請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33192
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭大維(Tei-Wei Kuo) | |
dc.contributor.author | Jian-Jia Chen | en |
dc.contributor.author | 陳建佳 | zh_TW |
dc.date.accessioned | 2021-06-13T04:28:39Z | - |
dc.date.available | 2006-09-20 | |
dc.date.copyright | 2006-07-27 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-20 | |
dc.identifier.citation | [1] ADVANCED CONFIGURATION AND POWER INTERFACE SPECIFICATION 2.0. http://www.acpi.info/.
[2] T. A. AlEnawy and H. Aydin. On energy-constrained real-time scheduling. In Proceedings of of EuroMicro Conference on Real-Time Systems (ECRTS'04), pages 165-174, 2004. [3] T. A. AlEnawy and H. Aydin. Energy-aware task allocation for rate monotonic scheduling. In Proceedings of the 11th IEEE Real-time and Embedded Technology and Applications Symposium (RTAS'05), pages 213-223, 2005. [4] J. H. Anderson and S. K. Baruah. Energy-efficient synthesis of periodic task systems upon identical multiprocessor platforms. In Proceedings of the 24th International Conference on Distributed Computing Systems, pages 428-435, 2004. [5] H. Aydin, R. Melhem, D. Moss'e, and P. Mej'ia-Alvarez. Determining optimal processor speeds for periodic real-time tasks with different power characteristics. In Proceedings of the IEEE EuroMicro Conference on Real-Time Systems, pages 225-232, 2001. [6] H. Aydin, R. Melhem, D. Moss'e, and P. Mej'ia-Alvarez. Dynamic and aggressive scheduling techniques for power-aware real-time systems. In Proceedings of the 22nd IEEE Real-Time Systems Symposium, pages 95-105, 2001. [7] H. Aydin and Q. Yang. Energy-aware partitioning for multiprocessor real-time systems. In Proceedings of 17th International Parallel and Distributed Processing Symposium (IPDPS), pages 113 - 121, 2003. [8] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard-real-time systems. Realtime Systems Journal, July 1989. [9] N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic speed scaling to manage energy and temperature. In Proceedings of the Symposium on Foundations of Computer Science, pages 520-529, 2004. [10] P. Baptiste. Scheduling unit tasks to minimize the number of idle periods: a polynomial time algorithm for offline dynamic power management. In SODA, pages 364-367, 2006. [11] S. Borkar. Design challenges of technology scaling. IEEE Micro, pages 23-29, Aug 1999. [12] A. Chandrakasan, S. Sheng, and R. Broderson. Lower-power CMOS digital design. IEEE Journal of Solid-State Circuit, 27(4):473-484, 1992. [13] J. S. Chase, D. C. Anderson, P. N. Thakar, A. Vahdat, and R. P. Doyle. Managing energy and server resources in hosting centres. In Proceedings of Symposium on Operating Systems Principles, pages 103-116. ACM Press, 2001. [14] D. Chen, A. K. Mok, and T.-W. Kuo. Utilization bound revisited. IEEE Transactions on Computers, 52(3):351-361, March 2003. [15] J.-J. Chen, T.-W. Kuo, and C.-L. Yang. Profit-driven uniprocessor scheduling with energy and timing constraints. In Proceedings of ACM Symposium on Applied Computing, pages 834-840, 2004. [16] T. H. Cormem, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT Press, 1990. [17] G. B. Dantzig and M. N. Thapa. Linear Programming 1: Introduction. Springer Verlag, 1997. [18] R. Davis and A. J. Wellings. Dual priority scheduling. In Proceedings of IEEE Real-Time Systems Symposium, pages 100-109, 1995. [19] J. K. Dey, J. F. Kurose, and D. F. Towsley. On-line scheduling policies for a class of IRIS (increasing reward with increasing service) real-time tasks. IEEE Transactions on Computers, 45(7):802- 813, 1996. [20] M. Elnozahy, M. Kistler, and R. Rajamony. Energy conservation policies for web servers. In Proceedings of Fourth USENIX Symposium on Internet Technologies and Systems, 2003. [21] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of NPcompleteness. W. H. Freeman and Co., 1979. [22] GNU Linear Programming Kit. http://www.gnu.org/software/glpk/glpk.html. [23] R. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied Mathematics, 17:263-269, 1969. [24] F. Gruian. System-level design methods for low-energy architectures containing variable voltage processors. In Power-Aware Computing Systems, pages 1-12, 2000. [25] F. Gruian and K. Kuchcinski. Lenes: Task scheduling for low energy systems using variable supply voltage processors. In Proceedings of Asia South Pacific Design Automation Conference, pages 449-455, 2001. [26] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava. Power optimization of variable voltage core-based systems. In Proceedings of the 35th Annual Conference on Design Automation Conference, pages 176-181. ACM Press, 1998. [27] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum of subsets problems. Journal of the ACM, 22(4):463-468, 1975. [28] S. Irani, S. Shukla, and R. Gupta. Competitive analysis of dynamic power management strategies for systems with multiple saving states. In Proceedings of the Design Automation and Test Europe Conference, 2002. [29] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 37-46, 2003. [30] T. Ishihara and H. Yasuura. Voltage scheduling problems for dynamically variable voltage processors. In Proceedings of the International Symposium on Low Power Electronics and Design, pages 197-202, 1998. [31] R. Jejurikar and R. Gupta. Energy aware task scheduling with task synchronization for embedded real time systems. In Proc. International Conference on Compilers, Architecture and Synthesis for Embedded Systems (CASES), pages 164-169, 2002. [32] R. Jejurikar and R. K. Gupta. Procrastination scheduling in fixed priority real-time systems. In Proceedings of the 2004 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems, pages 57-66, 2004. [33] R. Jejurikar and R. K. Gupta. Dynamic slack reclamation with procrastination scheduling in realtime embedded systems. In DAC, pages 111-116, 2005. [34] R. Jejurikar, C. Pereira, and R. Gupta. Dynamic voltage scaling for systemwide energy minimization in real-time embedded systems. In Proceedings of the International Symposium on Low Power Electronics and Design, pages 78-81, 2004. [35] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage scaling for real-time embedded systems. In Proceedings of the Design Automation Conference, pages 275-280, 2004. [36] W. Kim, J. Kim, and S. Min. Preemption-aware dynamic voltage scaling in hard real-time systems. In Proceedings of the International Symposium on Low Power Electronics and Design, pages 393- 398, 2004. [37] W.-C. Kwon and T. Kim. Optimal voltage allocation techniques for dynamically variable voltage processors. In Proceedings of the 40th Design Automation Conference, pages 125-130, 2003. [38] A. B. L. Benini and G. D. Micheli. A survey of design techniques for system-level dynamic power management. IEEE Transactions on VLSI, (3):299 - 315, 2000. [39] C. Lee, J. K. Lee, T. Hwang, and S.-C. Tsai. Compiler optimization on VLIW instruction scheduling for low power. ACM Transactions on Design Automation of Electronic Systems (TODAES), 8(2):252 - 268, 2003. [40] C. Lee, J. P. Lehoczky, D. P. Siewiorek, R. Rajkumar, and J. P. Hansen. A scalable solution to the multi-resource QoS problem. In Proceedings of the 20th IEEE Real-Time Systems Symposium (RTSS'99), pages 315-326, 1999. [41] Y.-H. Lee, K. P. Reddy, and C. M. Krishna. Scheduling techniques for reducing leakage power in hard real-time systems. In Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS), pages 105-112, 2003. [42] J.-H. Lin and J. S. Vitter. ffl-approximations with minimum packing constraint violation. In Symposium on Theory of Computing, pages 771-782. ACM Press, 1992. [43] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-real-time environment. Journal of the ACM, 20(1):46-61, 1973. [44] J. W. Liu. Real-Time Systems. Prentice Hall, Englewood, Cliffs, NJ., 2000. [45] J. W.-S. Liu, K.-J. Lin, W.-K. Shih, A. C.-S. Yu, C. Chung, J. Yao, and W. Zhao. Algorithms for scheduling imprecise computations. IEEE Computer, 24(5):58-68, May 1991. [46] P. Mej'ia-Alvarez, E. Levner, and D. Moss'e. Adaptive scheduling server for power-aware real-time tasks. ACM Transactions on Embedded Computing Systems, 3(2):284-306, 2004. [47] R. Mishra, N. Rastogi, D. Zhu, D. Moss'e, and R. Melhem. Energy aware scheduling for distributed real-time systems. In Proceedings of International Parallel and Distributed Processing Symposium, page 21, 2003. [48] L. Niu and G. Quan. Reducing both dynamic and leakage energy consumption for hard real-time systems. In Proceedings of the 2004 international conference on Compilers, architecture, and synthesis for embedded systems, pages 140-148, 2004. [49] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embedded operating systems. In Proceedings of the 18th ACM Symposium on Operating Systems Principles, pages 21-24, 2001. [50] K. Pruhs, P. Uthaisombut, and G. J. Woeginger. Getting the best response for your erg. In 9th Scandinavian Workshop on Algorithm Theory (SWAT), pages 14-25, 2004. [51] G. Quan and X. Hu. Energy efficient Fixed-Priority scheduling for Real-Time systems on variable voltage processors. In Proceedings of the 38th Conference on Design Automation, pages 828-833, 2001. [52] G. Quan and X. Hu. Minimum energy fixed-priority scheduling for variable voltage processor. In Proceedings of the Design Automation and Test Europe Conference, pages 782-787, 2002. [53] G. Quan, L. Niu, X. S. Hu, and B. Mochocki. Fixed priority scheduling for reducing overall energy on variable voltage processors. In Proceedings of the IEEE Real-Time Systems Symposium (RTSS), pages 309-318, 2004. [54] J. M. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits. Prentice Hall, 2nd edition, 2002. [55] R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P. Siewiorek. Practical solutions for QoS-based resource allocation problems. In Proceedings of the 19th IEEE Real-Time Systems Symposium (RTSS'98), pages 296-306, 1998. [56] R. L. Rardin. Optimization in Operations Research. Prentice Hall, 1998. [57] C. Rusu, R. Melhem, and D. Mosse. Maximizing the system value while satisfying time and energy constraints. In Proceedings of IEEE 23th Real-Time System Symposium, pages 246-255, Dec. 2002. [58] C. Rusu, R. Melhem, and D. Moss'e. Multiversion scheduling in rechargeable energy-aware realtime systems. In Proceedings of the EuroMicro Conference on Real-Time Systems (ECRTS'03), pages 95-104, 2003. [59] S. Saewong and R. Rajkumar. Practical voltage-scaling for fixed-priority rt-systems. In Proceedings of the 9th IEEE Real-time and Embedded Technology and Applications Symposium (RTAS'03), pages 106-115, 2003. [60] INTEL. Strong ARM SA-1100 Microprocessor Developer's Manual, 2003. INTEL. [61] INTEL-XSCALE, 2003. http://developer.intel.com/design/xscale/. [62] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and Z. Lu. Adaptive scheduling server for power-aware real-time tasks. In Proceedings of Real-Time System Symposium, pages 63-72. IEEE, 2003. [63] W.-K. Shih, J. W.-S. Liu, and J.-Y. Chung. Algorithms for scheduling imprecise computations with timing constraints. SIAM J. Computing, 20(3):537-552, June 1991. [64] Y. Shin and K. Choi. Power conscious fixed priority scheduling for hard real-time systems. In Proceedings of the 36th ACM/IEEE Conference on Design Automation Conference, pages 134- 139. ACM Press, 1999. [65] Y. Shin, K. Choi, and T. Sakurai. Power optimization of real-time embedded systems on variable speed processors. In Proceedings of the 2000 IEEE/ACM International Conference on ComputerAided Design, pages 365-368. IEEE Press, 2000. [66] J. Suh, D.-I. Kang, and S. P. Crago. Dynamic power management of multiprocessor systems. In Proceedings of International Parallel and Distributed Processing Symposium, 2002. [67] J. Suh, D.-I. Kang, and S. P. Crago. Dynamic power management of heterogeneous systems. In Proceedings of International Parallel and Distributed Processing Symposium, page 125, 2003. [68] TRANSMETA, 2003. [69] V. V. Vazirani. Approximation Algorithms. Springer, 2001. [70] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced CPU energy. In Proceedings of Symposium on Operating Systems Design and Implementation, pages 13-23, 1994. [71] R. Xu, D. Zhu, C. Rusu, R. Melhem, and D. Moss'e. Energy-efficient policies for embedded clusters. In Proceedings of ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems(LCTES), pages 1-10, 2005. [72] C.-Y. Yang, J.-J. Chen, and T.-W. Kuo. An approximation algorithm for energy-efficient scheduling on a chip multiprocessor. In Proceedings of the 8th Conference of Design, Automation, and Test in Europe (DATE), pages 468-473, 2005. [73] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy. In Proceedings of the 36th Annual Symposium on Foundations of Computer Science, pages 374-382. IEEE, 1995. [74] H.-S. Yun and J. Kim. On energy-optimal voltage scheduling for fixed-priority hard real-time systems. ACM Transactions on Embedded Computing Systems, 2(3):393-430, Aug. 2003. [75] H.-S. Yun and J. Kim. Reward-based voltage scheduling for fixed-priority hard real-time systems. In Proceedings of the International Workshop on Power-Aware Real-Time Computing, 2004. [76] H.-S. Yun and J. Kim. Reward-based voltage scheduling for hard real-time systems with energy constraints. In Proceedings of the International Conference on Real-Time and Embedded Computing Systems and Applications (RTCSA), pages 416-435, 2004. [77] F. Zhang and S. T. Chanson. Processor voltage scheduling for real-time tasks with non-preemptible sections. In Proceedings of the 23rd IEEE Real-Time Systems Symposium (RTSS'02), pages 235- 245, 2002. [78] F. Zhang and S. T. Chanson. Blocking-aware processor voltage scheduling for real-time tasks. ACM Transactions in Embedded Computing Systems, 3(2):307-335, 2004. [79] Y. Zhang, X. Hu, and D. Z. Chen. Task scheduling and voltage selection for energy minimization. In Annual ACM IEEE Design Automation Conference, pages 183-188, 2002. [80] D. Zhu, R. Melhem, and B. Childers. Scheduling with dynamic voltage/speed adjustment using slack reclamation in multi-processor real-time systems. In Proceedings of IEEE 22th Real-Time System Symposium, pages 84-94, 2001. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33192 | - |
dc.description.abstract | With the advanced technology in VLSI circuit designs, many modern processors now provide dynamic voltage scaling (DVS) support. The lower the speed is, the lower the supply voltage requires, and the less the power consumes. This dissertation explores energy-efficient scheduling for hard real-time systems and the maximization of the system reward for real-time systems under a specified energy constraint on DVS processors. Distinct from many previous work, this dissertation aims at the provision of approximated solutions with worst-case guarantees. In addition to the worst-case analysis of the developed algorithms, extensive experiments were done to evaluate the effectiveness of the algorithms, compared to existing algorithms. The experimental results are very encouraging.
When speed switching is not allowed in the middle of a job execution, a polynomial-time $(1+epsilon)$-approximation algorithm is presented to minimize the energy consumption of periodic real-time tasks in uniprocessor systems with a user-specified tolerable error $epsilon$. It provides trade-offs between the user's tolerable error and the runtime complexity, including the time complexity and the space complexity. When leakage power consumption is considered, we develop procrastination scheduling strategies to reduce the energy consumption by turning processors into the dormant mode. Approximation bounds are derived for rate-monotonic and earliest-deadline-first scheduling algorithms. When periodic real-time task executions are considered in homogeneous multiprocessor systems with ideal processors, we develop algorithms with resource augmentation on processor speeds. A $1.13$-approximation algorithm is developed for systems with negligible leakage power consumption, and $2$-approximation algorithms are developed for systems with non-negligible leakage power consumption. Energy-constrained scheduling is then explored with reward maximization in uniprocessor systems. When speed switching can be done at any time with an identical power consumption function, a greedy algorithm is proposed with a $0.5$-approximation ratio. A dynamic programming approach is then proposed with a $(1-epsilon)$-approximation ratio, where the running time is polynomial in $frac{1}{epsilon}$ with a user-specified tolerable error $epsilon$ to derived solutions. When tasks have different power consumption functions or voltage scaling could be done only at a task arrival or termination time, a frac{1}{3}$-approximation algorithm is developed based on linear programming. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T04:28:39Z (GMT). No. of bitstreams: 1 ntu-95-F90922079-1.pdf: 1230393 bytes, checksum: 10b1044e96bd653e9d8bfdb79b21fce3 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Low-Power Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Real-Time Requirements and Scheduling Policies . . . . . . . . . . . . 4 1.2 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Energy-Efficient Scheduling . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Energy-Constrained Scheduling . . . . . . . . . . . . . . . . . . . . . 7 1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Related Work 11 3 Uniprocessor Energy-Efficient Scheduling 19 3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 A Fully Polynomial-Time Approximation Scheme . . . . . . . . . . . . . . . . . . . 24 3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4 Multiprocessor Energy-Efficient Scheduling 37 4.1 Problem Definitions and NP-Hardness . . . . . . . . . . . . . . . . . . . . . 39 4.1.1 Problem Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.1.2 Hardness of the Problems . . . . . . . . . . . . . . . . . . . . . . . 42 4.2 Multiprocessor Scheduling without Task Migration . . . . . . . . . . . . . . . 45 4.2.1 Multiprocessor Scheduling over Two Identical Processors . . . . . . . 46 4.2.2 Multiprocessor Scheduling over an Arbitrary Number of Processors . . 51 4.2.3 Multiprocessor Scheduling with Processor Speed Constraints . . . . . . 57 4.2.4 Extensions to Periodic Real-Time Tasks and Processors with Discrete Available Speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3 Multiprocessor Scheduling with Task Migration . . . . . . . . . . . . . . . . . 60 4.3.1 An Algorithm for Optimal Schedules for Negligible Task Migration Cost 61 4.3.2 An Approximation Algorithm for Systems with Non-Negligible Task Migration Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.4.1 Workload Parameters and Performance Metrics . . . . . . . . . . . . . 67 4.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5 Uniprocessor Leakage-Aware Energy-Efficient Scheduling 75 5.1 Problem Difinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.2.1 Critical speeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.2.2 Minimization of the execution energy consumption . . . . . . . . . . . 80 5.3 Algorithms for Task Procrastination . . . . . . . . . . . . . . . . . . . . . . . 82 5.3.1 Procrastination scheduling algorithm: OSS . . . . . . . . . . . . . . . 83 5.3.2 Analysis of the Algorithm OSS . . . . . . . . . . . . . . . . . . . . . 85 5.3.3 Procrastination scheduling algorithm: VOSS . . . . . . . . . . . . . . 89 5.3.4 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.5 Extensions to Dynamic-Priority Scheduling . . . . . . . . . . . . . . . . . . . 95 5.5.1 Minimization of the execution energy consumption . . . . . . . . . . . 96 5.5.2 Procrastination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6 Multiprocessor Leakage-Aware Energy-Efficient Scheduling 101 6.1 Problem Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.2 Approximation Algorithm for Negligible Switching Overheads . . . . . . . . . 105 6.2.1 Results for the Power Consumption Function . . . . . . . . . . . . . . 105 6.2.2 An Approximation Algorithm . . . . . . . . . . . . . . . . . . . . . . 107 6.3 A Two-Phase Algorithm for Non-Negligible Switching Overheads . . . . . . . . . . 113 6.3.1 No dormant-mode consideration . . . . . . . . . . . . . . . . . . . . 113 6.3.2 Considerations of the dormant mode . . . . . . . . . . . . . . . . . . 117 6.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.4.1 Workload Parameters and Performance Metrics . . . . . . . . . . . . . 119 6.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7 Uniprocessor Energy-Constrained Scheduling for Reward Maximization 125 7.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.2 The AREES Problem When All of the Tasks Have the Same Power Consumption Function 130 7.2.1 Energy Minimization for a Given Execution Index Selection . . . . . . 130 7.2.2 A 0.5-Approximation Algorithm . . . . . . . . . . . . . . . . . . . . 133 7.2.3 A Fully Polynomial-Time Approximation Scheme . . . . . . . . . . . 138 7.2.4 Remarks: the Mandatory Execution Part . . . . . . . . . . . . . . . . 141 7.3 (1/3)-Approximation Algorithms Based on Integer Programming . . . . . . . . . . 142 7.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 7.4.1 Experimental Setups and Performance Metrics . . . . . . . . . . . . . 148 7.4.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 149 7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 8 Concluding Remarks 153 8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 8.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 8.2.1 Heterogeneous Multiprocessor DVS Scheduling . . . . . . . . . . . . 155 8.2.2 I/O-Aware Energy-Efficient Scheduling . . . . . . . . . . . . . . . . 156 8.2.3 Temperature-Aware Scheduling . . . . . . . . . . . . . . . . . . . . . 156 8.2.4 Application-Oriented Real-Time Scheduling . . . . . . . . . . . . . . 157 Bibliography. . . . . . . . . . . . . 159 | |
dc.language.iso | en | |
dc.title | 單一處理器及同質多處理器上之即時省電排程 | zh_TW |
dc.title | Energy-Efficient Scheduling for Real-Time Tasks in Uniprocessor and Homogeneous Multiprocessor Systems | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 李德財(Der-Tsai Lee),郭耀煌(Yau-Hwang Kuo),呂學一(Hsueh-I Lu),楊佳玲(Chia-Lin Yang),逄愛君(Ai-Chun Pang),施吉昇(Chi-Sheng Shih) | |
dc.subject.keyword | 省電效率排程,即時系統,近似演算法,動態調變電壓系統, | zh_TW |
dc.subject.keyword | Energy-Efficient Scheduling,Real-Time Systems,Approximation Algorithms,DVS Systems, | en |
dc.relation.page | 172 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-21 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 1.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。