請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33091完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃漢邦(Han-Pang Huang) | |
| dc.contributor.author | Ching-Fu Chang | en |
| dc.contributor.author | 張景富 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:24:40Z | - |
| dc.date.available | 2007-07-28 | |
| dc.date.copyright | 2006-07-28 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-20 | |
| dc.identifier.citation | [1] N. Alvertos, “A Zoom-Based Stereo Camera Model,” Proceedings of IEEE Energy and Information Technologies in the Southeast, Vol.2, pp. 482-485, Apr. 1989.
[2] M. Abdel-Mottaleb, N. Chellapa, and A. Rosenfeld, “Binocular Motion Stereo using MAP Estimation,” Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 321-327, 1993. [3] A. Koschan, V. Rodehorst, and K. Spiller, “Color Stereo Vision Using Hierarchical Block Matching and Active Color Illumination.” Proceedings of the 13th International Conference on Pattern Recognition, Vol. 1, pp. 835-839, Aug. 1996 [4] A. Koschan and V. Rodehorst, “Dense Depth Maps by Active Color Illumination.and Image Pyramids,” Advances in computer Vision, In F. Solina, W. G. Kropatsch, R. Klette, and R. Bajcsy (Eds.), Springer-Verlag, New-York, pp. 137-148, Oct. 1997. [5] S. T. Barnard, “Stochastic Stereo Matching over Scale,” International Journal of Computer Vision, Vol. 3, Issue 1, pp. 17-32, 1989. [6] P. N. Belhumeur, “A Bayesian approach to binocular stereopsis,” International Journal of Computer Vision, Vol. 19, Issue 3, pp. 237-260, 1996. [7] J. Banks, M. Bennamoun, and P. Corke, “Non-parametric Techniques for Fast and Robust Stereo Matching,” Proceedings of IEEE Conference on Speech and Image Technologies for Computing and Telecommunications, Vol. 1, pp. 365 -368, 1997. [8] E. Bruzzone, M. Cazzanti, L. De Floriani, and F. Mangili, “Applying Two-dimensional Delaunay Triangulation to Stereo Data Interpolation,” Proceedings of the Second European Conference on Computer Vision, pp. 368-372, 1992. [9] J. Banks and P. Corke, “Quantitative evaluation of matching methods and validity measures,” International Journal of Robotics Research, Vol. 20, No. 7, pp. 512-532, July 2001. [10] B. Bascle and S. T. Deriche, “Stereo Matching, Reconstruction and Refinement of 3D Curves Using Deformable Contours,” Proceedings of International Conference on Computer Vision, pp. 421-430, May 1993. [11] S. T. Barnard and M. A. Fischler, “Computational Stereo,” ACM Computing Surveys, Vol. 14, pp. 553-572, Dec. 1982. [12] A. F. Bobick and S. S. Intille, “Large occlusion stereo,” International Journal of Computer Vision, Vol. 33, No. 3, pp. 181-200, Sep. 1999. [13] G. Buchsbaum and A. Gottschalk, “Trichromacy, opponent colors coding and optimum color information transmission in the retina,” Proceedings of the Royal Society of London, Series B, Vol. 220, pp. 89-113, 1983. [14] R. Brockers, M. Hund, and B. Mertsching, A fast cost relaxation stereo algorithm with occlusion detection for mobile robot applications. Vision Modeling and Visualization 2004. [15] P. Burt and B. Julez, “A Disparity Gradient Limit for Binocular Fusion,” Perception, Vol. 9, pp. 671-682, 1980. [16] V. Bhaskaran and K. Konstantinides, Image and Video Compression Standards: Algorithms and architectures, 2nd Edition, London: Kluwer Academic Publishers, pp. 120-134, 2003. [17] S. Birchfield and C. Tomasi, “A pixel dissimilarity measure that is insensitive to image sampling,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 4, pp. 401-406, Apr. 1998. [18] D.C. Brockelbank and Y.H. Yang, “An Experimental Investigation in the Use of Color in Computational Stereopsis,” IEEE Transactions on SMC, Vol. 19, No. 6, pp. 1365-1383, Nov./Dec. 1989. [19] C. Chang and S. Chatterjee, “A Deterministic Approach for Stereo Disparity Calculation,” Proceedings of the Second European Conference on Computer Vision, pp. 420-424, 1992. [20] Y. S. Chen, Y. P. Hung, and C. S. Fuh, “Fast Block Matching Algorithm Based on the Winner-Update Strategy,” IEEE Transactions on Image Processing, Vol. 10, No. 8, pp. 1212-1222, Aug. 2001. [21] I. J. Cox, S. L. Hingorani, S. B. Rao, and B. M. Maggs, “A maximum likelihood stereo algorithm,” Computer Vision and Image Understanding, Vol. 63, Issue 3, pp. 542-567, 1996. [22] P. N. Chakrapani, A. A. Khokhar, and V. K. Prasanna, “Parallel Stereo on Fixed Size Arrays Using Zero Crossings,” Pattern Recognition, Vol. 4, pp. 79-82, 1992. [23] W. Cheng, J. Liu, and J. Zhang, “A Binocular Computer Vision System for Aerial Image Pairs,” Proceedings of International Conference on Signal Processing, Vol. 2, pp. 954-957, 1996. [24] U. R. Dhond and J. K. Aggarwal, “Structure from Stereo – A Review,” IEEE Transactions on SMC, Vol. 19, No. 6, pp. 1489-1510, Nov./Dec. 1989. [25] R. Deriche and O. Faugeras, “2D Curve Matching Using High Curvature Points: Application to Stereo Vision,” Proceedings of the 10th International Conference on Pattern Recognition, Vol. 1, pp. 240-242, 1990. [26] P. Fua, “A Parallel Stereo Algorithm that Produces Dense Depth Maps and Preserves Image Features,” Machine Vision and Applications, Vol. 6, pp. 35-49, 1993. [27] A. Ford and A. Roberts, “Colour space conversions,” Technical Report, 1998. [28] L. A. Gerhardt and W. I. Kwak, “An Improved Adaptive Stereo Ranging Method for Three-Dimensional Measurements,” Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 21-26, 1986. [29] F. J. Hsiao and H. P. Huang, “3D Image Reconstruction and Analysis for Micro-manipulation Systems,” Master thesis, Department of Mechanical Engineering, National Taiwan University, 2003. [30] E. Izquierdo, “Disparity/segmentation Analysis: Matching with an Adaptive Window and Depth-driven Segmentation,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 9, Issue 4, pp. 89-607, 1999. [31] J. R. Jordan III, W. S. Geisler, and A. C. Bovik, “Color as a source of information in the stereo correspondence process,” Vision Research, Vol. 30, No. 12, pp. 1955-1970, 1990. [32] J. R. Jordan III and A. C. Bovik, “Computational Stereo Vision Using Color,” IEEE Control Systems Magazine, pp. 31-36, Jun. 1988. [33] J. R. Jordan III and A. C. Bovik, “Using Chromatic Information in Dense Stereo Correspondence,” Pattern Recognition, Vol. 25, No. 4, pp. 367-383, 1992. [34] A. D. Jepson and M. R. M. Jenkin, “The Fast Computation of Disparity from Phase Differences,” Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 398-403, 1989. [35] A. Koschan, “What is New in Computational Stereo Since 1989: A Survey of Current Stereo Papers,” Technical Report 93-22, Technical University of Berlin, 1993. [36] A. Koschan, “Using perceptual attributes to obtain dense depth maps,” Proceedings of the IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 155-159, Apr. 1996. [37] K. Konolige, “Small Vision Systems: Hardware and Implementation,” in Proc. ISRR, Hayama, 1997. [38] E. Krotkov, Active Computer Vision by Cooperative Focus and Stereo, 1st Edition, Springer-Verlag: New York, USA, 1989. [39] J. J. Kweon, D. K. Jang, and J. D. Kim, “A Stereo Matching Algorithm Using Line Segment Features,” Proceedings of IEEE Conference on TENCON, pp. 589-592, 1989. [40] T. Kanade and M. Okutomi, “A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, Issue 9, pp. 920-932, 1994. [41] A. Koschan and V. Rodehorst, “Towards Real-time Stereo Employing Parallel Algorithms for Edge-based and Dense Stereo Matching,” IEEE Transactions on Computer Architectures for Machine Perception, pp. 234-241, 1995. [42] S. B. Kang, R. Szeliski, and C. Jinxjang, “Handling Occlusions in Dense Multi-View Stereo,” Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, pp. 103–110, 2001. [43] C. H. Lee and L. H. Chen, “A fast motion estimation algorithm based on the block sum pyramid,” IEEE Transactions on Image Processing, Vol. 6, Issue. 11, pp. 1587-1591, Nov. 1997. [44] J. L. Lotti and G. Giraudon, “Adaptive Window Algorithm for Aerial Image Stereo,” Pattern Recognition, Vol. 1, pp. 701-703, 1994. [45] Q. T. Luong and O. Faugeras, “Self-calibration of a Moving Camera from Point Correspondences and Fundamental Matrices,” International Journal of Computer Vision, Vol. 22, No. 3, pp. 261-289, 1997. [46] M. S. Livingstone and D. H. Hubel, “Psychophysical evidence for separate channels for the perception of form, color, movement, and depth,” Journal of Neuroscience, Vol. 7, pp. 3416-3468, 1987. [47] M. Maruyama and S. Abe, “Range Sensing by Projecting Multiple Slits with Random Cuts,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, No. 6, pp. 647-651, 1993. [48] P. Moallem and K. Faez, “Fast Edge-based Stereo Matching Algorithm Based on Search Space Reduction,” Proceedings of IEEE Workshop on Neural Networks for Signal Processing, pp. 587-596, 2002. [49] D. Marr and T. Poggio, “A Computational Theory of Human Vision,” Proceedings of the Royal Society of London, Series B, Vol. 204, pp. 301-328, 1979. [50] D. Marr and T. Poggio, “Cooperative Computations of Stereo Disparity,” Science 194, pp. 283-287, 1976. [51] D. Marr and T. Poggio, “A Theory of Human Vision,” MIT A. P. No. 451, 1977. [52] M. S. Mousavi and R. J. Schalkoff, “A Parallel Distributed Algorithm for Feature Extraction and Disparity Analysis of Computer Images,” Proceedings of IEEE Symposium on Parallel and Distributed Processing, pp. 428-435, 1990. [53] H. E. M. den Ouden, R. van Ee, and E. H. F. de Haan, “Colour helps to solve the binocular matching problem,” Journal of Physiology, Vol. 567, No. 2, pp. 665-671, Sep. 2005. [54] M. Okutomi and T. Kanade, “A Multi-baseline Stereo,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 15, No. 4, pp. 353-363, 1993. [55] Y. Ohta and T. Kanade, “Stereo by intra- and inter-scanline search,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 7, No. 2, pp. 139-154, 1985. [56] M. W. Schwarz, W. B. Cowan, and J. C. Beatty, “An experimental comparison of RGB, YIQ, LAB, HSV and opponent color models,” ACM Transactions on Graphics, Vol. 6, No. 2, pp. 123-158, Apr. 1987. [57] S. D. Sharghi and F. A. Kamangar, “Geometric Feature-based Matching in Stereo Images,” Proceedings of IEEE Conference on Information, Decision and Control, pp. 65-70, 1999. [58] M. Shimizu and M. Okutomi, “Precise Sub-pixel Estimation on Area-based Matching,” Proceedings of IEEE International Conference on Computer Vision, Vol. 1, pp. 90-97, 2001. [59] D. Scharstein, R. Szeliski, and R. Zabih, “High-Accuracy Stereo Depth Maps Using Structure Light,” Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognitio, pp. 195-202, Jun. 2003. [60] D. Scharstein and R. Szeliski, “Stereo matching with nonlinear diffusion,” International Journal of Computer Vision, Vol. 28, Issue 2, pp. 155-174, 1998. [61] D. Scharstein and R. Szeliski, “A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms,” Technical Report MSR-TR-2001-81, Microsoft Research, 2001. [62] D. Scharstein, R. Szeliski, and R. Zabih, “A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms,” Proceedings of IEEE Workshop on Stereo and Multi-Baseline Vision, pp. 131-140, Dec. 2001. [63] G. Thorpe and D. Fraser, “Problems in Area-based Image Registration for Stereo,” Proceedings of IEEE Conference on Speech and Image Technologies for Computing and Telecommunications, Vol. 1, pp. 347-352, 1997. [64] Y. Wang and P. Bhattacharya, “Hiearachical Stereo Correspondence Using Features of Gray Connected Components,” Proceedings of IEEE Conference on Image Processing, Vol. 3, pp. 264-267, 1997. [65] J. Waldmann and S. Merhav, “Fusion of Stereo and Motion Vision for 3-D Reconstruction,” Proceedings of 11th IAPR International Conference on Pattern Recognition, Vol. 1, pp. 5-8, 1992. [66] P. Werth and S. Scherer, “Robust Subpixel Stereo Matching by Relaxation of Match Candidates,” Proceedings of First International Workshop on Image and Signal Processing and Analysis, pp. 189-194, 2000. [67] S. Xinquan and P. Palmer, “Uncertainty Propagation and the Matching of Junctions as Feature Groupings,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, Issue 12, pp. 1381-1395, 2000. [68] K. J. Yoon and I. S. Kweon, “Locally Adaptive Support-Weight Approach for Visual Correspondence Search,” Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 924-931, 2005. [69] K. J. Yoon and I. S. Kweon, “Adaptive Support-Weight Approach for Correspondence Search,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28, No. 4, pp. 650-656, 2006. [70] A. L. Yuille and T. Poggio, “A Generalized Ordering Constraint for Stereo Correspondence,” AI Memo 777, AI Lab, MIT, 1984. [71] Z. Zhang, “Flexible Camera Calibration by Viewing a Plane from Unknown Orientations,” Proceedings of International Conference on Computer Vision, Vol. 1, pp. 666-673, 1999. [72] L. Zhao and C. E. Thorpe, “Stereo and Neural Network-Based Pedestrian Detection,” Proceedings of IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems, pp. 298-303, Oct. 1999. [73] D. Scharstein and R. Szeliski, Middlebury Stereo Vision Research Page, http : //bj.middlebury.edu/˜schar/stereo/newEval/php/results.php | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33091 | - |
| dc.description.abstract | 本文的主要目的為發展適用於雙眼立體視覺系統的三維影像重建理論。我們提出一個新的方法來解決立體比對中最困難的對應點問題,並加入一些幾何的限制來減少模零兩可的對應。經過雙向驗證的對應點比對更能確保在估測視差時的正確性。將稠密的視差圖經過後處理之後使其更為平滑可靠,再利用立體三角量測使之回復三維景物的特徵。
當攝影機的擺設趨近於幾何限制,我們採用投射中值精確的校正以減少錯誤比對的發生。此外,藉由採用一色彩轉換模擬人類視覺系統,處理立體比對中色彩資訊不豐富之區域,結果證實模擬人類視覺色彩認知結合所提出的比對方法能有效地偵測深度與重建三維場景。所提出的比對方法,除了能有效的減少運算量以達到近即時之外,在影像深度不連續之區域的比對更有明顯的改善。 | zh_TW |
| dc.description.abstract | In this thesis, a binocular stereo vision system is constructed for depth estimation and 3D image reconstruction. We propose a new method called “color weighted correspondence algorithm” to solve correspondence problems. Geometric constraints are added to reduce the ambiguities in stereo matching. Left-right consistency check is used to increase the confidence for matching results. Post-processing helps remove the outliers and make original dense disparity map smooth and reliable. The three-dimensional characteristics can be reconstructed by stereo triangulation.
Projected median is used to rectify cameras before performing the stereo matching in case mismatches happen. It performs well as the cameras are set up in approximately correct position. The YCC color model is adopted to simulate human vision system to deal with textureless regions. It is then applied to the “color weighted correspondence algorithm” to determine the correspondence. It validates the feasibility of humanoid color perception with stereo matching methodology to estimate depth and reconstruct 3D scene. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:24:40Z (GMT). No. of bitstreams: 1 ntu-95-R93522823-1.pdf: 3058470 bytes, checksum: 3ebc7660e27fe3b7c1d5abc972f54761 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 摘要 I
Development of a Near Real-Time Stereo Vision System II Abstract II Contents III List of Tables V List of Figures VI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Related Works 2 1.2.1 Static Stereo 3 1.2.2 Dynamic Stereo 4 1.2.3 Active Stereo 4 1.2.4 Stereo Using More Than Two Images 5 1.3 Objectives and Contributions 6 1.4 Thesis Organization 7 Chapter 2 Background Knowledge 9 2.1 Computational Stereo 9 2.2 Central Projection and Epipolar Geometry 13 2.2.1 Central Projection and Pinhole Camera Model 13 2.2.2 Epipolar Geometry 20 2.3 Camera Calibration 21 2.4 Stereo Matching 24 2.4.1 Local Correspondence Methods 25 2.4.2 Global Correspondence Methods 27 2.5 Fast Block Matching Algorithm 28 2.5.1 Concept of Winner-Update Strategy 29 2.5.2 Winner-Update Algorithm for Block Matching 31 Chapter 3 Disparity Estimation 34 3.1 Overview of Methodology 34 3.2 Color Transformation 36 3.3 Camera Rectification by Using Projected Median 38 3.4 Correspondence Determination 41 3.4.1 Constraints 41 3.4.2 Color Weighted Correspondence Algorithm 44 3.4.3 Consistency Check 48 3.5 Disparity Estimation and Post-Processing 50 3.6 Stereo Triangulation 51 Chapter 4 Experimental Results 55 4.1 Test for Proposed Algorithm 55 4.1.1 Test for Color Transformation 55 4.1.2 Test for Color Weighted Correspondence Algorithm 61 4.2 Performance Evaluation 63 Chapter 5 Stereo Vision System 72 5.1 System Overview 72 5.2 Camera rectification 74 5.3 Stereo Camera Calibration 75 5.4 Depth Estimation 80 Chapter 6 Conclusions 82 6.1 Conclusions 82 6.2 Future Works 83 References 85 | |
| dc.language.iso | en | |
| dc.subject | 立體視覺 | zh_TW |
| dc.subject | stereo vision | en |
| dc.title | 近即時立體視覺系統之發展 | zh_TW |
| dc.title | Development of a Near Real-Time Stereo Vision System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 傅楸善(Chiou-Shann Fuh),宋開泰(Kai-Tai Song) | |
| dc.subject.keyword | 立體視覺, | zh_TW |
| dc.subject.keyword | stereo vision, | en |
| dc.relation.page | 91 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-22 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 2.99 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
