請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33132完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張斐章 | |
| dc.contributor.author | Meng-Jung Tsai | en |
| dc.contributor.author | 蔡孟蓉 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:26:13Z | - |
| dc.date.available | 2006-07-28 | |
| dc.date.copyright | 2006-07-28 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-21 | |
| dc.identifier.citation | 1.朱志彬,2003,「尺度轉換技術應用於遙測影像分析之研究」,台灣大學生物環境工程研究所碩士論文。
2.邱建堯,2005,「結合GA與CG優選最佳倒傳遞類神經網路-以雨水下水道水位預測模式為例」,台灣大學生物環境工程研究所碩士論文。 3.林柏成,1999,「應用類神經網路於颱風降雨量推估」,成功大學水利及海洋工程研究所碩士論文。 4.林國峰,2004,「應用全面監度式訓練法則所建立之輻狀基底函數網路於洪水流量預測」,水資源管理2004研討會,第6卷, 23-34頁。 5.洪維均,2005,「氣象衛星影像應用於雨量即時預報系統之研發」,台灣大學生物環境工程研究所碩士論文。 6.孫建平,1996,「類神經網路及其應用於降雨及逕流過程之研究」,台灣大學農業工程研究所碩士論文。 7.陳正斌,2004,「應用模糊理論於颱風降雨量之推估」,成功大學水利及海洋工程研究所碩士論文。 8.陳如賢,2003,「類神經網路於水文系統之研究」,台灣大學生物環境工程研究所博士論文。 9.張斐章、王元鵬,2004,「以禁忌演算法優選輻狀基底函數類神經網路之參數」,台灣水利,第52卷,第4期,43-52頁。 10.張斐章、張麗秋、黃浩倫,2003,「類神經網路與實務」,東華書局。 11.劉振榮、呂貴寶、徐天佑,1992,「應用同步衛星資料估算台灣地區對流降雨」,大氣科學,第20卷,第3期,233-265頁。 12.羅積玉,1990,「多元統計分析方法與應用」,科技圖書股份有限公司。 13.Arkin, P. A., and B. N. Meisner, 1987, Spatial and annual variation in the diurnal cycle of large-scale tropical convective cloudiness and precipitation, Monthly Weather Review, Vol.115, pp.1009-1032. 14.Chang F.J., Chang L.C., Wang Y.S., 2005, Enforced Self-Organizing Map Neural Networks for River Flood Forecasting, Hydrological Processes.(Accepted) 15.Chang, F. J. and Y. C. Chen, 2003, Estuary water-stage forecasting by using radial basis function neural networks, Journal of Hydrological, Vol.270, pp.158-165. 16.Chang, F. J. and Y. Y. Hwang, 1999, A self-organization algorithm for real-time flood forecast, Hydrological Processes, Vol. 13, pp.123-138. 17.Chen S., Cowan C. F. N. and Grant P. M., 1991,Orthogonal least squares learning algorithm for radial basis function Networks, IEEE Transactions on Neural Networks, Vol.2, No.2, pp.302-309. 18.Ham F. M. and Kostanic I., 2001, Principles of neurocomputing for science engineering, McGraw-Hill: New York, NY. 19.Jan Seibert, 2001, On the need for benchmarks in hydrological modeling, Hydrological Processes, Vol. 15, pp.1063-1064. 20.Kou-lin Hsu, Xiaogang Gao, Soroosh Sorooshian and Hoshin V. Gupta., 1997, Precipitation estimation from remotely sensed information using artificial neural networks, Journal of Applied Meteorology: Vol. 36, No. 9, pp. 1176–1190. 21.Luk, Kin C., Ball, J.E., Sharma, A., 2001, An application of artificial neural networks for rainfall forecasting, neural networks ,Volume. 33, Issue. 6-7, pp. 683-693. 22.Maria Cleofe Valverde Ramirez, Haroldo Fraga de Campos Velho and Nelson Jesus Ferreira, 2005, Artifical neural network technique for rainfall forecasting applied to the Sao Paulo region, Journal of Hydrology, Vol.301, pp.146-162. 23.Powell M. J. D., 1987, Radial basis function for multivariable interpolation: a review, IMA conference on algorithms for approximation of function and data, RMCS, Shrivenham, England. pp.143-167. 24.Soroosh Sorooshian, Kuo-Lin Hsu, Xiaogang Gao, Hoshin V. Gupta, Bisher Imam and Dan Braithwaite, 2000, evaluation of PERSIANN system satellite–based estimates of tropical rainfall, bulletin of the american meteorological society, Vol. 81, No. 9, pp. 2035–2046. 25.The GMS user’s guide, 1997, Meteorological Satellite Center. 26.Toth, E.; Brath, A.; Montanari, A., 2000 , Comparison of short-term rainfall prediction models for real-time flood forecasting, neural networks ,Volume. 239, Issue. 1-4, pp. 132-147. 27.Yang Hong, Kuo-Lin Hsu, Soroosh Sorooshian and Xiaogang Gao. 2004, Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system, Journal of Applied Meteorology, Vol. 43, No. 12, pp. 1834–1 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33132 | - |
| dc.description.abstract | 本研究以西元2000~2004年蒐集之23場颱風事件為例,架構淡水氣象站颱風時期下一時刻之定量降雨預報模式。首先藉由不同之輸入項組合以建構三種不同之輸入模型,輸入變數包含地面氣象站所測得的時雨量資料、颱風特性資料以及GMS-5衛星資料,透過複迴歸分析與BPNN二種模式預報淡水氣象站下一時刻的颱風降雨量,其結果以使用GMS-5三個紅外光波段相對於淡水氣象站的9格雲頂溫度及雨量資料,作為模式之輸入項目,所得結果最佳,模式改善率最大。研究再針對27個雲頂溫度以不同的處理方式縮減變數個數,例如平均值法及主成分分析法等,進一步提出二種不同之輸入模型組合,透過複迴歸分析、BPNN及RBFNN三種模式預報下一時刻颱風降雨量,其測試結果以利用主成份分析縮減變數之方案表現最佳,其中以RBFNN模式最好(相關係數0.51、RMSE值4.74mm),相較於僅以雨量做為輸入項之方案有8.477%之改善,並且RBFNN所建立之颱風降雨預報模式更是明顯優於複迴歸模式12.45%。 | zh_TW |
| dc.description.abstract | Rainfall forecast is very important for improving the efficient management of water resources systems. Nevertheless, accurate rainfall forecasting is still a great challenge faced by hydrologists.
In this study, a station-based rainfall forecast model is constructed to forecast one-hour-ahead rainfall values during typhoon events. The developed model is constructed based on artificial neural networks (ANN) techniques which are capable of handle complex and non-linear systems. The available data are constituted by hourly rainfall values from 23 different events observed at the DanShui observation station and GMS-5 remote sensed data collected during 2000 to 2004. Firstly, to investigate the influence of the input information, three different schemes (schemes I, II and III) are proposed based on hourly rainfall, characteristics of typhoon and GMS-5 remote sensed data , respectively, and then applied to two different models, backpropagation neural network (BPNN) and multiple regression method (MRM) . The results showed that the BPNN model with scheme III, which includes nine cloud-top-temperatures of three thermal infrared and hourly rainfall measured data, presented the best performance. Furthermore, we have processed the input data reduction by two methods, (a) the average method and (b) the principal component analysis, and investigated their effectiveness through by three models-BPNN, MRM and Radial Basis Function Neural Network (RBFNN). The results suggest that the RBFNN model with input data reduction by the principle component analysis presented the best performance with smallest root mean square error (RMSE=4.74mm) and highest correlation coefficient (CC=0.51) when compared to all investigated schemes and forecast models. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:26:13Z (GMT). No. of bitstreams: 1 ntu-95-R93622003-1.pdf: 1220323 bytes, checksum: 8ee5f547ca48e36e92b6f4d84969df6f (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目錄
摘要 I Abstract II 目錄 IV 表目錄 VI 圖目錄 VII 第一章 前言 1 1.1研究動機 1 1.2研究方法 3 第二章 文獻回顧 4 2.1應用類神經網路預報降雨量 4 2.2應用衛星影像預報降雨量 8 2.3應用類神經網路結合衛星影像預報降雨量 10 第三章 理論概述 13 3.1複迴歸分析 13 3.2類神經網路 16 3.2.1倒傳遞類神經網路(BPNN) 20 3.2.2輻狀基底函數類神經網路(RBFNN) 26 3.3主成份分析 33 第四章 衛星遙測概述 36 4.1遙測基本原理 36 4.2 GMS-5衛星 40 第五章 研究案例 45 5.1資料蒐集與處理 45 5.2模式評比指標 51 5.3方案介紹(一) 54 5.4結果與討論(一) 57 5.5方案介紹(二) 63 5.6結果與討論(二) 67 第六章 79 6.1結論 79 6.2建議 81 參考文獻 82 附錄 86 | |
| dc.language.iso | zh-TW | |
| dc.subject | 主成份分析 | zh_TW |
| dc.subject | 颱風降雨預報 | zh_TW |
| dc.subject | 雲頂溫度 | zh_TW |
| dc.subject | 複迴歸分析 | zh_TW |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | cloud-top-temperature | en |
| dc.subject | principal component analysis | en |
| dc.subject | artificial neural network | en |
| dc.subject | multiple regression method | en |
| dc.subject | Typhoon rainfall forecasting | en |
| dc.title | 纇神經網路結合衛星影像預報颱風降雨量 | zh_TW |
| dc.title | Remote Sensing Imagery for Typhoon Rainfall Forecasting ─ ANN Approach | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張麗秋,黃文政,鄭克聲 | |
| dc.subject.keyword | 颱風降雨預報,雲頂溫度,複迴歸分析,類神經網路,主成份分析, | zh_TW |
| dc.subject.keyword | Typhoon rainfall forecasting,cloud-top-temperature,multiple regression method,artificial neural network,principal component analysis, | en |
| dc.relation.page | 87 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-22 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
