請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33229完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭光宇(Guang-Yu Guo) | |
| dc.contributor.author | Chia-Lun Chang | en |
| dc.contributor.author | 張家倫 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:30:15Z | - |
| dc.date.available | 2011-08-04 | |
| dc.date.copyright | 2011-08-04 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-27 | |
| dc.identifier.citation | (1) G. E. Uhlenbeck, and S. Goudsmit, Naturwissenschaften Vol. 13, 47, 953 (1925)
(2) V. Bargmann, L. Michel, and V. L. Telegdi, Phys. Rev. Lett. 2, 435 (1959) (3) L. H. Thomas, Philos. Mag. 3, 1 (1927) (4) T. W. Chen and D. W. Chou, Phys. Rev. A 82, 012115 (2010) (5) Proc. R. Soc. A (1928) Vol. 117, no. 778 (6) J. J. Sakurai, (1967). Advanced Quantum Mechanics. Addison Wesley (7) O. Klein, Zeitschrift f. physik 53, 157 (1929) (8) J. P. Costella, and B. H. J. McKellar, Am. J. Phys. 63, 1119 (1995) (9) L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950) (10) P. O. Lowding, J. Chem. Phys. 19, 1936 (1951) (11) A. J. Silenko, J. Math. Phys. 44, 2952 (2003) (12) A. J. Silenko, Phys. Rev. A 77, 012116 (2008) (13) E. van Lenthe, E. J. Baerends, and J. G. Snijders, J. Chem. Phys. Vol. 101, No. 11, 1 December (1994) (14) W. Kutzelnigg, Z. Phys. D - Atoms, Molecules and Clusters 15, 27-50 (1990) (15) R. Shankar, Principles of quantum mechanics Second ED. (16) W. Greiner, Relativistic quantum mechanics - wave equations Third ED. (17) E. Schrodinger, Z. f. Physik, 70, 808 (1931) (18) J. D. Jackson, Classical Electrodynamics third ED. (19) W. Pauli, Rev. Mod. Phys. 13,203 (1941) (20) E. Schrodinger Phys. Rev. 28, 1049 (1926) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33229 | - |
| dc.description.abstract | The classical Hamiltonian of a point charged particle with intrinsic spin, which is composed of the relativistic orbit Hamiltonian and the spin Hamiltonian. This spin Hamiltonian can be derived from the Thomas-Bargmann-Michel-Telegdi equation. In our thesis, we will prove that the classical Hamiltonian in which the gyromagnetic ratio equals 2 is in agreement with the low-energy limit of the Dirac equation, the relativistic quantum theory for a spin-1/2 charged particle. For this purpose, we apply the Foldy-Wouthuysen transformation to the Dirac Hamiltonian under the assumptions of the static and homogeneous electromagnetic fields. Furthermore, in order to maintain such a correspondence in arbitrary gyromagnetic ratio cases, we perform the F-W transformation to the Dirac-Pauli Hamiltonian, which is the Dirac Hamiltonian plus the anomalous magnetic dipole moment Hamiltonian. Up to the twelfth-order of F-W transformed Dirac and Dirac-Pauli Hamiltonian, the calculation results are in accord with the corresponding classical Hamiltonians. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:30:15Z (GMT). No. of bitstreams: 1 ntu-100-R98222049-1.pdf: 1359187 bytes, checksum: 71518b155ede719efe7b34be90a555b3 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 1. Introduction...............2
2. Dirac equation.............5 2.1 Spin-1/2 equation: The Dirac equation....5 2.2 Historical background of Dirac equation..7 2.3 Zitterbewegung...........................9 3. The classical dynamics for a charged spin particle..12 3.1 Spin motion..............................12 3.2 Orbital motion...........................15 4. Foldy-Wouthuysen transformation for Dirac Hamiltonian............................................17 4.1 The original F-W transformation..........17 4.2 The new kind of F-W transformation.......22 5. The equivalence between F-W transformation of Dirac Hamiltonian and TBMT equation..........................29 6. The F-W transformed Dirac-Pauli Hamiltonian.........32 7. Conclusions.........................................40 A. The calculation detial..............................42 A.1 The calculation process of F-W transformed Dirac Hamiltonian.....................................42 A.2 The calculation process of F-W transformed Dirac-Pauli Hamiltonian...............................51 | |
| dc.language.iso | en | |
| dc.subject | 迪拉克方程式 | zh_TW |
| dc.subject | 托馬仕-班傑明-麥克-特勒地方程式 | zh_TW |
| dc.subject | Dirac equation | en |
| dc.subject | Thomas-Bargmann-Michel-Telegdi equation | en |
| dc.title | 單電子粒子之迪拉克方程式經佛迪-吾速森轉換的漢米爾敦量與托馬仕-班傑明-麥克-特勒第方程式的關係 | zh_TW |
| dc.title | Correlations between Foldy-Wouthuysen transformed Dirac equation and Thomas-Bargmann-Michel-Telegdi equation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡崇德(Chong Der Hu),陳智泓(Chyh-Hong Chern),林瑜琤(Yu-Cheng Lin) | |
| dc.subject.keyword | 迪拉克方程式,托馬仕-班傑明-麥克-特勒地方程式, | zh_TW |
| dc.subject.keyword | Dirac equation,Thomas-Bargmann-Michel-Telegdi equation, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-27 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
