Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33203
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳力騏(Richie L. C. Chen)
dc.contributor.authorYung-Te Houen
dc.contributor.author侯詠德zh_TW
dc.date.accessioned2021-06-13T04:29:09Z-
dc.date.available2006-07-24
dc.date.copyright2006-07-24
dc.date.issued2006
dc.date.submitted2006-07-20
dc.identifier.citation1. 尤智立,劉仲康。2003。嗜高溫纖維分解菌纖維分解酵素的探討。碩士論文。高雄: 中山大學生物科學研究所。
2. 戴上凱,劉仲康。2004。熱穩定性纖維素分解細菌分離株之特性探討與親緣關係的研究。 博士論文。高雄: 中山大學生物科學研究所。
3. 陳威廷,張嘉修。2004。纖維素水解菌之培養策略與纖維素水解酵素之鑑定。碩士論文。台南: 成功大學化學工程研究所。
4. 馬盈瑜,廖遠東。2003。龍鬚菜多醣及其水解產物生理活性之探討。碩士論文。屏東: 屏東科技大學食品科學研究所。
5. 吳敬謙,鄭建業。2003。懸掛式固定化纖維酵素反應器之廢紙纖維素水解與醣類產物分析。桃園: 中原大學化學研究所。
6. Adsul, M. G., J. E. Ghule, R. Singh, H. Shaikh, K. B. Bastawde, D. V. Gokhale, A. J. Varma. 2004. Polysaccharides from bagasse: applications in cellulase and xylanase production. Carbohydrate Polymers. 57: 67-72.
7. Adsul, M. G., J. E. Ghule, H. Shaikh, R. Singh, K. B. Bastawde, D. V. Gokhale, A. J. Varma. 2005. Enzymatic hydrolysis of delignified bagasse polysaccharides. Carbohydrate Polymers. 62: 6-10.
8. Alexander, A. G. 1985. The energy cane alternative. Amsterdam: Elsevier.
9. Armisen, R. and F. Galatas. 1987. Production and utilization of products from commercial seaweeds. 1-22. Rome: Fao Fisheries technical paper.
10. Aspinall, G. O. 1983. Molecular biology: The polysaccharides, vol.2. New York: Academic press.
11. Béguin, P. and J. P. Aubert. 1994. The biological degradation of cellulose. FEMS Microbiology Reviews. 13: 25-58.
12. Bhat, M. K. and S. Bhat. 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnology Advances. 15: 583-620.
13. Brown, R. D. Jr. and L. Jurasek. 1979. Hydrolysis of cellulose: mechanisms of enzymatic and acid catalysis. Washington, D. C: American chemistry society.
14. Brushwood, D. E. 2000. Modification of the potassium ferricyanide reducing sugar test for sugars from extracts of cotton fiber. The Journal of Cotton Science. 4: 202-209.
15. Byrne, N. D., M. Duxbury, N. Sharpe. 2001. The determination of chitinase activity of grapes: an introductory enzyme assay. Biochemistry and Molecular Biology Education. 29: 144-146.
16. Campbell, C. J. and J. H. Laherrere. 1998. The end of cheap oil. Sci. Am. 3: 78-83.
17. Chaplin, M. F. and J. F. Kennedy. 1986. Carbohydrate analysis: a practical approach. 1: 1-36. Washington, D. C: IRLPRESS.
18. Chen, H. M., L. Zheng, X. J. Yan. 2005. The preparation and bioactivity research of agaro-oligosaccharides. Food Technol. Biotechnol. 43(1): 29-36.
19. Chinn, M. S., S. E. Nokes, H. J. Strobel. 2001. Bacterial cellulase: A Review, The society for engineering in agriculture, food, and biological systems from Trichoderma viride. Bioresource Technology.
20. Dale, B. E., L. L. Henk, M. Shiang. 1984. Fermentation of lignocellulosic materials treated by ammonia freeze-explosion. Dev. Ind. Microbiol. 26: 223-233.
21. Draget, K. I., O. Smidsrød, G. Skjåk-Bræk. 1998. Biopolymers: Polysaccharides II. 215-244. Wiley-Vch.
22. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry. 28: 350-356.
23. Duff, S. J. B. and W. D. Murray. 1996. Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour. Technol. 55: 1-33.
24. Ehab, T. and A. Mansoor. 2004. Enzyme immobilization in novel alginate-chitosan core-shell microcapsules. Biomaterials. 25: 1937-1945.
25. Fan, L. T., M. M. Gharpuray, Y. H. Lee. 1987. In: Cellulose hydrolysis biotechnology monographs. 57. Berlin: Springer.
26. Gaden, E. L. Jr. 1987.Cellulose hydrolysis. Berlin: Springer-Verlag.
27. Gåserød. O., O. Smidsrød, G. Skjåk-Bræk. 1998. Microcapsules of alginate-chitosan-I, A quantitative study of the interaction between alginate and chitosan. Biomaterials. 19: 1815-1825.
28. Gray, K. A., Z. Lishan, E. Mark. 2006. Bioethanol. Current Opinion in Chemical Biology. 10: 141-146.
29. Gregg, D. J. and J. N. Saddler. 1996. Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnology and Bioengineering. 51: 375-383.
30. Han Y. W. and C. D. Callihan. 1974. Appl. Microbiol. 27:159.
31. Hsieh, B. C., T. J. Cheng, T. Y. Wang, R. L. C. Chen. 2003. Use of chitosan membrane from the carapace of the soldier crab Mictyris brevidactylus for biosensor construction. Marine Biotechnology. 5: 119-125.
32. Kilzer, F. J., A. Broido. 1965. Speculations on the nature of cellulose pyrolysis. Pyrodynamics. 2: 151-163.
33. Klemm, D., H. P. Schmauder, T. Heinze. 1998. Biopolymers: Polysaccharides II. 275-319. Wiley-Vch.
34. Kraut, J. 1988. How do enzymes work?. Sicence. 242: 533-540.
35. Marsden, W. L., P. P. Gray, J. Nippard, M. R. Quinlan. 1982. Evaluation of the DNS method for analysing lignocellulosic hydrolysates. J. Chem. Tech. Biotechnol. 32: 1016-1022.
36. McHugh, D. J. 1987. A guide to the seaweed industry. Rome: Fao Fisheries technical paper.
37. McMillan, J. D. 1994. Pretreatment of lignocellulosic biomass. In: Himmel, M. E., J. O. Baker, R. P. Overend. (Eds.), Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington, DC. pp. 292-324.
38. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry. 31(3): 426-428.
39. Millet, M. A., A. J. Baker, L. D. Scatter. 1976. Physical and chemical pretreatment for enhancing cellulose saccharification. Biotech. Bioeng. Symp. 6: 125-153.
40. Morjanoff, P. J. and P. P. Gary. 1987. Optimization of steam explosion as method for increasing susceptibility of sugarcane bagasse to enzymatic saccharification. Biotechnol. Bioeng. 29: 733-741.
41. Ohmine, K., H. Ooshima, Y. Harano. 1983. Kinetic study on enzymatic hydrolysis of cellulose by cellulase from Trichoderma viride. Biotechnology and Bioengineering. XXV: 2041-2053.
42. Ramos, L. P., C. Breuil, J.N. Saddler. 1993. The use of enzyme recycling and the influence of sugar accumulation on cellulose hydrolysis by Trichoderma cellulases. Enzyme Microb. Technol. 15: 19-25.
43. Rao, M., R. Seeta, V. Deshpande. 1983. Effect of pretreatment on the hydrolysis of cellulose by Penicillium Funiculosum cellulase and recovery of enzyme. Biotechnology and Bioengineering. XXV: 1863-1871.
44. Reddy, N. and Y. Yang. 2005. Biofibers from agricultural byproducts for industrial applications. Trends in Biotechnology. 23(1): 22-27.
45. Saha, B. C., L. B. Iten, M. A. Cotta, Y. V. Wu. 2005. Dilute acid pretreatment, enzymatic saccharification, and fermentation of rice hulls to ethanol. Biotechnol. Prog. 21: 816-822.
46. Sashiwa, H., S. Fujishima, N. Yamano, N. Kawasaki, A. Nakayama, E. Muraki, M. Sukwattanasinitt, R. Pichyangkura, S. I. Aiba. 2003. Enzymatic production of N-acetyl-D-glucosamine from chitin. Degradation study of N-acetylchitooligosaccharide and the effect of mixing of crude enzymes. Carbohydrate Polymers. 51: 391-395.
47. Söderström, J., L. Pilcher, M. Galbe, G. Zacchi 2003 Two-step steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass and Bioenergy. 24: 475-486.
48. Sivers, M.V. and G. Zacchi. 1995. A techno-economical comparison of three processes for the production of ethanol from pine. Bioresource Technology. 51: 43-52.
49. Sternberg, D. 1976. Production of cellulase by Trichoderma. Biotechnol. Bioeng. Symp. 35-53.
50. Sun, Y. and J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology. 83: 1-11.
51. Sun, Y. and J. J. Cheng. 2005. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresource Technology. 96: 1599-1606.
52. Tako, M., M. Higa, K. Medoruma, Y. Nakasone. 1999. A highly methylated agar from Red Seaweed, Gracilaria arcuata. Botanica Marina. 42: 513-517.
53. Van Wyk, J. P. H. 1997. Cellulose hydrolysis and cellulase adsorption after pretreatment of cellulose materials. Biotechnology Techniqus. 11(6): 443-445.
54. Van Wyk, J.P.H. and M. Mohulatsi 2003. Biodegradation of wastepaper by cellulase from Trichoderma viride. Bioresource Technology. 86: 21-23.
55. Van Wyk, J.P.H., M.A.Mogale, K.S.Moroka. 1999. Bioconversion of waste paper materials to sugars: an application illustrating the environmental benefit of enzymes. Biochemical Education. 27: 227-228.
56. Wang, M., C. Saricks, D. Santini. 1999. Effects of fuel ethanol use on fuel-cycle energy and greenhouse gas emissions. Argonne National Laboratory, Argonne, IL.
57. Weinberger, F., C. Richard, B. Kloareg, Y. Kashman, H. G. Hoppe, M. Friedlander. 2001. Structure-activity relationships of oligoagar elicitors
58. Wu, B., Z. Guomei, S. Shaomin, C. Martin M. F. 2004. Biosensors for determination of glucose with glucose oxidase immobilized on an eggshell membrane. Talanta. 64: 546-553.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33203-
dc.description.abstract本研究探討以纖維素水解酶(Cellulase)水解醣類生質(蔗渣、龍鬚菜)的最佳條件(溫度50℃,pH 4.6)。並且比較醣類生質未經前處理及經過酸處理(基質加入0.2 M H2SO4,以殺菌釜加溫至121℃處理半小時)、冷凍前處理(基質加入去離子水浸泡,並於-10℃下靜置20分鐘)後的酵素水解速率差異。醣類生質經酵素水解成單醣、雙醣及寡醣後,再利用DNS (Dinitrosalicylic acid)定量還原端產生的量,以推估酵素水解效率。另外,利用酚-硫酸法以及葡萄糖感測器來定量酵素水解後產生的總醣濃度及葡萄糖濃度。本研究所開發的海藻生質,在經過冷凍前處理後確實提高了酵素水解速率以及醣類增加量,可望有效應用於生質能源領域。zh_TW
dc.description.abstractLignocellulosic biomass has been utilized to produce ethanol in the last two decades. The main process involved in this conversion is hydrolysis of cellulose in the lignocellulosic materials to produce reducing sugars. Due to the recalcitrant nature, the biomass can not be easily converted to monomeric sugars. Therefore, the low yield and high cost of the hydrolysis process are the major challenges in biomass energy development. In our research, marine seaweeds Gracilaria is used as the biomass. Owing to their hydration ability, an “Ice-crystal pretreatment” is developed to enhance the hydrolysis of cellulosic biomass.
The enzymatic hydrolysate of biomass was measured by three methods. Reducing sugars is determined by the dinitrosalicylic method (DNS). Total soluble sugars is determined by the phenol-sulphuric acid method. Glucose is determined by the glucose biosensor. In our result, the validity of “Ice-crystal pretreatment” were confirmed. The effect of “Ice-crystal pretreatment” was also compared with acid pretreatment. In conclusion, marine seaweeds Gracilaria with “Ice-crystal pretreatment” may be a new approach to biomass energy development in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:29:09Z (GMT). No. of bitstreams: 1
ntu-95-R93631016-1.pdf: 952769 bytes, checksum: 51c28a01fb3502b9b7b72aa98625ae94 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents目 錄
=================
致謝 i
中文摘要 ii
英文摘要 iii
目錄 iv
圖目錄 vii
表目錄 ix
第一章 前言 1
第二章 文獻探討 2
2.1生質能源 2
2.1.1醣類 7
2.1.2纖維素 10
2.2多醣水解 12
2.2.1前處理 12
2.2.1.1物理前處理 12
2.2.1.2化學前處理 13
2.2.1.3冷凍前處理 14
2.2.2酵素水解 15
2.3量測方法 17
2.3.1還原醣測定法 17
2.3.2總醣測定法 20
2.3.3葡萄糖測定法 21
第三章 材料與方法 23
3.1實驗藥品與儀器設備 23
3.1.1實驗藥品 23
3.1.2儀器設備 23
3.1.3分析試劑與感測系統製備 24
3.2蔗渣、龍鬚菜的樣品前處理 25
3.2.1硫酸前處理 25
3.2.2冷凍前處理 25
3.3多醣的酵素水解流程 25
3.4酵素水解產物的檢測方法 26
3.4.1還原醣測定法 26
3.4.2總醣測定法 26
3.4.3葡萄糖測定法 26
第四章 結果與討論 28
4.1纖維素水解酶對纖維素的水解效率之最佳化探討 28
4.1.1溫度對纖維素水解酶水解效率的影響 28
4.1.2 pH對纖維素水解酶水解效率的影響 31
4.2前處理過程對纖維素水解酶水解效率的影響 33
4.2.1蔗渣、龍鬚菜未經前處理過程之酵素水解效率探討 33
4.2.2蔗渣、龍鬚菜經酸前處理過程之酵素水解效率探討 35
4.2.3蔗渣、龍鬚菜經冷凍前處理過程之酵素水解效率探討 38
4.3酵素水解產物的上清液醣類濃度量測 41
4.3.1以酚-硫酸法檢測酵素水解產物的上清液總醣濃度 41
4.3.2以葡萄糖感測器檢測酵素水解產物的上清液葡萄糖濃度 48
第五章 結論與未來展望 52
參考文獻 54

圖 目 錄
=================
圖2-1海藻萃取Agar的流程圖 6
圖2-2各種醛醣類的結構式 8
圖2-3纖維素的化學結構圖 11
圖2-4(A)纖維素的微纖維結構(B)植物粗纖維結構 11
圖2-5纖維素水解酶的種類與作用機制 16
圖2-6纖維素的結構圖(包含還原端與非還原端) 18
圖2-7 DNS反應機制 19
圖2-8三極式葡萄糖感測器示意圖 22
圖3-1多醣水解實驗流程圖 27
圖4-1不同溫度對纖維素水解酶水解纖維素的效率探討 30
圖4-2不同pH對纖維素水解酶水解纖維素的效率探討 32
圖4-3纖維素水解酶水解未經前處理的蔗渣、龍鬚菜的效率探討 34
圖4-4纖維素水解酶水解經過酸前處理的蔗渣、龍鬚菜的效率探討 37
圖4-5纖維素水解酶水解經過冷凍前處理的蔗渣、龍鬚菜的效率探討 39
圖4-6蔗渣、龍鬚菜在冷凍顯微鏡下即時觀測冰晶成長情形 40
圖4-7蔗渣、龍鬚菜加入甘油後在冷凍顯微鏡下即時觀測冰晶成長情形 40
圖4-8酚-硫酸法的檢量線 44
圖4-9蔗渣經過不同前處理後的上清液總醣濃度隨纖維素水解酶水解時間變化圖 45
圖4-10龍鬚菜經過不同前處理後的上清液總醣濃度隨纖維素水解酶水解時間變化圖 46
圖4-11葡萄糖感測器系統的典型響應圖 50

表 目 錄
=================
表2-1 Biomass的種類及分類 4
表2-2世界各國龍鬚菜、石花菜的每年總產量 5
表2-3同質多醣的分類 9
表4-1不同前處理後的蔗渣、龍鬚菜的上清液總醣濃度以及醣類轉換率 47
表4-2不同前處理後的蔗渣、龍鬚菜的葡萄糖濃度 51
dc.language.isozh-TW
dc.title龍鬚菜之酵素降解zh_TW
dc.titleEnzymatic Degradation of Gracilariaen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳世銘(Suming Chen),謝志誠(Jyh-Cherng Shieh),李允中(Yeun-Chung Lee),周楚洋(Chu-Yang Chou)
dc.subject.keyword纖維素,龍鬚菜,纖維素水解,DNS 法,酚-硫酸法,葡萄糖感測器,冷凍前處理,zh_TW
dc.subject.keywordCellulose,Gracilaria,Cellulase,DNS (dinitrosalicylic acid),Phenol-sulphuric acid method,Glucose biosensor,Ice-crystal pretreatment,en
dc.relation.page59
dc.rights.note有償授權
dc.date.accepted2006-07-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
930.44 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved