請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33189完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳瑞北(Ruey-Beei Wu) | |
| dc.contributor.author | Chi-Feng Chen | en |
| dc.contributor.author | 陳錡楓 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:28:31Z | - |
| dc.date.available | 2006-07-24 | |
| dc.date.copyright | 2006-07-24 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-20 | |
| dc.identifier.citation | [1] D. M. Pozar, Microwave Engineering, 2nd ed., New York: Wiley, 1998.
[2] J. S. Hong and M. J. Lancaster, Microstrip Filter for RF/Microwave Applications, New York: Wiley, 2001. [3] S. B. Cohn, “Parallel-coupled transmission-line-resonator filters,” IEEE Trans. Microwave Theory Tech., vol. MTT-6, pp. 223–231, Apr. 1958. [4] G. L. Matthaei, “Design of wide-band (and narrow-band) band-pass microwave filters on the insertion loss basis,” IEEE Trans. Microwave Theory Tech., vol. MTT-8, pp. 580–593, Nov. 1960. [5] E. G. Cristal and S. Frankel, “Hairpin-line and hybrid hairpin-line/half-wave parallel- coupled-line filters,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 719–728, Nov. 1972. [6] G. L. Matthaei, N. O. Fenzi, R. J. Forse, and S. M. Rohlfing, “Hairpin-comb filters for HTS and other narrow-band applications,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 1226–1231, Aug. 1997. [7] J. S. Hong and M. J. Lancaster, “Cross-coupled microstrip hairpin-resonator filters,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 118–122, Jan. 1998. [8] J. S. Hong and M. J. Lancaster, “Theory and experiment of novel microstrip slow-wave open-loop resonator filters,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 2358–2365, Dec. 1997. [9] J. S. Hong and M. J. Lancaster, “Coupling of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 2099–2109, Dec. 1996. [10] J. S. Hong and M. J. Lancaster, ”Design of highly selective microstrip bandpass filters with a single pair of attenuation poles at finite frequencies” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 1098–1107, July 2000. [11] K. S. Yeo and M.J. Lancaster, “The design of microstrip six-pole quasi-elliptic filter with linear phase response using extracted-pole technique,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 321–327, Feb. 2001. [12] J. T. Kuo, M. J. Maa, and P. H. Lu, “A microstrip elliptic function filter with compact miniaturized hairpin responses,” IEEE Microwave Wireless Comp. Lett., vol. 10, pp. 94–95, Mar. 2000. [13] S. Y. Lee and C. M. Tsai, “New cross-coupled filter design using improved hairpin resonators,” IEEE Trans. Microwave Theory Tech., vol.48, pp. 2482–2490, Dec. 2000. [14] C. C. Chen, Y. R. Chen, and C. Y. Chang, “Miniaturized microstrip cross-coupled filters using quarter-wave or quasi-quarter-wave resonators,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 120–131, Jan. 2003. [15] M. Makimoto and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microwave Theory Tech., vol.28, pp. 1413–1417, Dec. 1980. [16] M. Sagawa, M. Makimoto, and S. Yamashita, “Geometrical structures and fundamental characteristics of microwave stepped-impedance resonators,” IEEE Trans. Microwave Theory Tech., vol.45, pp. 1078–1085, July 1997. [17] C. H. Wang, Y. S Lin, and C. H. Chen, “Novel inductance-incorporated microstrip coupled-line bandpass filters with two attenuation poles,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 1979–1982, 2004. [18] J. T. Kuo, W. H. Hsu, and W. T. Huang, “Parallel coupled microstrip filters with suppression of harmonic response,” IEEE Microwave Wireless Comp. Lett., vol. 12, pp. 383–385, Oct. 2002. [19] M. del Castillo Velázquez-Ahumada, J. Martel, and F. Medina, “Parallel coupled microstrip filters with ground-plane aperture for spurious band suppression and enhanced coupling,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 1082–1086, Mar. 2004. [20] J. T. Kuo, S. P. Chen, and M. Jiang, “Parallel-coupled microstrip filters with over-coupled end stages for suppression of spurious responses,” IEEE Microwave Wireless Comp. Lett., vol. 13, pp. 440–442, Oct. 2003. [21] C. S. Kim, J. S. Park, D. Ahn, and J. B. Lim, “A novel 1-D periodic defected ground structure for planar circuits,” IEEE Microwave Guided Wave Lett., vol. 10, pp. 131–133, Apr. 2000. [22] J. S. Park, J. S. Yun, and D. Ahn, “A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2037–2043, Sept. 2002. [23] T. Lopetegi, M. A. G. Laso, J. Hernández, M. Bacaicoa, D. Benito, M. J. Garde, M. Sorolla, and M. Guglielmi, “New microstrip “wiggly-line” filters with spurious passband suppression,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1593–1598, Sept. 2001. [24] J. T. Kuo and E. Shih, “Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 1554–1559, May 2003. [25] J. G. García, F. Martín, F. Falcone, J. Bonache, I. Gil, T. Lopetegi, M. A. G. Laso, M. Sorolla, and R. Marqués, “Spurious passband suppression in microstrip coupled line band pass filters by means of split ring resonators,” IEEE Microwave Wireless Comp. Lett., vol.14, pp. 416–418, Sept. 2004. [26] T. Lopetegi, M. A. G. Laso, F. Falcone, F. Martin, J. Bonache, J. Garcia, L. Perez-Cuevas, M. Sorolla, and M. Guglielmi, “Microstrip ‘wiggly-line’ bandpass filters with multispurious rejection,” IEEE Microwave Wireless Comp. Lett., vol. 14, pp. 531–533, Nov. 2004. [27] H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatom, “A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 789–792, 1997. [28] C. Quendo, E. Rius, and C. Person, “An original topology of dual-band filter with transmission zeros,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, pp. 1093–1096, 2003. [29] M. I. Lai and S. K. Jeng, “Compact microstrip dual-band bandpass filters design using genetic-algorithm technique,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 160–168, Jan. 2006. [30] L. C. Tsai and C. W. Hsue, “Dual-band bandpass filters using equal-length coupled-serial-shunted lines and Z-transform technique,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 1111–1117, Apr. 2004. [31] C. M. Tasi, H. M. Lee, and C. C. Tsai, “Planar filter design with fully controllable second passband,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 3429–3439, Nov. 2005. [32] H. M. Lee, C. R. Chen, C. C. Tsai, and C. M. Tsai, “Dual-band coupling and feed structure for microstrip filter design,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, pp. 1971–1974, 2004. [33] S. Sun and L. Zhu, “Compact dual-band microstrip bandpass filter without external feed,” IEEE Microwave Wireless Comp. Lett., vol. 15, pp. 644–646, Oct. 2005. [34] M. L. Chuang, “Concurrent dual band filter using single set of microstrip open-loop resonators,” Electron. Lett., vol. 41, pp. 1013–1014, Sept. 2005. [35] J. T. Kuo and H. S. Cheng, “Design of quasi-elliptic function filters with a dual-passband response,” IEEE Microwave Wireless Comp. Lett., vol. 14, pp. 472–474, Oct. 2004. [36] J. T. Kuo, T. H. Yeh, and C. C. Yah, “Design of microstrip bandpass filters with a dual-passband response,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 1331–1337, Apr. 2005. [37] C. C. Chen, “Dual-band bandpass filter using coupled resonator pairs,” IEEE Microwave Wireless Comp. Lett., vol. 15, pp. 259–261, Apr. 2005. [38] S. S. Oh and Y. S. Kim, “A compact duplexer for IMT-2000 handsets using microstrip slow-wave open-loop resonators with high-impedance meander lines,” in Radio and Wireless Conf., pp. 177–180, Aug. 2001. [39] C. M. Tsai, S. Y. Lee, C. C. Chuang, and C. C. Tsai, “A folded coupled-line structure and its application to filter and diplexer design,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 1927–1930, June 2002. [40] E. Goron, J-P Coupez, C. Person, Y. Toutain, H. Lattard, and F. Perrot, “Accessing to UMTS filtering specifications using new microstrip miniaturized loop-filters,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 1599–1602, June 2003. [41] A. F. Sheta, J. P. Coupez, G. Tanne, S. Toutain, and J. P. Blot, “Miniature microstrip stepped impedance resonator bandpass filters and diplexers for mobile communications,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 607–610, June 1996. [42] G. A. Lee, M. Megahed, and F. D. Flaviis, “Design of multilayer spiral inductor resonator filter and diplexer for system-in-a-package,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 527–530, June 2003. [43] S. Srisathit, S. Patisang, R. Phromloungsri, S. Bunnjaweht, S. Kosulvit, and M. Chongcheawchamnan, “High isolation and compact size microstrip hairpin diplexer,” IEEE Microwave Wireless Comp. Lett., vol. 15, pp. 101–103, Feb. 2005. [44] B. Strassner and K. Chang, “Wide-band low-loss high-isolation microstrip periodic-stub diplexer for multiple-frequency applications,” IEEE Trans. Microwave Theory Tech., vol. 49, pp. 1818–1820, Oct. 2001. [45] Y. Toutain, C. Person, and J. Ph. Coupez, “Design and implementation of a compact microstrip Tx/Rx diplexer for UMTS equipments,” in Proc. Int. MIKON’02 Conf., 2002, pp. 187–190. [46] V. Radisic, Y. Qian, R. Coccioli, and T. Itoh, “Novel 2-D photonic bandgap structure for microstrip lines,” IEEE Microwave Guided Wave Lett., vol. 8, pp. 69–71, Feb. 1998. [47] A. Manchec, E. Rius, C. Quendo, C. Person, J. F. Favennec, P. Moroni, J. C. Cayrou, and J. L. Cazaux, “Ku-band microstrip diplexer based on dual behavior resonator filter,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 525–528, June 2005. [48] C. W. Tang and S. F. You, “Design methodologies of LTCC bandpass filters, diplexer, and triplexer with transmission zeros,” IEEE Trans. Microwave Theory Tech., vol. 54, pp. 717–723, Feb. 2006. [49] C. Q. Scrantom and J. C. Lawson, “LTCC technology: Where we are and where we’re going–II,” in IEEE MTT-S Int. Microwave Symp. Dig., 1999, pp. 193–200. [50] C. M. Tsai, S. Y. Lee, and C. C. Tsai, “Performance of a planar filter using a 0o feed structure,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 2362–2367, Oct. 2002. [51] T. Shen, H. T. Hsu, K. A. Zaki, A. E. Atia, and T. G. Dolan, “Full-wave design of canonical waveguide filters by optimization,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 504–511, Feb. 2003. [52] J. A. Ruiz-Cruz, M. A. El Sabbagh, K. A. Zaki, J. M. Rebollar, and Y. Zhang, “Canonical ridge waveguide filters in LTCC or metallic resonators,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 174–182, Jan. 2005. [53] Z. C. Hao, W. Hong, X. P. Chen, J. X. Chen, K. Wu, and T. J. Cui, “Multilayered substrate integrated waveguide (MSIW) elliptic filter,” IEEE Microwave Wireless Comp. Lett., vol. 15, pp. 95–97, Feb 2005. [54] J. H. Lee, S. Pinel, J. Papapolymerou, J. Laskar, and M. M. Tentzeris, “Low-loss LTCC cavity filters using system-on-package technology at 60 GHz,” IEEE Trans. Microwave Theory Tech., vol. 53, pp. 3817–3824, Dec. 2005. [55] T. M. Shen, T. Y. Huang, C. F. Chen, and R. B. Wu, “Design of 60GHz vertically stacked waveguide filters in LTCC,” in Proc. Asia-Pacific Microwave Conf., pp. 733–735, Dec. 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33189 | - |
| dc.description.abstract | This research is about the design of miniaturized filters, multispurious suppression filters, multi-passband filters, and miniaturized multiplexers. Several new layouts have been proposed and all of them are verified by experimental results. To begin with, stepped-impedance resonators (SIRs) that are the basic components of the proposed filters and multiplexers have been thoroughly studied. The SIR not only can be used to reduce the resonator size but also capable of controlling its all resonant frequencies. Complete design equations for SIRs have been provided, especially in the prediction of their fundamental and higher-order spurious frequencies. Additionally, novel compact net-type resonators have been presented. Actually, these net-type resonators are attributed to the variation of quarter-wavelength SIRs. The total electrical length and resonant frequencies of net-type resonators with different structural parameters have also been analyzed theoretically.
Secondly, to miniaturize the filter size, the compact net-type resonator filters have been proposed. Three kinds of filters including Chebyshev, quasi-elliptic, and trisection bandpass filters are designed and fabricated to demonstrate the practicality. By adjusting the structural parameters of the net-type resonators, the spurious frequencies can be properly shifted to higher frequencies and the resonator size can be reduced, which is more than 67 % reduction in comparison with that of the traditional open-loop resonator. Moreover, a miniaturized low-temperature cofired ceramic (LTCC) multilayer quasi-elliptic bandpass filter has been proposed. The fourth-order filter is constructed by two open-loop resonators and two miniaturized hairpin resonators that can be coupled through the apertures on the common ground plane, and the skew-symmetrical feeding structure adds two extra transmission zeros in the stopband. All adjacent resonators of the filter are vertically stacked at different layers and, hence, it may dramatically reduce the circuit area. As a result, each of the designed filters occupies a very small circuit size and has a good stopband response. Thirdly, to reject the spurious passbands of filters, a simple and efficient mothod has been proposed. The basic concept is to choose the constitutive resonators with the same fundamental frequency but staggered the higher-order frequencies, which is demonstrated by a fourth-order Chebyshev filter and a fourth-order quasi-elliptic filter. Each filter is composed of four different SIRs. The results show that better than –30 dB rejection levels in the stopband up to 5.4f0 and 8.2f0 are achieved by the Chebyshev and quasi-elliptic filters, respectively. In addition, to design multiband filters, a novel design method has been proposed. Coupling structures with both Chebyshev and quasi-elliptic frequency responses are presented to achieve dual-band and triple-band characteristics without a significant increase in circuit size. The design concept is to add some extra coupled resonator sections in a single-circuit filter to increase the degrees of freedom in extracting coupling coefficients of multiband filter and, therefore, the filter is capable of realizing the specifications of coupling coefficients at all passbands. Four experimental examples of filters with dual-band Chebyshev, triple-band Chebyshev, dual-band quasi-elliptic, and triple-band quasi-elliptic performance have been successfully designed to verify the presented concept. Finally, to miniaturize the multiplexer size, high isolation and compact size multiplexers designed with common resonator sections have been proposed. By exploiting the variable frequency responses of SIR, resonators can be shared by all filter channels of a multiplexer if their fundamental and higher-order spurious resonant frequencies are properly assigned. Size reduction is, therefore, achieved by introducing a few common resonator sections in the circuit. This concept has been verified by the experimental results of three multiplexers. As a consequence, these multiplexers occupy extremely small areas while still keeping good isolations. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:28:31Z (GMT). No. of bitstreams: 1 ntu-95-D92942005-1.pdf: 2731114 bytes, checksum: 1934acc84b00ee8afd15ca673c7ded97 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Chapter 1 Introduction ------------------------------------------------------------------------------ 1
1.1 Research Motivation ----------------------------------------------------------------------- 2 1.2 Literature Survey --------------------------------------------------------------------------- 3 1.3 Contributions -------------------------------------------------------------------------------- 6 1.4 Organization of the Dissertation ---------------------------------------------------------- 7 Chapter 2 Basic Concepts and Theories of Filters ----------------------------------------- 9 2.1 Filter Characteristics ----------------------------------------------------------------------- 9 2.2 Chebyshev Function Filters ------------------------------------------------------------- 10 2.2.1 Lowpass Prototype Design ------------------------------------------------------- 10 2.2.2 Scaling and Conversion ----------------------------------------------------------- 15 2.2.3 Impedance and Admittance Inverters ------------------------------------------- 17 2.2.4 Practical Realization of Impedance and Admittance Inverters --------------- 23 2.2.5 External Quality Factors and Coupling Coefficients -------------------------- 24 2.3 Quasi-Elliptic Function Filters ---------------------------------------------------------- 27 2.3.1 Lowpass Prototype Design ------------------------------------------------------- 28 2.3.2 External Quality Factors and Coupling Coefficients ------------------------- 31 2.4 Basic Theory of Couplings -------------------------------------------------------------- 33 2.4.1 Electric Coupling ------------------------------------------------------------------ 33 2.4.2 Magnetic Coupling ---------------------------------------------------------------- 35 2.4.3 Mixed Coupling -------------------------------------------------------------------- 36 2.4.4 Numerical Example of Extracting Coupling Coefficient --------------------- 37 2.5 Basic Theory of External Quality Factor ---------------------------------------------- 39 2.5.1 General Formulation of External Quality Factor ------------------------------ 39 2.5.2 Numerical Example of Extracting External Quality Factor ------------------ 41 Chapter 3 Analysis of Stepped-Impedance Resonators ------------------------------- 43 3.1 Analysis of Half-Wavelength SIRs ----------------------------------------------------- 43 3.1.1 Resonant Conditions -------------------------------------------------------------- 43 3.1.2 Characteristics of SIRs ------------------------------------------------------------ 45 3.2 Analysis of Quarter-Wavelength SIRs ------------------------------------------------- 49 3.2.1 Optimal Design --------------------------------------------------------------------- 49 3.2.2 Net-Type Resonators -------------------------------------------------------------- 51 Chapter 4 Compact Filters and Multispurious Suppression Filters -------------- 57 4.1 Novel Compact Net-Type Resonator Filters ------------------------------------------ 58 4.1.1 Coupling Characteristics between Net-Type Resonators --------------------- 58 4.1.2 Third-Order Parallel-Coupled Net-type Resonator Filter -------------------- 59 4.1.3 Fourth-Order Cross-Coupled Net-type Resonator Filter ---------------------- 63 4.1.4 Third-Order Trisection Net-type Resonator Filter ----------------------------- 68 4.2 Miniaturized Multilayer Quasi-Elliptic Bandpass Filter ---------------------------- 72 4.2.1 Filter Design ------------------------------------------------------------------------ 72 4.2.2 Experimental Results -------------------------------------------------------------- 77 4.3 Multispurious Suppression Filters ------------------------------------------------------ 80 4.3.1 Four-Pole Parallel-Coupled Filter ----------------------------------------------- 81 4.3.2 Four-Pole Cross-Coupled Filter -------------------------------------------------- 85 Chapter 5 Multi-Passband Filters and Miniaturized Multiplexers --------------- 91 5.1 Multi-Passband Filters ------------------------------------------------------------------- 92 5.1.1 Coupling Structures of Dual- and Triple-Band Filters ------------------------ 92 5.1.2 Dual-Band Chebyshev Filter Design -------------------------------------------- 95 5.1.3 Dual-Band Quasi-Elliptic Filter Design --------------------------------------- 100 5.1.4 Triple-Band Quasi-Elliptical Filter Design ----------------------------------- 105 5.1.5 Triple-Band Chebyshev Filter Design ----------------------------------------- 109 5.2 Miniaturized Multiplexers -------------------------------------------------------------- 114 5.2.1 Diplexer Design with Chebyshev Response ---------------------------------- 115 5.2.2 Diplexer Design with Quasi-Elliptic Response ------------------------------- 122 5.2.3 Triplexer Design with Chebyshev Response ---------------------------------- 130 Chapter 6 Concluding Remarks --------------------------------------------------------------- 135 6.1 Summary of the Dissertation ---------------------------------------------------------- 135 6.2 Suggestions for Further Research ----------------------------------------------------- 139 References ---------------------------------------------------------------------------------------------- 141 Publication List -------------------------------------------------------------------------------------- 147 | |
| dc.language.iso | en | |
| dc.subject | 帶通濾波器 | zh_TW |
| dc.subject | 多工器 | zh_TW |
| dc.subject | 步階式阻抗共振器 | zh_TW |
| dc.subject | 耦合係數 | zh_TW |
| dc.subject | 外部品質因子 | zh_TW |
| dc.subject | Bandpass filters | en |
| dc.subject | external quality factor | en |
| dc.subject | coupling coefficient | en |
| dc.subject | stepped-impedance resonator | en |
| dc.subject | multiplexers | en |
| dc.title | 具有多功能應用之小型化帶通濾波器及多工器設計 | zh_TW |
| dc.title | Design of Compact Bandpass Filters and Multiplexers with Multi-Function Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳俊雄(Chun Hsiung Chen),黃天偉(Tian-Wei Huang),吳宗霖(Tzong-Lin Wu),洪子聖(Tzyy-Sheng Horng),郭仁財(Jen-Tsai Kuo),吳霖?(Lin-Kun Wu),林丁丙(Ding-Bing Lin) | |
| dc.subject.keyword | 帶通濾波器,多工器,步階式阻抗共振器,耦合係數,外部品質因子, | zh_TW |
| dc.subject.keyword | Bandpass filters,multiplexers,stepped-impedance resonator,coupling coefficient,external quality factor, | en |
| dc.relation.page | 148 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 2.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
