons via phosphorylation of Bad. J Neurochem 80(1):119-125. Johnson DE (2000) Noncaspase proteases in apoptosis. Leukemia 14(9):1695-1703. Ko FN, Wu CC, Kuo SC, Lee FY and Teng CM (1994) YC-1, a novel activator of platelet guanylate cyclase. Blood 84(12):4226-4233. Kroemer G and Reed JC (2000) Mitochondrial control of cell death. Nat Med 6(5):513-519. Kumar R, Agarwal AK and Seth PK (1995) Free radical-generated neurotoxicity of 6-hydroxydopamine. J Neurochem 64 (4) : 1703-1707. Langston JW, Ballard P, Tetrud JW and Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219(4587):979-980. Lee HJ, Bach JH, Chae HS, Lee SH, Joo WS, Choi SH, Kim KY, Lee WB and Kim SS (2004) Mitogen-activated protein kinase/extracellular signal-regulated kinase attenuates 3-hydroxykynurenine-induced neuronal cell death. J Neurochem 88(3):647-656. Li Y, Maher P and Schubert D (1997) Requirement for cGMP in nerve cell death caused by glutathione depletion. J Cell Biol 139(5):1317-1324. Liu L, Li H, Underwood T, Lloyd M, David M, Sperl G, Pamukcu R and Thompson WJ (2001) Cyclic GMP-dependent protein kinase activation and induction by exisulind and CP461 in colon tumor cells. J Pharmacol Exp Ther 299(2):583-592. Loweth AC, Williams GT, Scarpello JH and Morgan NG (1997) Evidence for the involvement of cGMP and protein kinase G in nitric oxide-induced apoptosis in the pancreatic B-cell line, HIT-T15. FEBS Lett 400(3):285-288. Luthman J, Fredriksson A, Sundstrom E, Jonsson G and Archer T (1989) Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: motor behavior and monoamine alterations at adult stage. Behav Brain Res 33(3):267-277. Majno G and Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 146(1):3-15. Mizuno Y, Suzuki K, Sone N and Saitoh T (1987) Inhibition of ATP synthesis by 1-methyl-4-phenylpyridinium ion (MPP+) in isolated mitochondria from mouse brains. Neurosci Lett 81(1-2):204-208. Montoliu C, Llansola M, Kosenko E, Corbalan R and Felipo V (1999) Role of cyclic GMP in glutamate neurotoxicity in primary cultures of cerebellar neurons. Neuropharmacology 38(12):1883-1891. Nicklas WJ, Vyas I and Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1 -methyl-4-pheny l-1,2,5,6 - tetrahydropyridine. Life Sci 36(26):2503-2508. Nicotra A and Parvez SH (2000) Cell death induced by MPTP, a substrate for monoamine oxidase B. Toxicology 153(1-3):157-166. Ochu EE, Rothwell NJ and Waters CM (1998) Caspases mediate 6-hydroxydopamine-induced apoptosis but not necrosis in PC12 cells. J Neurochem 70(6):2637-2640. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM and Donner DB (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401(6748):82-85. Pollman MJ, Yamada T, Horiuchi M and Gibbons GH (1996) Vasoactive substances regulate vascular smooth muscle cell apoptosis. Countervailing influences of nitric oxide and angiotensin II. Circ Res 79(4):748-756. Porter CC, Totaro JA and Stone CA (1963) Effect of 6-hydroxydopamine and some other compounds on the concentration of norepinephrine in the hearts of mice. J Pharmacol Exp Ther 140:308-316. Przedborski S and Ischiropoulos H (2005) Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson's disease. Antioxid Redox Signal 7(5-6):685-693. Przedborski S, Jackson-Lewis V, Yokoyama R, Shibata T, Dawson VL and Dawson TM (1996) Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proc Natl Acad Sci U S A 93(10):4565-4571. Reed JC, Jurgensmeier JM and Matsuyama S (1998) Bcl-2 family proteins and mitochondria. Biochim Biophys Acta 1366(1-2):127-137. Saner A and Thoenen H (1971) Model experiments on the molecular mechanism of action of 6-hydroxydopamine. Mol Pharmacol 7(2):147-154. Schober A (2004) Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP. Cell Tissue Res 318(1):215-224. Senoh S, Witkop B (1959) Non-enzymatic conversions of dopamine to norepinephrine and trihydroxyphenetylamines. J Am Chem Soc 81:6222–6231 Senoh S, Creveling CR, Udenfriend S, Witkop B (1959) Chemical, enzymatic, and metabolic studies on the mechanism of oxidation of dopamine. J Am Chem Soc 81:6236–6240 Seyfried J, Soldner F, Kunz WS, Schulz JB, Klockgether T, Kovar KA and Wullner U (2000) Effect of 1-methyl-4-phenylpyridinium on glutathione in rat pheochromocytoma PC 12 cells. Neurochem Int 36(6):489-497. Sofic E, Lange KW, Jellinger K and Riederer P (1992) Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson's disease. Neurosci Lett 142(2):128-130. Soldner F, Weller M, Haid S, Beinroth S, Miller SW, Wullner U, Davis RE, Dichgans J, Klockgether T and Schulz JB (1999) MPP+ inhibits proliferation of PC12 cells by a p21(WAF1/Cip1)-dependent pathway and induces cell death in cells lacking p21(WAF1/Cip1). Exp Cell Res 250(1):75-85. Spina MB, Squinto SP, Miller J, Lindsay RM and Hyman C (1992) Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: involvement of the glutathione system. J Neurochem 59(1):99-106. Suenobu N, Shichiri M, Iwashina M, Marumo F and Hirata Y (1999) Natriuretic peptides and nitric oxide induce endothelial apoptosis via a cGMP-dependent mechanism. Arterioscler Thromb Vasc Biol 19(1):140-146. Teng CM, Wu CC, Ko FN, Lee FY and Kuo SC (1997) YC-1, a nitric oxide-independent activator of soluble guanylate cyclase, inhibits platelet-rich thrombosis in mice. Eur J Pharmacol 320(2-3):161-166. Tsujimoto Y (2003) Cell death regulation by the Bcl-2 protein family in the mitochondria. J Cell Physiol 195(2):158-167. von Coelln R, Kugler S, Bahr M, Weller M, Dichgans J and Schulz JB (2001) Rescue from death but not from functional impairment: caspase inhibition protects dopaminergic cells against 6-hydroxydopamine-induced apoptosis but not against the loss of their terminals. J Neurochem 77(1):263-273. Wang JP, Chang LC, Huang LJ and Kuo SC (2001) Inhibition of extracellular Ca(2+) entry by YC-1, an activator of soluble guanylyl cyclase, through a cyclic GMP-independent pathway in rat neutrophils. Biochem Pharmacol 62(6):679-684. Wegener JW and Nawrath H (1997) Differential effects of isoliquiritigenin and YC-1 in rat aortic smooth muscle. Eur J Pharmacol 323(1):89-91. Woodgate A, MacGibbon G, Walton M and Dragunow M (1999) The toxicity of 6-hydroxydopamine on PC12 and P19 cells. Brain Res Mol Brain Res 69(1):84-92. Wu CF, Bishopric NH and Pratt RE (1997) Atrial natriuretic peptide induces apoptosis in neonatal rat cardiac myocytes. J Biol Chem 272(23):14860-14866. Wyllie AH, Kerr JF and Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251-306. Yasuhara S, Zhu Y, Matsui T, Tipirneni N, Yasuhara Y, Kaneki M, Rosenzweig A and Martyn JA (2003) Comparison of comet assay, electron microscopy, and flow cytometry for detection of apoptosis. J Histochem Cytochem 51(7):873-885. Zoratti M and Szabo I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241(2):139-176. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33232 | - |
| dc.description.abstract | 巴金森氏症是現今最常見的神經退化性疾病之一,在目前的醫療只能治標不能治本,並且對於其致病機轉仍然不清楚的情況下,研發新的治療藥物並研究致病原因是非常必要的。
我們發現YC-1可以減少SH-SY5Y受到MPP+和6-OHDA的損害,SH-SY5Y是神經母細胞瘤的細胞株,具有多巴胺神經的特徵,對MPP+和6-OHDA具有敏感性,而YC-1可以增加sGC對NO的感受性,是一個sGC 活化劑,早先被發現具有抗血小板凝集和使血管平滑肌放鬆的功能,之後又陸續有報告指出它在其他疾病模式下也有不同的效果。 YC-1可以抑制MPP+或6-OHDA造成SH-SY5Y細胞凋亡達50%以上,並且可以抑制MPP+或6-OHDA造成的Bcl-2 減少, PARP 斷裂, 以及procaspase-3 活化;我們認為YC-1並非藉由NO/cGMP/PKG訊息路徑達到神經保護的作用,因為給予NOS抑制劑(L-NAME, 7-NI),sGC抑制劑(ODQ),PKG抑制劑(KT 5823, RP-8-Br-PET-cGMPS)都不能有效抑制YC-1的作用;而且直接給予cGMP類似物(8-Br-cGMP)並無法減少MPP+和6-OHDA造成的細胞毒性,所以YC-1在這樣的實驗模式裡應該是透過其他路徑達到其神經保護的作用;此外,我們發現PKG抑制劑(KT 5823)可以保護SH-SY5Y細胞,降低MPP+或6-OHDA造成的細胞毒性,因此,我們認為PKG也許參與在MPP+或6-OHDA的毒性機轉當中,或者KT 5823有其他的作用標的。 綜合以上實驗結果,我們認為YC-1可以減少神經細胞受到MPP+或6-OHDA的傷害,有潛力發展成治療巴金森氏症的藥物,而它在細胞及動物模式的保護機轉則仍需再進一步探討。 | zh_TW |
| dc.description.abstract | Parkinson’s disease(PD) is one of the most common neurodegeneration diseases in the world and yet lacks a thorough cure. The studies on its pathogenesis as well as the development of new therapies are indispensable. A compound, YC-1, which was first reported to have an anti-platelet function, is found here to be neuroprotective in SH-SY5Y human neuroblastoma cell line. It can protect SH-SY5Y cells from the damage caused by MPP+ or 6-OHDA.
YC-1 inhibited MPP+ or 6-OHDA-induced cell death, which is evaluated by MTT reaction, PI flow cytometry, and DAPI staining. YC-1 also inhibited Bcl-2 degradation, PARP cleavage, and procaspase-3 activation caused by MPP+ or 6-OHDA. As a sGC activator, we then examined whether YC-1 protects SH-SY5Y through NO-cGMP-PKG pathway. However, all inhibitors acting in NO-cGMP-PKG pathway failed to suppress the effect of YC-1. The neuroprotective mechanism of YC-1 needs further investigation. On the contrary, the cell death induced by MPP+ or 6-OHDA was partially reversed by KT 5823, a PKG inhibitor, suggesting that PKG inhibition may be protective in dopaminergic neuronal cell line exposed to MPP+ or 6-OHDA. On the other hand, KT 5823 may also act on other targets except PKG. In conclusion, here we demonstrate that YC-1 possesses neuroprotective quality. Although the mechanisms of action of YC-1 in cell line and in animal model are still required to be investigated, YC-1 is likely to be a potential compound to treat PD patients. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:30:23Z (GMT). No. of bitstreams: 1 ntu-95-R93443016-1.pdf: 2462357 bytes, checksum: 9a65bd79045c6cd0195de493969dad95 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 縮寫表…………………………………………………………………1
英文摘要………………………………………………………………3 中文摘要………………………………………………………………4 緒論……………………………………………………………………6 實驗材料及方法………………………………………………………19 結果……………………………………………………………………24 討論……………………………………………………………………51 結論……………………………………………………………………61 參考文獻………………………………………………………………62 | |
| dc.language.iso | zh-TW | |
| dc.subject | 神經保護 | zh_TW |
| dc.subject | 巴金森氏症 | zh_TW |
| dc.subject | MPP+ | en |
| dc.subject | YC-1 | en |
| dc.subject | 6-OHDA | en |
| dc.subject | PKG | en |
| dc.subject | SH-SY5Y | en |
| dc.title | YC-1的神經保護作用機轉之探討 | zh_TW |
| dc.title | Studies on the neuroprotective effect of YC-1 | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 顏茂雄,楊春茂,蘇銘嘉,湯志永 | |
| dc.subject.keyword | 神經保護,巴金森氏症, | zh_TW |
| dc.subject.keyword | YC-1,MPP+,6-OHDA,SH-SY5Y,PKG, | en |
| dc.relation.page | 70 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-21 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 2.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
