請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33220
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴朝明(Chag-Ming Lai) | |
dc.contributor.author | Chien-Chih Lee | en |
dc.contributor.author | 李建志 | zh_TW |
dc.date.accessioned | 2021-06-13T04:29:51Z | - |
dc.date.available | 2007-07-24 | |
dc.date.copyright | 2006-07-24 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-20 | |
dc.identifier.citation | 王巧萍。2006。森林土壤碳庫與大氣二氧化碳之互動。林業研究專訊。13(1):11-13。
王明光、蔣先覺、白創文和金恆鑣。2000。台灣高山森林土壤研究的近況。土壤與環境。3(1):43-48。 李宏明。2002。台灣森林土壤二氧化碳之釋放通量及其影響因子。台灣大學農業化學研究所碩士論文。台北市。 行政院環境保護署。2006。溫室氣體資料庫網站 (http://gis2.sinica.edu.tw/epa/ epa.html) 林青平、陳財輝和邱志郁。2005。苗栗後龍海岸砂丘林土壤酵素活性的空間和季節性變化。台灣林業科學。20(2):157-166。 金恆鑣。2003。跨試驗林地森林落葉的長期分解(3/3)。行政院國家科學委員會專題研究計畫成果報告。 林國銓、黃菊美、王巧萍和張乃航。2004。六龜台灣杉人工林碳和氮的累積和分布。台灣林業科學。19: 225-235。 陳佩瑜。2005。玉米-水稻輪作系統下施肥管理對根圈土壤酵素活性及細菌族群結構之影響。台灣大學農業化學研究所碩士論文。台北市。 張朝婷。2005。臺灣地區不同海拔之森林土壤碳及養分庫存的硏究。台灣大學森林學研究所。台北市。 賴朝明、劉桂龍、李宏明、馮志峰、錢元皓、王明光、顏江河和楊吉雄。人工造林對大氣中二氧化碳濃度之影響。2003 氣候變遷對森林之二氧化碳吸存影響研討會論文集,pp.95-109。國立台灣大學森林學系和中華林學會。 賴朝明和柯光瑞。2006。林業之生質能源、碳匯池與永續發展。生質能源應用與展望(王隆煇、楊盛行、鄭作林編),pp.143-151。中華生質能源學會。台北市。 謝漢欽、汪大雄、林俊成。2003。應用地理資訊系統估算六龜試驗林森林蓄積變動之二氧化碳吸存效應。台灣林業科學 18(3):171-182。 Accoe, F., P. Boeckx, J. Busschaert, G. Hofman, and O. Van Cleemput. 2004. Gross N transformation rates and net N mineralization rates related to the C and N contents of soil organic matter fractions in grassland soils of different age. Soil Biol. Biochem. 36:2075-2087. Acosta-Martínez, V., S. Klose, and T.M. Zobeck. 2003. Enzyme activities in semiarid soils under conservation reserve propram, native rangeland, and cropland. J. Plant Nutr. Soil Sci. 166:699-707. Aita, C., S. Recous, and D.A. Angers. 1997. Short-term kinetics of residual wheat straw C and N under field conditions: characterization by 13C15N tracing and soil particle size fractionation. Eur. J. Soil Sci. 48:283-294. Ajwa, H.A., C.J. Dell, and C.W. Ride. 1999. Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization. Soil Biol. Biochem. 31:769-777. Andersson, M., A. Kjøller, and S. Struwe. 2004. Microbial enzyme activities in leaf litter, humus and mineral soil layers of European forests. Soil Biol. Biochem. 36:1527-1537. Angers, D.A., S. Recous, and C. Aita. 1997. Fate of carbon and nitrogen in water-stable aggregates during decomposition of 13C15N-labelled wheat straw in situ. Eur. J. Soil Sci. 48:295-300. Aon, M.A., and A.C. Colaneri. 2001. Temporal and spatial evolution of enzymatic activities and physico-chemical properties in an agricultural soil. Appl. Soil Ecol. 18:255-270. Barbhuiya, A.R., A. Arunachalam, H.N. Pandey, K. Arunachalam, M.L. Khan, and P.C. Nath. 2004. Dynamics of soil microbial biomass C, N and P in disturbed and undisturbed stands of a tropical wet-evergreen forest. Eur. J. Soil Biol. 40:113-121. Berg, B. 2000. Litter decomposition and organic matter turnover in northern forest soils. For. Ecol. Manage. 133: 13-22. Berger, T.W., C. Neubauer, and G. Glatzel. 2002. Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce (Picea abies) and mixed species stands in Austria. For. Ecol. Manage. 159:3-14. Bielka, H., H.B.F. Dixon, P. Karlson, C. Liébecq, N. Sharon, S.F. Van Lenten, S.G. Velick, J.F.G. Vliegenthart, and E.C. Webb. 1984. Enzyme Nomenclature. Academic Press, New York. Compton, J.E., and R.D. Boone. 2002. Soil nitrogen transformations and the role of light fraction organic matter in forest soils. Soil Biol. Biochem. 34:933-943. Covington, W. W. 1981. Changes in forest floor organic matter and nutrient content following clear cutting in northern hardwoods. Ecology 62:41-48. Currie, W.S.1999. The responsive C and N biogeochemistry of the temperate forest floor. Trends Ecol. Evol. 14:316-320. Dalias, P., J.M. Anderson, P. Bottner, and M.M. Coûteaux. 2001. Long-term effects of temperature on carbon mineralization process. Soil Biol. Biochem. 33:1049-1057. Deng, S. P., and M. A. Tabatabai. 1994. Cellulase activity of soils. Soil Biol. Biochem. 26:1347-1354. Devi Bijayalaxmi, N., and P.S. Yadava. 2006. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India. Appl. Soil Ecol. 31:220-227. Dick, R.P. 1994. Soil enzyme activities as indicators of soil quality. p. 107-124. In J.W. Doran et al. (ed.) Defining soil quality for a sustainable environment. SSSA, Madison, WI. Dick, R.P. 1997. Soil enzyme activities as integrative indicators of soil health. p. 121-157. In C.E. Panhkurst et al. (ed.) Biological indicators of soil health. CAB International, Wellingford. Dixon, R.K. 1994. Carbon pools and flux of global forest ecosystems. Science 263:185-190. Eivasi, F., and M.R. Bayan. 1996. Effects of long-term prescribed burning on the activity of selected soil enzymes in an oak-hickory forest. Can. J. for. Res. 26:1799-1804. Eivazi, F., and M. A. Tabatabai. 1988. Glucosidases and galactosidases in soil. Soil Biol. Biochem. 20:601-606. Ekenler, M., and M.A. Tabatabai. 2002. β-glucosaminindase activity of soils: effect of cropping systems and its relationship to nitrogen mineralization. Biol. Fertil. Soil. 36:367-376. Ekenler, M., and M.A. Tabatabai. 2004. β-glucosaminindase activity as an index of nitrogen mineralization in soils. Commun. Soil Sci. Plant Anal. 35:1081-1094. Eriksson, K.E.L., R.A. Blanchette, and P. Ander. 1990. Biodegration of cellulose. p 89-180. In K.E.L. Eriksson et al.(ed.) Microbial and enzymatic degradation of wood and wood components. Springer-Verlag, New York. Frankenberger, W.T. Jr., and M.A. Tabatabai. 1991. Factors affecting L-asparaginase activity in soils. Biol. Fertil. Soil. 11:1-5. Gee. G. W., and J. W. Bauder. 1986. Particle size analysis. p. 383-411. In A. L. Page et al. (ed.) Method of soil analysis. Part 1. 2nd ed. Agron Monogr. No. 9. ASA, Madison, WI. Gundersen, P., I. Callesen, and W. de Vries. 1998. Nitrate leaching in forest ecosystems is related to forest floor C/N ratios. Enviorn. Pollut. 102:403-407. Hassink, J., and J.W. Dalenberg. 1996. Decomposition and transfer of plant residue 14C between size and density fractions in soil. Plant Soil 179:159-169. Hope, C.F.A., and R.G. Burns. 1987. Activity, orgins and location of cellulose in a silt loam soil. Biol. Fertil. Soil. 5:164-167. Horwath, W.R., and E.A. Paul. 1986. Microbial biomass. p. 753-773. In S.H. Micklson et al. (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. NO. 9. ASA, Madison, WI. Jackson, M.L. 1962. Soluble salt analysis for soil and waters. p. 240-242. In Soil Chemical Analysis. Prentice-Hall, Inc., Englewood Cliffs, New York. Jobbagy, E.G., and R.B. Jackson. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10:423-436. Johansson, E., C. Krantz-Rülcker, B.X. Zhang, and G. Öberg. 2000. Chlorination and biodegradation of lignin. Soil Biol. Biochem. 32:1029-1032. Kang, H., C. Freeman, and T.W. Ashenden. 2001. Effects of elevated CO2 on fen peat biogeochemistry. Sci. Total Enviorn. 279:45-50. Keeney, D. R., and D. W. Nelson. 1982. Nitrogen-inorganic forms. p. 643-698. In A. L. Page et al. (ed.) Methods of Soil Analysis, part 2. 2nd ed. Agron. Monogr. No. 9. ASA, Madison, WI. Körner, C., and J.A. III Arnone. 1992. Response to elevated carbon dioxide in artificial tropical ecosystems. Science 257:1672-1675. Kimble, J., T. Cook, and H. Eswaran. 1990. Organic carbon on a volume basis in tropical and temperate soils. p. 248-253. Transactions of the 14th International congress of soil science, Kyoto. Kiss, S., M. Drágan-Bularda, and D. Rádulescu. 1975. Biological significance of enzymes accumulated in soil. Adv. Agron. 27:25-87. Klose, S., and M.A. Tabatabai. 2002. Response of glycosidases in soils to chloroform fumigation. Biol. Fertil. Soils 35:262-269. Ladd, J.N. 1985. Soil enzymes. p. 175-221. In D.Vaughan and R.E. Malcolm (ed) Soil organic matter and biological activity. Martinus Nijhoff, Boston. Landgraf, D., and S. Klose. 2002. Mobile and readily available C and N fractions and their relationship to microbial biomass and selected enzyme activities in a sandy soil under different management systems. J. Plant Nutr. Soil Sci. 165:9-16. Lugo, A.E. 1992. Comparison of tropical tree plantations with secondary forests of similar age. Ecol. Monogr. 62:1-41. Mendoza-Vega, J., E. Karltun, and M. Olsson. 2003. Estimations of amounts of soil organic carbon and fine root carbon in land use and land cover classes, and soil types of Chiapas highlands, Mexico. Forest Ecol. Manage. 177:191-206. Michel, K., and E. Matzner. 2002. Nitrogen content of forest floor Oa layers affects carbon pathways and nitrogen mineralization. Soil Biol. Biochem. 34:1807-1813. Miller, M., A. Palojärvi, A. Rangger, M. Reeslev, and A. Kjøller. 1998. The use of fluorogenic substrate to measure fungal presence and activity in soil. Appl. Enviorn. Microbiol. 64:613-617. Miltner, A., and W. Zech. 1998. Carbohydrate decomposition in beech litter as influenced by aluminum, iron and manganese oxides. Soil Biol. Biochem. 30:1-7. Mulder, J., H.A. de Wit, H.W.J. Boonen and L.R. Bakken. 2001. Increased levels of aluminium in forest soil: effects on the stores of soil organic carbon. Water Air Soil Pollut. 130:989-994. Niemi, R.M., M. Vepsäläinen, K. Wallenius, S. Simpanen, L. Alakukku, and L. Pietola. 2005. Temporal and soil depth-related variation in soil enzyme activities and in root growth of red clover (Trifolium pretense) and timothy (Phleum pretense) in the field. Appl. Soil Ecol. 30:113-125. Nilsson, L.O., and K. Wiklund. 1995. Indirect effects of N and S deposition on a Norway spruce ecosystem. Water Air Soil Pollut. 85:1613-1622. Panda, P.K., and S.C. Sharma. 1994. Seasonal variations in carbohydrase activities in soils of some tropical plantations. Trop. Ecol. 35:253-262. Parham, J.A., and S.P. Deng. 2000. Detection, quantification and characterization of β-glucosaminidase activity in soil. Soil Biol. Biochem. 32:1183-1190. Paul, E.A., and F.E. Clark. 1996. Carbon cycling and soil organic matter. p. 129-155. In E.A. Paul and F.E. Clark (ed.) Soil microbiology and biochemistry, 2nd ed. Academic Press, New York. Pregitzer, K.S., and E. S. Euskirchen. 2004. Carbon cycling and storage in world forest: biome patterns related to forest age. Gobal Change Biol. 10:1-26. Quastel, J.H. 1946. Soil Metabolism. The Royal Institute Chemistry of Great Britain and Ireland, London. Rostlinna-Vyroba 37:289-295. Richmond, P.A. 1991. Occurrence and functions of native cellulose. p 5-23. In C.H. Haigler and P.J. Weimer (ed.) Biosynthesis and biodegradation of cellulose. Marcel Dekker, Inc., New York. Simmons, J.A., I.J. Fernandez, R.D. Briggs, and M.T. Delaney. 1996. Forest floor carbon pools and fluxes along a regional climate gradient in Maine, USA. For. Ecol. Manage. 84:81-95. Sing, J.S., and S.R. Gupta. 1977. Plant decomposition and soil respiration in terrestrial ecosystems. Bot. Rev. 43:449-528. Sinsabaugh, R. L., K. Antibus, A. E. Linkins, C. A. McClaugherty, L. Rayburn, D. Repert, and T. Weiland. 1993. Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity. Ecology 74: 1586-1593. Sinsabaugh, R.L., and D.L. Moorhead. 1995. Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biol. Biochem. 26:1305-1311. Skujins, J. 1978. History of abiomtic soil enzyme research. p.1-49. In R.G. Burns (ed.) Soil enzymes. Academic Press, New York. Spain, A.V. 1990. Influence of environmental conditions and some soil chemical properties on the carbon and nitrogen contents of some tropical Australian rainforest soils. Aust. J. Soil Res. 28:825-839. Tabatabai, M. 1994. Soil enzymes. p.775-833. In R.W. Weaver et al. (ed.) Methods of soil analysis: Part 2-Microbiological and biochemical properties. SSSA Book Ser. No. 5. SSSA, Madison, WI. Tate III, R.L. 2000. The carbon cycle. p. 284-285. In R.L. Tate III (ed.) Soil microbiology. John Wiley and Sons, New York. Trasar-Cepeda, C., M.C. Leirós, and F. Gil-Sotres. 2000. Biochemical properties of acid soils under climax vegetation (Atlantic oakwood) in an area of the European temperate-humid zone (Galicia, NW Spain): specific parameters. Soil Bio. Biochem. 32:747-755. Tronsmo, A., and G.E. Harman. 1993. Detection and quantification of N-acetyl-β-D-glucosaminidase, chitobiosidase and endochitinase in solutions and on gels. Anal. Biochem. 208:74-79. Trudel, J., and A. Asselin. 1989. Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal. Biochem. 178:362-366. Visser, S., and D. Parkinson. 1992. Soil biological criteria as indicators of soil quality. Soil Sci. Soc. Am. J. 55:998-1004. Vogt, K.A., D.J. Vogt, S. Brown, J.P. Tilley, R.L. Edmonds, W.L. Silver, and T.G. Siccama. 1995. Dynamics of forest floor and soil organic matter accumulation in boreal, temperature, and tropical forest. p. 159-178. In R. Lai et al. (ed) Soil management and Greenhouse Effect. CRC Press, Boca Raton, FL. Woods, A.F. 1899. The destruction of chlorophyll by oxidizing enzymes. Zentralbl. Bakteriol. Parasitenkd. Abt. 25:745-754. Wood, T.M., and K.M. Bhat. 1988. Methods for measuring cellulase activities. p. 87-112. In W.Wood and S.T. Kellogg (ed) Methods in enzymology. Vol. 160, Academic Press, New York. Wood, C.W., H.A. Torbert, H.H. Rogers, G.B. Runion, and S.A. Prior. 1994. Free-air CO2 enrichment effects on soil carbon and nitrogen. Agric. For. Meteorol. 70:103-116. Yanai, R. D., W.S. Currie, and C.L. Goodale. 2003. Soil carbon dynamics after forest harvest: an ecosystem paradigm reconsidered. Ecosystems 6:197-212. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33220 | - |
dc.description.abstract | 本研究目的為探究六龜森林土壤與碳循環有關之酵素活性及其與土壤性質特別是土壤有機碳含量之關係,並分析土壤有機碳與酵素活性之季節性的變化。本研究在農委會林業試驗所六龜研究中心之試驗林選取台灣杉人工林(N 23˚00΄13˝ E 120˚42΄25˝)與天然闊葉林(N 22˚59΄57˝ E 120˚42΄33˝),闊葉林以樟科和殼斗科為主,進行其土壤分層(每層20 cm)採樣,並測定與碳循環有關的三種土壤酵素活性(β-配醣酶、β-胺基葡萄糖苷酶及纖維素酶)、微生物生質量、有機碳和其他土壤性質。結果顯示六龜森林土壤與碳循環有關的酵素活性:(1) 土壤β-配醣酶活性,在台灣杉人工林與天然闊葉林分別為1.20-3.06 (平均2.03 ± 0.79)及3.54-5.49 (平均4.18 ± 0.73) μmol p-nitrophenol g-1soil h-1 ,(2) 土壤β-胺基葡萄醣苷酶活性在台灣杉人工林與天然闊葉林分別為1.50-1.86 (平均1.67 ± 0.13)及1.95-4.37 (平均3.00 ± 0.93) μmol p-nitrophenol g-1soil h-1,(3) 土壤纖維素酶活性在台灣杉人工林與天然闊葉林分別為0.0945-0.332 (平均0.23 ± 0.08)及0.399-0.821 (平均0.62 ± 0.15) μmol glucose g-1soil 24 h-1。森林土壤有機碳總量和此三種土壤酵素活性均無顯著之季節性變化但均隨著土壤深度之增加而減少(P < 0.05)。簡單相關分析結果顯示:土壤β-配醣酶、β-胺基葡萄糖苷酶、纖維素酶活性彼此間且均與微生物生質碳、生質氮、全氮及有機碳間呈極顯著之正相關(P < 0.001),土壤β-胺基葡萄糖苷酶、纖維素酶活性、生質碳、生質氮則均與土壤水分間呈顯著正相關(P < 0.05)。土壤有機碳總量占其森林碳匯池之比重: 台灣杉人工林估計為 61 %,天然闊葉林估計為 47 %。 | zh_TW |
dc.description.abstract | A Taiwania plantation (N 23˚00΄13˝ E 120˚42΄25˝) and a native hardwood forest, mainly Lauraceae and Fagaceae (N 22˚59΄57˝ E 120˚42΄33˝) in Liu-Kuei, Taiwan were selected to measure the activities of soil enzymes related to carbon cycle and to examine the relations between the enzyme activities and soil properties, especially soil organic carbon, and the seasonal changes in soil organic carbon content and the enzyme activities.
The results showed that soil β-glucosidase activities in the Taiwania plantation and native hardwood forests were 1.20-3.06 (average: 2.03 ± 0.79) and 3.54-5.49 (average: 4.18 ± 0.73) μmol p-nitrophenol g-1soil h-1, respectively; soil β-glucosaminidase activities in the Taiwania plantation and native hardwood forests were 1.50-1.86 (average: 1.67 ± 0.13) and 1.95-4.37 (average: 3.00 ± 0.93) μmol p-nitrophenol g-1soil h-1, respectively; and soil cellulase activities in the Taiwania plantation and native hardwood forests were 0.0945-0.332 (average: 0.24 ± 0.08) and 0.399-0.821 (average: 0.62 ± 0.15) μmol glucose g-1soil 24 h-1, respectively. There were no significant seasonal changes in the soil carbon content and the above soil enzyme activities, but all of them significantly decreased with soil depth increased (P < 0.05). The results of simple regression analysis indicated that soil β-glucosidase, β-glucosaminidase, and cellulase activities significantly correlated with microbial biomass C, microbial biomass N, total nitrogen and soil organic carbon (P < 0.001). Soil β-glucosaminidase, cellulose activities, microbial biomass C and N significantly correlated with soil moisture (P < 0.05). The estimated percentages of the total soil organic carbon amounts to the forest carbon sinks were 61 % and 47 % for the Taiwania plantation and native hardwood forests in Liu-Kuei, respectively. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T04:29:51Z (GMT). No. of bitstreams: 1 ntu-95-R93623010-1.pdf: 530596 bytes, checksum: 1ad716b4778150913e27b88aadce64a4 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 摘要--------------------------------------------------- I
Abstract----------------------------------------------- III 目錄--------------------------------------------------- V 表目錄------------------------------------------------- VII 圖目錄------------------------------------------------ VIII 附錄目錄----------------------------------------------- IX 前言--------------------------------------------------- 1 前人研究----------------------------------------------- 4 一、土壤酵素------------------------------------------- 4 二、碳循環與土壤酵素間之關係--------------------------- 5 三、土壤碳滙------------------------------------------- 10 材料與方法--------------------------------------------- 12 一、研究架構------------------------------------------- 12 二、採樣地點與氣候狀況--------------------------------- 13 三、土壤樣品之採集方法--------------------------------- 18 四、土壤酵素活性之測定法------------------------------- 18 五、土壤物理性質之分析--------------------------------- 20 六、土壤化學性質之分析--------------------------------- 20 七、土壤生物性質之分析--------------------------------- 21 八、各土壤及總土壤有機碳含量之估計方式----------------- 22 九、統計分析方法--------------------------------------- 23 結果與討論--------------------------------------------- 24 一、六龜森林土壤性質之季節性變化----------------------- 24 二、六龜森林土壤有機碳含量之季節性變化----------------- 26 (一)土壤有機碳表層(0-20cm)之季節性變化---------------- 26 (二)土壤有機碳總量之季節性變化------------------------ 30 三、六龜森林土壤酵素活性之季節性變化------------------- 33 四、六龜森林土壤酵素活性隨土壤深度之變化--------------- 37 五、六龜森林土壤酵素活性與有機碳及其他土壤性質間之關係- 39 (一)土壤酵素活性與有機碳及生物性質間之關係------------ 40 (二)土壤酵素活性與其他土壤性質間之關係---------------- 43 六、六龜森林土壤有機碳估計總量及佔其森林碳匯之比重----- 46 結論--------------------------------------------------- 48 參考文獻----------------------------------------------- 49 附錄--------------------------------------------------- 58 | |
dc.language.iso | zh-TW | |
dc.title | 六龜森林土壤碳循環有關酵素活性之研究 | zh_TW |
dc.title | The activities of enzymes related to carbon cycle in Liu-Kuei forest soils | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林國銓(Kuo-Chuan Lin),譚鎮中(Chen-Chung Tan),陳尊賢(Zueng-Sang Chen),王明光(Ming-Kuang Wang) | |
dc.subject.keyword | 六龜,森林,土壤,碳,酵素, | zh_TW |
dc.subject.keyword | Liu-Kuei,forest,soil,carbon,enzyme, | en |
dc.relation.page | 61 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-21 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 518.16 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。