請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33035完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林克忠(Keh-Chung Lin) | |
| dc.contributor.author | Hsin-Ying Chung | en |
| dc.contributor.author | 鍾心穎 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:22:40Z | - |
| dc.date.available | 2006-08-11 | |
| dc.date.copyright | 2006-08-11 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-21 | |
| dc.identifier.citation | Appelros, P., Nydevik, I., Karlsson, M., Thorwalls, A., & Seiger, A. (2003). Assessing unilateral neglect: Shortcoming of standard test methods. Disability and Rehabilitation, 25, 473-479.
Blanton, S., & Wolf, S. L. (1999). An application of upper-extremity constraint-induced movement therapy in a patient with subacute stroke. Physical Therapy, 79, 847-853. Bonifer, N., & Anderson, K. M. (2003). Application of constraint-induced movement therapy for an individual with severe chronic upper-extremity hemiplegia. Physical Therapy, 83, 384-398. Calautti, C., & Baron, J.-C. (2003). Functional neuroimaging studies of motor recovery after stroke in adults. Stroke, 34, 1553-1566. Carey, J. R., Kimberley, T. J., Lewis, S. M., Auerbach, E. J., Dorsey, L., Rundquist, P., & Ugurbil, K. (2002). Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain, 125, 773-788. Cermak, S. A., & Lin, K.-C. (1997). Assessment of perceptual dysfunction in the adult. Philadelphia: W. B. Saunders. Chang, K.-C., & Tseng, M.-C. (2003). Costs of acute care of first-ever ischemic stroke in Taiwan. Stroke, 34, e219-e221. Chen, R., Cohen, L. G., & Hallett, M. (2002). Nervous system reorganization following injury. Neuroscience, 111, 761-773. Chiu, L., Shyu, W.-C., & Liu, Y.-H. (2001). Comparisons of the cost-effectiveness among hospital chronic care, nursing home placement, home nursing care and family care for severe stroke patients. Journal of Advanced Nursing, 33(3), 380-386. Colebatch, J. G., & Gandevia, S. C. (1989). The distribution of muscular weakness in upper motor neuron lesions affecting the arm. Brain, 112, 749-763. Dancause, N., Barbay, S., Frost, S. B., Plautz, E. J., Chen, D., Zoubina, E. V., et al. (2005). Extensive cortical rewiring after brain injury. The Journal of Neuroscience, 35, 10167-10179. Dong, Y., Dobkin, B. H., Cen, S. Y., Wu, A. D., & Winstein, C. J. (2006). Motor cortex activation during treatment may predict therapeutic gains in paretic hand function after stroke. Stroke, 37, 1552-1555. Doyon, J., Penhune, V., & Ungerleider, L. G. (2003). Distinct contribution of the cortico-striatal and cortico-cerebellar system to motor skill learning. Neuropsychologia, 41, 252-262. Dromerick, A. W., Edwards, D. F., & Hahn, M. (2000). Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke? . Stroke, 31, 2984-2988. Dum, R. P., & Strick, P. L. (1991). The origin of corticospinal projections from the premotor areas in the frontal lobe. The Journal of Neuroscience, 11, 667-689. Duncan, P. W., Propst, M., & Nelson, S. G. (1983). Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Physical Therapy, 63, 1606-1610. Fraser, C., Power, M., Hamdy, S., Rothwell, J., Hobday, D., Hollander, I., et al. (2002). Driving plasticity in human adult motor cortex is associated with improved motor function after brain injury. Neuron, 34, 831-840. Gauthier, L., Dehaut, F., & Joanette, Y. (1989). The Bells Test: A quantitative and qualitative test for visual neglect. . International Journal of Clinical Neuropsychology, 11, 49-54. Gladstone, D. J., Danells, C. J., & Black, S. E. (2002). The Fugl-Meyer Assessment of motor recovery after stroke: A critical review of its measurement properties. Neurorehabilitation and Neural Repair, 16, 232-240. Grotta, J. C., Noser, E. A., Ro, T., Boake, C., Levin, H., Aronowski, J., et al. (2004). Constraint-induced movement therapy. Stroke, 35(Suppl. I), 2699-2701. Haaland, K. Y., Prestopnik, J. L., Knight, R. T., & Lee, R. R. (2004). Hemispheric asymmetries for kinematic and positional aspects of reaching. Brain, 127, 1145-1158. Hamzei, F., Liepert, J., Dettmers, C., Weiller, C., & Rijntjes, M. (2006). Two different reorganization patterns after rehabilitation therapy: An exploratory study with fMRI and TMS. Neuroimage, 31, 710-720. Huang, Z.-S., Chiang, T.-L., & Lee, T.-K. (1997). Stroke prevalence in Taiwan: Finding from the 1994 National Health Interview Survey. Stroke, 28, 1579-1584. Jang, S.-H., Kim, Y.-H., Cho, S.-H., Lee, J.-H., Park, J.-W., & Kwon, Y.-H. (2003). Cortical reorganization induced by task-oriented training in chronic hemiplegic stroke patients. Neuroreport, 14, 137-141. Johansen-Berg, H., Dawes, H., Guy, C., Smith, S. M., Wade, D. T., & Matthews, P. M. (2002). Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. . Brain, 125, 2731-2742. Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377(14), 155-158. Kim, S. G., Ashe, J., Hendrich, K., Ellermann, J. M., Merkle, H., Ugurbil, K., et al. (1993). Functional magnetic resonance imaging of motor cortex: Hemispheric asymmetry and handedness. Science, 261, 615-617. Kim, Y.-H., Jang, S.-H., Chang, Y., Byun, W. M., Son, S., & Ahn, S. H. (2003). Bilateral primary sensori-motor cortex activation of post-stroke mirror movements: An fMRI study. NeuroReport, 14, 1329-1332. Kim, Y.-H., Park, J.-W., Ko, M.-H., Jang, S.-H., & Lee, P. K. W. (2004). Plastic changes of motor network after constraint-induced movement therapy. Yonsei Medical Journal, 45(2), 241-246. Kobayashi, M., Hutchinson, S., Schlaug, G., & Pascual-Leone, A. (2003). Ipsilateral motor cortex activation on functional magnetic resonance imaging during unilateral hand movements is related to interhemispheric interactions. . NeuroImage, 20, 2259-2270. Kopp, B., Kunkle, A., Mühlnickel, W., Villringer, K., Taub, E., & Flor, H. (1999). Plasticity in the motor system related to therapy-induced improvement of movement after stroke. NeuroReport, 10, 807-810. Krakauer, J., & Ghez, C. (2000). Voluntary movement. In E. R. Kandel, J. H. Schwartz & T. M. Jessell (Eds.), Priciples of Neural Science (4th ed., pp. 756-779). New York: McGraw-Hill. Kunkle, A., Kopp, B., Műller, G., Villringer, K., Villringer, A., Taub, T., et al. (1999). Constraint-induced movement therapy for motor recovery in chronic stroke patients. Archives of Physical Medicine and Rehabilitation, 80, 624-628. Landers, M. (2004). Treatment-induced neuroplasticity following focal injury to the motor cortex. International Journal of Rehabilitation Research, 27, 1-5. Lenze, E. J., Munin, M. C., Quear, T., Dew, M. A., Rogers, J. C., Begley, A. E., et al. (2004a). The Pittsburgh Rehabilitation Participation Scale: Reliability and Validity of a clinician-rated measure of participation in acute rehabilitation. Archives of Physical Medicine and Rehabilitation, 85, 380-384. Lenze, E. J., Munin, M. C., Quear, T., Dew, M. A., Rogers, J. C., Begley, A. E., et al. (2004b). Significance of poor patient participation in physical and occupational therapy for functional outcome and length of stay. . Archives of Physical Medicine and Rehabilitation, 85, 1599-1601. Levy, C. E., Nichols, D. S., Schmalbrock, P. M., Keller, P., & Chakeres, D. W. (2001). Functional MRI evidence of cortical reorganization in upper-limb stroke hemiplegia treated with constraint-induced movment therapy. American Journal of Physical Medicine and Rehabilitation, 80, 4-12. Liepert, J., Bauder, H., Miltner, W. H. R., Taub, E., & Weiller, C. (2000). Treatment-induced cortical reorganization after stroke in humans. Stroke, 31, 1210-1216. Liepert, J., Miltner, W. H. R., Bauder, H., Sommer, M., Dettmers, C., Taub, E., et al. (1998). Motor cortex plasticity during constraint-induced movement therapy in stroke patients. Neuroscience Letters, 250, 5-8. Lin, K.-C. (1993). Effects of cueing on unilateral neglect: Three single-subject studies. Paper presented at the the 73rd annual conference of the American Occupational Therapy Association, Seattle, WA. Lin, K.-C., Cermak, S. A., Kinsbourne, M., & Trombly, C. A. (1996). Effects of left-sided movements on line bisection in unilateral neglect. Journal of the International Neuropsychological Society, 2, 404-411. Liu, Y., & Rouiller, E. M. (1999). Mechanisms of recovery of dexterity following unilateral lesion of the sensorimotor cortex in adult monkeys. Experimental Brain Research, 128, 149-159. Loubinoux, I., Carel, C., Pariente, J., Dechaumont, S., Albucher, J.-F., Marque, P., et al. (2003). Correlation between cereral reorganization and motor recovery after subcortical infarcts. NeuroImage, 20, 2166-2180. Ma, H.-I., Trombly, C. A., & Robinson-Podolski, C. (1999). The effect of context on skill acquisition and transfer. American Journal of Occupational Therapy, 53, 138-144. Ma, H.-I., Trombly, C. A., Wagenaar, R. C., & Tickle-Degnen, L. (2004). Effect of one single auditory cue on movement kinematics in patients with Parkinson’s disease. American Journal of Physical Medicine and Rehabilitation, 83, 530-536. Maclean, N., & Pound, P. A. (2000). A critical review of the concept of patient motivation in the literature on physical rehabilitation. Social Science and Medicine, 50, 495-506. Mark, V. W., & Taub, E. (2004). Constraint-induced movement therapy for chronic stroke hemiperasis and other disabilities. Restorative Neurology and Neuroscience, 22, 317-336. Meyer, B. C., Hemmen, T. M., Jackson, C. M., & Lyden, P. D. (2002). Modified National Institutes of Health Stroke Scale for use in stroke clinical trials: Prospective reliability and validity. Stroke, 33, 1261-1266. Miltner, W. H., Bauder, H., Sommer, M., Dettmers, C., & Taub, E. (1999). Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke: A replication. Stroke, 30, 586-592. Murphy, M. A., & Roberts-Warrior. (2003). A review of motor performance measure and treatment intervention for patients with stroke. Topics in Geriatric Rehabilitation, 19, 3-42. Nakayama, H., Jorgensen, H. S., Raaschou, H. O., & Olsen, T. S. (1994). Recovery of upper extremity function in stroke patients: The Copenhagen stroke study. Archives of Physical Medicine and Rehabilitation, 75, 394-398. Nelles, G. (2004). Cortical reorganization - effect of intensive therapy. Restorative Neurology and Neuroscience, 22, 239-244. Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97-113. Ostendorf, C. G., & Wolf, S. L. (1981). Effect of forced use of the upper extremity of a hemiplegic patient on changes in function: A single-case design. Physical Therapy, 61(1022-1027). Ota, H., Fujii, T., Suzuki, K., Fukatsu, R., & Yamadori, A. (2001). Dissociation of body-centered and stimulus-centered representations in unilateral neglect. Neurology, 57, 2064-2069. Ota, H., Fujii, T., Tabuchi, M., Sato, K., Saito, J., & Yamadori, A. (2003). Different spatial processing for stimulus-centered and body-centered representations. Neurology, 60, 1846-1848. Page, S. J., Levine, P., & Leonard, A. C. (2005). Modified constraint-induced therapy in acute stroke: A randomized controlled pilot study. . Neurorehabiliation and Neural Repair, 19, 27-32. Page, S. J., Levine, P., Sisto, S., Bond, Q., & Johnston, M. V. (2002). Stroke patients’ and therapists’ opinions of constraint-induced movement therapy. Clinical rehabilitation, 16, 55-60. Page, S. J., Sisto, S., Johnston, M. V., & Levine, P. (2002). Modified constraint-induced therapy after subacute stroke: A preliminary study. Neurorehabilitation and Neural Repair, 16, 290-295. Page, S. J., Sisto, S., & Levine, P. (2002). Modified constraint-induced therapy in chronic stroke. American journal of Physical Medicine and Rehabilitation, 81, 870-875. Page, S. J., Sisto, S., Levine, P., Johnston, M. V., & Hughes, M. (2001). Modified constraint induced therapy: A randomized feasibility and efficacy study. Journal of Rehabilitation Research and Development, 38, 583-590. Page, S. J., Sisto, S., Levine, P., & McGrath, R. E. (2004). Efficacy of modified constraint-induced movment therapy in chronic stroke: A single-blinded randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 85, 14-18. Plummer, P., Morris, S. E., & Dunai, J. (2003). Assessment of unilateral neglect. Physical Therapy, 83, 732-740. Portney, L. G., & Watkins, M. P. (2000). Foundation of clinical research: Applications to practice. (2nd ed.). New Jersey: Prentice-Hall. Ringman, J. M., Saver, J. L., Woolson, R. F., Clarke, W. R., & Adams, H. P. (2004). Frequency, risk factors, anatomy, and course of unilateral neglect in an acute stroke cohort. Neurology, 63, 468-474. Roland, P. E., Skinhoj, E., & Lassen, N. A. (1980). Different cortical areas in man in organization of voluntary movements in extrapersonal space. Journal of Neurophysiology, 43, 137-150. Rossini, P. M., Calautti, C., Pauri, F., & Baron, J.-C. (2003). Post-stroke plasticity reorganization in the adult brain. Lancet Neurology, 2, 493-502. Schaechter, J. D., Kraft, E., Hilliard, T. S., Dijkhuizen, R. M., Benner, T., Finklestein, S. P., et al. (2002). Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: A preliminary study. Neurorehabilitation and Neural Repair, 16, 326-338. Seitz, R. J., Höflich, P., Binkofski, F., Tellmann, L., Hezog, H., & Freund, H.-J. (1998). Role of premotor cortex in recovering from middle cerebral artery infarction. . Archives of Neurology, 55, 1081-1088. Shumway-Cook, A., & Woollacott, M. H. (2001). Motor control: Theory and practical applications (2nd ed.). Baltimore: Williams & wikins. Solodkin, A., Hlustik, P., Noll, D. C., & Small, S. L. (2001). Lateralization of motor circuits and handedness during finger movements. European Journal of Neurology, 8, 425-434. Taub, E., & Usawatte, G. (2003). Constraint-induced movement therapy: Bridging from the primate laboratory to the stroke rehabilitation laboratory. Journal of Rehabilitation Medicine, Suppl. 41, 34-40. Taub, E., Usawatte, G., & Elbert, T. (2002). New treatments in neurorehabilitation founded on basic research. Nature Review of Neuroscience, 3, 228-236. Taub, E., Usawatte, G., & Pidikiti, R. (1999). Constraint-induced movement therapy: A new family of techniques with broad application to physical rehabilitation - a clinical review. Journal of Rehabilitation Research and Development, 36(3), 237-251. Taub, E., & Wolf, S. L. (1997). Constraint induced movement techniques to facilitate upper extremity use in stroke patients. Topics in Stroke Rehabilitation, 3, 38-61. Trombly, C. A., & Wu, C.-Y. (1999). Effect of rehabilitation tasks on organization of movement after stroke. American Journal of Occupational Therapy, 53, 333-344. Tuite, P., Anderson, N., & Konczak, J. (2005). Constraint-induced movement therapy in Parkinson's disease. Movement Disorder, 20, 910-911. Turton, A., & Pomeroy, W. (2002). When should upper limb function be trained after stroke? Evidence for and against early intervention. Neurorehabilitation and Neural Repair, 17, 215-224. Umphred, D. A., Byl, N., Lazaro, R. T., & Roller, M. (2001). Intervention for neurological disabilities. (4th ed.). St. Louis: Mosby. van der Lee, J. H., Beckerman, H., Knol, D. L., de Vet, H. C. W., & Bouter, L. M. (2004). Clinimetric properties of the Motor Activity Log for the assessment of arm use in hemiparetic patients. Stroke, 35, 1410-1414. van der Lee, J. H., Wagenaar, R. C., Lankhorst, G. J., Vogelaar, T. W., Devillé, W. L., & Bouter, L. M. (1999). Forced use of the upper extremity in chronic stroke patients: Results from a single-blind randomized clinical trial. Stroke, 30, 2369-2375. Ward, N. S., Brown, M. M., Thompson, A. J., & Frachowiak, R. S. J. (2003). Neural correlates of outcome after stroke: A cross-sectional fMRI strudy. Brain, 126, 1430-1448. Weintraub, S., & Mesulam, M.-M. (1987). Right cerebral dominance in spatial attention. Archives of Neurology, 44, 621-625. Winstein, C. J., & Pohl, P. S. (1995). Effects of unilateral brain damage on the control of goal-directed hand movement. Experimental Brain Research, 105, 163-174. Wolf, S. L., Blanton, S., Baer, H., Breshears, J., & Butler, A. J. (2002). Repetitive task practice: a critical review of constraint-induced movement therapy in stroke. . The Neurologist, 8, 325-338. Wu, C.-Y., Trombly, C. A., & Lin, K.-C. (1994). The relationship between occupational form and occupational performance: A kinematic perspective. American Journal of Occupational Therapy, 48, 679-687. Wu, C.-Y., Trombly, C. A., Lin, K.-C., & Tickle-Degnen, L. (2000). A kinematic study of contextual effects on reaching: Influences of object availability. Archives of Physical Medicine and Rehabilitation, 81, 95-101. Wu, C.-Y., Wong, M.-K., Lin, K.-C., & Chen, H.-C. (2001). Effects of task goal and personal preference on seated reaching kinematics after stroke. Stroke, 32, 70-76. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33035 | - |
| dc.description.abstract | 背景與目的: 近年來運用在中風患者身上的改良式侷限—誘發動作治療被認為能夠有效的改善動作功能,然而,此治療在其他方面,包括空間注意力與腦部重組的影響則尚未能確定。此外,個案對於治療的參與度也會是個影響療效的變因之一。本實驗的目的是要與傳統的職能治療做比較,以了解改良式侷限—誘發動作治療對於動作功能、半側忽略、運動學分析與腦部重組的效果。
方法:本研究採取兩組前—後測準實驗設計。共26名來自醫院復健部門,有輕至中度動作缺失的腦中風個案參與。12位個案參與改良式侷限—誘發動作治療,14位個案則是接受傳統職能治療,療程皆為每天兩小時,每週五天,連續三週。成效評量方面,「傅格—梅爾動作復原評估」與「動作活動日誌」用來評估上肢動作功能。上肢伸臂動作則以運動學分析其動作表現。「半測忽略測驗組」與「匹茲堡復健參與量表」則分別評量每一位參與者的空間注意力與參與度。最後,腦部重組的探討則是利用功能性磁振攝影。資料分析採取以下不同的方法: (1) 動作功能結果評估方面(包括「傅格—梅爾動作復原評估」與「動作活動日誌」),會先計算效應指數之後採用單尾t檢定方式比較兩組間的差異,此外,也計算效應值r和檢定力。「匹茲堡復健參與量表」的分數則是各組平均後利用單尾t檢定比較組間差異。(2) 運動分析學的資料利用共變數分析來檢定研究假設,並計算每個變項的效應值f與檢定力。(3) 功能性磁振攝影的資料則是利用魏克森符號排序檢定來檢定每組前測與後測間的改變。臨床評估與腦部活化間的相關性則是利用皮爾森相關係數來檢定。顯著程度訂在p值小於0.05。 結果: 在相似的參與度下,改良式侷限—誘發動作治療組在上肢動作功能、使用頻率、品質均顯著優於傳統治療組。上肢伸臂動作的運動學分析方面,改良式侷限—誘發動作治療組表現出較有力且節省能量的動作模式。「半測忽略測驗組」部份,兩組沒有顯著差異。有七位個案(三位為改良式侷限—誘發動作治療組)接受功能性磁振攝影,在患側手執行功能性磁振攝影的動作時,兩組在治療後皆有活化移轉向同側腦的現象,但是呈現的模式不盡相同:改良式侷限—誘發動作治療組有整體同側腦的動作區域活化增加的趨勢,而傳統治療組則是對側腦活化(尤其是主感覺動作區)顯著減少。更進一步探討動作功能與腦部活化的關係,結果顯示「傅格—梅爾動作復原評估」與「動作活動日誌」進步量與對側腦的前動作皮質區活化的改變量有顯著的正相關。 結論:改良式侷限—誘發動作治療相較於傳統治療,可以改善上肢的動作功能,增加動作力量與減少能量耗損,並且對腦部重組有所影響。 | zh_TW |
| dc.description.abstract | Background and Purpose: The modified constraint-induced movement therapy
(mCIMT) recently applied on patients with stroke was considered to be an efficient treatment to improve motor function. However, the effects of the mCIMT on other dominances including spatial attention and brain reorganization are still uncertain. Besides, the level of participation may also be a variable of efficacy and efficiency of the intervention. This study was to compare the effects of mCIMT with the conventional occupational therapy on motor function, unilateral neglect, kinematics analysis, and brain reorganization. Methods: The present study was a quasi-experimental, two-group pretest-posttest design. Twenty six stroke patients with moderate to mild motor deficit were recruited from rehabilitation department of hospital. 12 participants received mCIMT and 14 participants received conventional occupational therapy and interventions were both 2 hours per day, 5 days per week, and for 3 consecutive weeks. Outcome measures including the Fugl-Meyer Assessment (FMA), the Motor Activity Log (MAL) were used to evaluate the motor function of upper extremity. Movement performances on reaching were measured by kinematics system. The unilateral neglect test battery was used to test the spatial attention and the Pittsburgh Rehabilitation Participation Scale (PRPS) was adopted to determine the level of participation of each participant. Brain reorganization was explored by functional magnetic resonance imaging (fMRI). Data was analyzed by different methods: (1) for outcome measures of motor function (the FMA and the MAL), effectiveness index was calculated and one-tailed t tests were used to compare the differences between group and effect size r and power were also calculated. For the PRPS scores, average of each group is tested by one-tailed t test. (2) For kinematics information, ANCOVA was used to test the study hypothesis and the effect size f and power were calculated for each dependent variable. (3) For fMRI data, the Wilcoxon Signed Ranks test was used to test the changes from pre-test to post-test of each group. The correlation between clinical measures and brain activation characteristic was conducted using Pearson’s coefficient. Significance level was set at p < 0.05 Results: Under similar participation level, the mCIMT group exhibited significant better motor improvement and more powerful and energy efficiency during the reaching tasks than the conventional group. There was no significant different between two groups in the unilateral neglect test battery. 7 participants (3 of mCIMT group) took the session of fMRI. Both groups shifted the brain activation to the ipsilateral hemisphere during more-affected hand performance with different patterns. The mCIMT group exhibited trend on increasing total ipsilateral regions of interest (ROIs) activation and the conventional group significantly decreased contralateral cortex (especially sensorimotor cortex,SMC) activation. Participants were pooled to analyze the correlation between motor improvement and brain activation. More contralateral premotor cortex (PMC) activation voxels positively related to more improvement of the FMA and the MAL. Conclusions: The mCIMT may be an efficient intervention to motor function and brain reorganization. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:22:40Z (GMT). No. of bitstreams: 1 ntu-95-R92429007-1.pdf: 1271753 bytes, checksum: b2600fd89532fd7b21cdf9197471cc59 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Abstract i
中文摘要 iii Contents v List of Tables viii List of Figures ix Introduction 1 Background 1 Intervention of upper extremities for patients with stroke 1 Unilateral neglect after CVA 3 Introduction of constraint-induced movement therapy (CIMT) 4 Theory background 4 Possible mechanisms of CIMT 5 Application of CIMT on patients with CVA 5 Introduction of modified constraint-induced movement therapy (mCIMT) 8 Kinematics analysis of upper extremity 9 Therapy-induced brain reorganization 10 Effect of motivation on intervention 12 The purpose and hypotheses of this study 13 The purpose 13 Hypotheses 13 Subject and Method 14 Design 14 Participants 14 Materials and instrumentation 15 Clinical evaluation 15 Kinematics measures 17 FMRI measures 19 Treatment protocol of upper extremity 22 Experimental (mCIMT) group 22 Conventional occupational therapy group 22 Data analysis 23 Results 24 Effect of therapy on clinical measures 24 The Fugl-Meyer Assessment 24 The Motor Activity Log 24 Unilateral neglect assessment battery 25 The PRPS 26 Effect of therapy as assessed by kinematics system 26 More-affected hand pressing the horizontal bell task 26 More-affected hand pressing the vertical bell task 27 Less-affected hand pressing the horizontal bell task 27 Less-affected hand pressing the vertical bell task 28 Effect of therapy as assessed by functional MRI 28 Brain activation patterns prior to therapy 29 Therapy-related changes in brain activity 30 Discussion 33 Clinical measures 33 Effects of mCIMT assessed by kinematics system 35 Effects of mCIMT assessed by fMRI 37 Treatment-induced brain reorganization 38 Limitation and suggestion 43 Small sample size and heterogeneity of participant 43 Blindness 44 Future study 44 Conclusion 45 References 46 Tables 57 Figures 69 List of Tables Table 1: Demographic characteristics and descriptive variables of participants 57 Table 2: Clinical measure of mCIMT group and conventional group 58 Table 3: Minimal Clinically Important Difference (MCID) 59 Table 4: Two-group comparison of more-affected hand pressing horizontal bell task 60 Table 5: Two-group comparison of more-affected hand pressing vertical bell task 61 Table 6: Two-group comparison of less-affected hand pressing horizontal bell task 62 Table 7: Two-group less-affected hand pressing vertical bell task 63 Table 8: Comparison of lesion side of mCIMT subgroup of more-affected hand pressing horizontal bell task 64 Table 9: Comparison of lesion side of mCIMT subgroup of more-affected hand pressing vertical bell task 65 Table 10: Demographic characteristics and descriptive variables of fMRI participants 66 Table 11: Number of activation voxel of each ROI 67 Table 12: Laterality index of brain activation 68 List of Figures Figure 1 Experimental paradigm 69 Figure 2 A 6-camera motion analysis system 70 Figure 3 Lateral view of pressing vertical bell task 71 Figure 4 Superior view of pressing horizontal bell task 72 Figure 5 Effectiveness index (EI) of motor function 73 Figure 6 Functional maps of partial participants of two groups before and after intervention. 74 Figure 7 Correlation between EI of FMA-U/E and change of voxels of Contralateral PMC 76 Figure 8 Correlation between EI of AOU and change of voxels of Contralateral PMC 77 Figure 9 Correlation between EI of QOM and change of voxels of Contralateral PMC 78 | |
| dc.language.iso | en | |
| dc.subject | 復健 | zh_TW |
| dc.subject | 腦中風 | zh_TW |
| dc.subject | 治療成效 | zh_TW |
| dc.subject | 腦部重組 | zh_TW |
| dc.subject | Treatment outcome | en |
| dc.subject | Cerebrovascular accident | en |
| dc.subject | Brain reorganization | en |
| dc.subject | Rehabilitation | en |
| dc.title | 改良式侷限-誘發動作治療與病人的治療參與度對中風病人功能性結果、空間注意力與腦塑性影響之探討 | zh_TW |
| dc.title | Effects of Modified Constraint-induced Movement Therapy and Patient Participation for Therapy on Functional Outcome, Spatial Attention and Brain Reorganization in Patients with Stroke | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳菁宜(Ching-Yi Wu),陳嘉玲(Chia-Ling Chen) | |
| dc.subject.keyword | 腦中風,復健,治療成效,腦部重組, | zh_TW |
| dc.subject.keyword | Cerebrovascular accident,Rehabilitation,Treatment outcome,Brain reorganization, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-23 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 職能治療研究所 | zh_TW |
| 顯示於系所單位: | 職能治療學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
