Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33118
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭克聲
dc.contributor.authorYun-Chieh Wangen
dc.contributor.author王筠絜zh_TW
dc.date.accessioned2021-06-13T04:25:40Z-
dc.date.available2011-07-29
dc.date.copyright2011-07-29
dc.date.issued2011
dc.date.submitted2011-07-27
dc.identifier.citation1. 王如意、易任(1982),應用水文學,國立編譯館出版。
2. 甘俊二(1979),灌溉系統配水技術之分析與研究,臺灣大學農業工程學系研究報告334號。
3. 吳富春,李長穎(2004),水田生態環境微氣候之量測與數值模擬,農業工程學報,第50卷,第2期,pp. 64-84。
4. 姚銘輝,陳守泓(2005),利用渦流相關系統量測水稻田蒸發散量及作物係數,農委會農試所農業工程組水稻田農業多樣性機能研討會。
5. 張煜權(1995),臺灣之地域性水田灌溉用水量之推估研究,國立臺灣大學農業工程學研究所碩士論文。
6. 黃振昌(2003),Penman-Monteith方程式日射-日照關係地域性參數之建立與評估,中國農業學報,第49卷,第3期,pp. 79-91。
7. 葉信富,李振誥,陳忠偉,張格綸(2008)評估蒸發皿係數以推估台灣南部地區蒸發散量之研究,農業工程學報,第54卷,第3期,pp. 27-35。
8. 陳奕穎(2004),發展遙測資料反演可感熱與潛熱通量之研究,國立中央大學水文科學研究所碩士論文。
9. 陳清田,甘俊二(1997),臺灣地域性作物需水量之推估研究,農業工程學報,第43卷,第4期,pp. 1-18。
10. 國立中央大學太空及遙測研究中心,Landsat系列衛星簡介。 http://www.csrsr.ncu.edu.tw/
11. 農田水利入口網。http://doie.coa.gov.tw/
12. Allen, R. G., Periera, L. S., Raes, D., and Smith, M. (1998) Crop Evapotranspition: Guidelines for Computing Crop Requirements, Irrigation and Drainage Paper No. 56, Food and Agriculture Organization of the United Nations, Rome, Italy.
13. Allen, R. G., Tasumi, M., and Trezza, R. (2007) Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-model, Journal of Irrigation and Drainage Engineering, 133: 380-394.
14. Artis, D. A., & Carnahan, W. H. (1982) Survey of emissivity variability in thermography of urban areas, Remote Sensing of Environment, 12: 313– 329.
15. Attarod, P., Aoki, M., Komori, D., Ishida, T., Fukumura, K., Boonyawat, S., Tongdeenok, P., Yokoya, M., Punkngum, S., and Pakoktom, T. (2006) Estimation of Crop Coefficients and Evapotranspiration by Meteorological Parameters in a Rain-fed Paddy Rice Field, Cassava and Teak Plantations in Thailand. Journal of Agricultural Meteorology, 62: 93-102.
16. Aubient, M., Chermanne, B., Vandenhaute, M., Longdoz, B., Yernaux, M., and Laitat, E. (2001) Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agricultural and Forest Meteorology, 108(4): 293-315.
17. Aubient, M. (2008) Eddy covariance CO2 flux measurements in nocturnal conditions: An analysis of the problem. Ecological Applications, 18(6): 1368-1378.
18. Baldocchi, D. D., Finnigan, J., Wilson, K., Paw U, K. T., and Falge, E. (2000) On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Boundary-Layer Meteorology, 96(1-2): 257-291.
19. Baldocchi, D. D., Falge, E., Gu, L. H., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X. H., Malhi, Y., Meyer, T., Munger, W., Oechel, W., U, K. T. P., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S. (2001) FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapour, and energy flux densities. Bulletin of the American Metrological Society, 82(11): 2415-2434.
20. Bastiaanssen, W. G. M., Menenti, M., Fedders, R. A., and Holtslag, A. A. M. (1998) A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation, Journal of Hydrology, 213(1-4): 1928-212.
21. Bastiaanssen, W. G. M., Pelgrum, H., Wang, J., Ma, Y., Moreno, J. F., Roerink, G. J., and T. van der Wal. (1998) A remote sensing surface energy balance algorithm for land (SEBAL)-2. Validation, Journal of Hydrology, 213(1-4): 213-229.
22. Baldocchi, D. D. (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 9(4): 479-492.
23. Boegh, E., and Soegaard, H. (2001) Using surface temperature to solve for atmosphereic resistance, surface resistance and evapotranspiration rates, Water Resources Research, (submitted).
24. Boegh, E., Soegaard, H., and Thomsen, A. (2002) Evaluating evapotranspiration rates and surface conditions using Landsat TM to estimate atmosphereic resistance and surface resistance, Remote Sensing of Environment, 79: 329-343.
25. Boussinesq, J. (1903) Theorie analytique de la chaleur, Gauthier-Villar, 2: 154-176.
26. Cambell, G. S., and Norman, J. M. (1998) An Introduction to Environmental Biophysics, Springe-Verlag New York, Inc.
27. Gowda, P. H., Chavez, J. L., Howell, T. A., Marek, T. H., and New, L. L. (2008) Surface energy balance based evapotranspiration mapping in the Texas high plains, Sensors, 8: 5186-5201.
28. Huete, A. R. (1988) A soil adjusted vegetation index, Remote Sensing of Environment, 25: 295-309.
29. Idso, S. B., Reginato, R. J., and Jackson, R. D. (1977) An equation for potential evaporation from soil, water, and crop surfaces adaptable to use by remote sensing, Geophysical Research Letters, 4: 187-188.
30. Idso, S. B., Reginato, R. J., and Jackson, R.D. (1979) Calculation of evaporation during the three stages. Water Resource Research, 15: 487-488.
31. Jackson, R. D., Reginato, R. J., and Idso, S. B. (1977) Wheat canopy temperature: a practical tool for evaluating water requirements, Water Resources Research, 13: 651-656.
32. Jarvis, P. G., and McNaughton, K. G. (1986) Stomatal control of transpiration. Scaling up from leaf to region, Advances in Ecological Research, 15:1-49.
33. Kuo, S.F., Ho, S.S., and Liu, C.W. (2006) Estimation irrigation water requirements with derive crop coefficients for upland and paddy crops in ChiaNan Irrigation, Taiwan. Agricultural Water Management, 82: 433-451.
34. Kustas, W. P., and Daughtry, C. S. T. (1990) Estimation of the soil heat flux net radiation ratio from spectral data. Agricultural and Forest Meteorology, 49: 205-223.
35. Kustas, W. P., and Norman, J. M. (2000) A two-sources energy balance approach using directional radiometric temperature observations for sparse canopy covered surfaces, Agronomy Journal, 92: 847-854.
Landsat Project Science Office (2002). Landsat 7 Science Data User’s Handbook. URL: http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.html, Goddard Space Flight Center, NASA, Washington, DC (last date accessed: 10 September 2003).
36. Lee, X. (1998) On micrometeorological observation of surface-air exchange over tall vegetation. Agricultural and Forest Meteorology, 91(1-2): 39-49.
37. Mahrt, L. (1982) Momentum balance of gravity flows. Journal of the Atmospheric Sciences, 39(12): 2701-2711.
38. Markham, B.L., and J.L. Barker.( 1986) Landsat MSS and TM post-calibration dynamic ranges, exoatmospheric reflectances and at-satellite temperatures. EOSAT Technical Notes, August 1986.
39. Massman, W. J., and Lee, X. (2002) Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agricultural and Forest Meteorology, 113(1-4): 121-144.
40. MODIS UCSB Emissivity Library,
http://www.icess.ucsb.edu/modis/EMIS/html/em.html.
41. Monteith, J. L., and Unsworth, M. H. (1990) Principles of environmental physics. London, New York, Melbourne, Auckland: Edward Arnold.
42. Moran, M. S., Clarke, T. R., Inoue, Y., and Vidal, A. (1994) Estimating crop water deficit using the relationship between surface-air temperature and spectral vegetation index, Remote Sensing of Environment, 49: 246-363.
43. Norman, J.M., Kustas, W. P., and Humes, K.S. (1995) Sources approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature, Agricultral and Forest Meteorology, 77(3-4): 263-293.
44. Oke, T. R. (1987) Boundary layer climate, New York: Routle2dge.
45. Olioso, A., Chauki, H., Courault, D., and Wigneron, J. (1999) Estimation of Evapotranspiration and Photosynthesis by Assimilation of Remote Sensing Data into SVAT Models, Remote Sensing of Environment, 68:341–356.
46. Ormsby, J. P., Choudhury, B. J., and Owe, M. (1987) Vegetation spatial variability and its effect on vegetation indices, International Journal of Remote Sensing, 8(9): 1301-1306.
47. Paw U, K. T., Baldocchi, D. D., Meyers, T. P., and Wilson, K. B. (2000) Correction of eddy-covariance measurements incorporating both advective effects and density fluxes. Boundary-Layer Meteorology, 97(3): 487-511.
48. Prata, A. J. (1996) A new long-wave formula for downward clear-sky radiation at the surface, Q. J. R. Meteorol. Soc., 122: 1121-1151.
49. Reynolds, O. (1985) On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 451(1941): 5-47.
50. Seguin, B., and Itier, B. (1983) Using midday surface temperature to estimate daily evaporation from satellite thermal IR data, International Journal of Remote Sensing, 4: 371-383.
51. Stull, R. B. (1988) An introduction to boundary layer meteorology, Dordrecht: Kluwer Academic.
52. Taylor, G. I. (1983) The spectrum of turbulence. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 164(A919): 0476-0490.
53. Tsai, J. L., Tsuang, B. J., and Lu, P. S. (2007) Surface Energy Components and Land Characteristics of a Rice Paddy, American Meteorological Society, 46: 1879-1900.
54. Wu, J. (1990) Modelling the energy exchange processes between plant communities and environment, Ecological Modelling, 51: 233–250.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33118-
dc.description.abstract近年來隨著衛星遙測技術的進步,可有效率的監測與評估環境的變化。於各項環境監測中,水資源議題為台灣所重視,台灣地區降雨量雖然豐沛,但時空分布不均,又因地形特殊,不亦攔截儲存利用,在有限的水資源中又以農業用水佔用水之大宗,作物蒸發散量為推估農業用水量以制定年度灌溉計畫的基本資料,因此蒸發散量於水資源的規劃利用上為不可或缺的重要資料。
研究中以宜蘭縣壯圍鄉之水稻田為研討區域,於2010年一期作期間現地量測數據,並收集中央氣象局測站天氣觀測資料及Landsat 7 ETM+影像,分別使用FAO Penman-Monteith法(FAO-56法)、渦流相關法與ETM+影像進行蒸發散量估算。本研究使用遙測多光譜影像估算潛熱通量偏向SVAT模式的方法,特色為使用遙測影像獲得參數(淨輻射量、土壤熱通量與地表溫度)以及取得容易的地面資料(氣溫、空氣濕度)來推算地表參數(空氣阻力、地表阻力、地表蒸氣壓),進而推求蒸發散量。
研究結果顯示渦流相關法所得之蒸發散量與前人研究所得結果差異偏大,而FAO- 56法與遙測多光譜影像估算結果相近,且符合過往研究所得之水稻田蒸發散量,顯示本研究使用遙測多光譜影像估算水稻田蒸發散量有不錯的結果。
zh_TW
dc.description.abstractRecently, efficient monitoring of environmental changes has become a reality with the advancement of remote sensing technology. Among all kinds of environmental monitoring, water resources are main issues that are highly concerned in Taiwan. Although Taiwan’s annual rainfall is abundant, the non-uniform distribution both in space and time result in water shortage problem. Agriculture holds the biggest share of water right, and most water use in agricultural is for irrigation, so the crop evapotranspiration is important to water resource planning in agricultural.
By selecting the paddy rice field in Yilan city as the site of measurement, three methods including FAO Penman-Monteith method, eddy covariance method, and using Landsat ETM+ are used to evaluate the evapotranspiration during spring and summer of 2010 in the research. The part of using multispectral images in the research is combined with the in-situ surface meteorological measurement, such as air temperature and wind velocity, and use remote sensing data to evaluate the net radiation, soil heat flux, and surface conditions, and these parameters are used to estimate evapotranspiration using an energy balance approach. The results of FAO-56 and using Landsat ETM+ are similar to previous studies and different from eddy covariance. It is shown that using multispectral images to evaluate evapotranspiration of paddy rice is feasible.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:25:40Z (GMT). No. of bitstreams: 1
ntu-100-R98622013-1.pdf: 2186208 bytes, checksum: 96f56f6a28f88ee6a77da751467b3068 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VII
第一章 前言 1
1.1 研究動機與目的 1
1.2 研究流程 2
第二章 文獻回顧 4
2.1 蒸發散量估算方法 4
2.2 使用遙測衛星影像估算蒸發散量 7
第三章 水稻田蒸發散量估算 14
3.1 FAO Penman-Monteith Method 14
3.1.1 參考蒸發散量 16
3.1.2 作物蒸發散量 21
3.2 渦流相關法(Eddy Covariance) 24
第四章 研究區域與資料 29
4.1 研究區域介紹 29
4.2 資料收集 29
第五章 應用遙測衛星影像估算水稻田蒸發散量 34
5.1 Landsat 7 ETM+簡介 34
5.2 淨輻射量 35
5.3 土壤熱通量 36
5.4 潛熱通量估算 37
5.5 推估水稻田潛熱通量 39
第六章 結果與討論 44
6.1 FAO Penman-Monteith 方程式與渦流相關法 44
6.2 使用遙測多光譜影像推估水稻田蒸發散量 46
第七章 結論與建議 60
參考文獻 62
圖目錄
圖1-1 研究流程圖 3
圖2-1 [(Ts-Ta)-SAVI]梯形法估算蒸發散量 8
圖2-2 SEBAL模式中假設地表溫度(Ts)與(Ts-Ta)之間為線性關係 9
圖2-3 SVAT模組與其他資料同化之示意圖 11
圖3-1 地表能量平衡示意圖 14
圖3-2 FAO-56蒸發散量計算概念圖 15
圖3-3 參考蒸發散量計算所需之假設環境條件 16
圖3-4 飽和蒸氣壓與溫度關係曲線圖 21
圖3-5 次潮濕(sub-humid)狀況下由作物高度與風速決定Kcmid值 23
圖3-6 2010年宜蘭地區氣候條件下一期作水稻理論Kc值曲線圖 24
圖4-1 宜蘭縣壯圍鄉地理位置 30
圖4-2 研究區域與氣象站之相對位置 30
圖4-3 研究區域航照圖 31
圖4-4 現地渦流相關法儀器設置情形 31
圖4-5 研究區域水稻田各時期生長情況 32
圖4-6 宜蘭氣象站儀器與周遭環境 33
圖5-1 使用遙測影像估算潛熱通量之流程圖 38
圖5-2 水稻栽培管理示意圖 42
圖5-3 淨輻射量、風速、溫度、蒸氣壓、二氧化碳濃度分布垂直剖面圖 42
圖5-4 地表植被垂直能量分配平衡圖 43
圖5-5 在不同太陽角度與葉面積指數下透光函數之變化 43
圖6-1 FAO-56法時參考蒸發散量加總與日參考蒸發散量比較圖 49
圖6-2 第93天至187天之間FAO-56法計算所得水稻田蒸發散量 49
圖6-3 2010年宜蘭水稻田渦流相關法量測蒸發散量結果 50
圖6-4 FAO-56法之理論Kc值與使用渦流相關法測量結果推得之Kc值比較 50
圖6-5 FAO-56法與渦流相關法蒸發散量估算結果比較圖 51
圖6-6 研究區域2010/03/15上午10點淨輻射量 51
圖6-7 研究區域2010/03/15上午10點土壤熱通量 52
圖6-8 研究區域2010/03/15上午10點地表溫度 52
圖6-9 研究區域2010/03/15上午10點 NDVI值 53
圖6-10 研究區域2010/03/15上午10點潛熱通量 53
圖6-11 研究區域2010/03/31上午10點淨輻射量 54
圖6-12 研究區域2010/03/31上午10點土壤熱通量 54
圖6-13 研究區域2010/03/31上午10點地表溫度 55
圖6-14 研究區域2010/03/31上午10點 NDVI值 55
圖6-15 研究區域2010/03/31上午10點潛熱通量 56
圖6-16 研究區域2010/05/18上午10點淨輻射量 56
圖6-17 研究區域2010/05/18上午10點土壤熱通量 57
圖6-18 研究區域2010/05/18上午10點地表溫度 57
圖6-19 研究區域2010/05/18上午10點NDVI值 58
圖6-20 研究區域2010/05/18上午10點潛熱通量 58
圖6-21 使用遙測影像與FAO-56法估算潛熱通量結果比較 59
圖6-22 宜蘭地區2010年3月15日上午10點之情形(紅框為研究區域) 59
表目錄
表2-1 蒸發散量經驗公式一覽表 12
表2-2 水稻各生育階段之作物係數值 13
表3-1 稻米在不同栽種日期與地區之各生長階段之天數(L)與總栽種天數 21
表3-2 不同氣候條件下之水稻田Kc ini值 22
表3-3 各生長階段之平均水稻作物係數 23
表5-1 Landsat 7 ETM+相關資料 34
表5-2 適用於Landsat 7 ETM+影像之權重係數 35
dc.language.isozh-TW
dc.subject水稻田zh_TW
dc.subject蒸發散量zh_TW
dc.subject衛星遙測zh_TW
dc.subjectFAO Penman-Monteith法zh_TW
dc.subject渦流相關法zh_TW
dc.subjectFAO Penman-Monteith methoden
dc.subjectevapotranspirationen
dc.subjecteddy covarianceen
dc.subjectpaddy riceen
dc.subjectremote sensingen
dc.title應用遙測多光譜影像推估水稻田蒸發散量zh_TW
dc.titleEstimating Paddy Field Evapotranspiration using Remote Sensing Multispectral Imagesen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇明道,黃文政
dc.subject.keyword蒸發散量,水稻田,衛星遙測,FAO Penman-Monteith法,渦流相關法,zh_TW
dc.subject.keywordevapotranspiration,paddy rice,remote sensing,FAO Penman-Monteith method,eddy covariance,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2011-07-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
2.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved