Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33003
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光
dc.contributor.authorChib-Bin Kuoen
dc.contributor.author郭志斌zh_TW
dc.date.accessioned2021-06-13T04:21:37Z-
dc.date.available2007-07-25
dc.date.copyright2006-07-25
dc.date.issued2006
dc.date.submitted2006-07-21
dc.identifier.citation[1] 江淑貞(2003),生物科技產業之過去與現在-一個產業組織之研究,國立中央大學產業經濟研究所碩士論文。
[2] 李舒昇(2004),以拋物面鏡為基礎之表面電漿共振儀研究生物晶片上分子反應介面親和力,國立台灣大學應用力學研究所博士論文。
[3] Liedberg, B., Nylander, C., and Lundstrom, L. (1983), “Surface plasmon resonance for gas detection and biosensing,” Sensor and Actuators, 4, 299-304.
[4] Liedberg, B., Nylander, C., and Lundstrom, L. (1995), “Biosensing with surface plasmon resonance – how it all started,” Biosensors Bioelectron., 10, i-ix.
[5] Brandenburg, A., Krauter, R., Kunzel, C., Stefan, M., and Schulte, H. (2000), “Interferometric sensor for detection of surface-bound bioreactions,” Appl Opt., 39(34), 6396-6405.
[6] Nenninger, G. G., Clendenning, J. B., Furlong, C. E., and Yee, S. S. (1998), “Referenve-compensated biosensing using dual-channel surface plasmon resonance sensor system based on a planer lightpipe configuration,” Sensor and Actuators B, 51, 38-45.
[7] http://www.ti.com/sc/docs/products/msp/control/spreeta/index.htm
[8] Gestiwicki, J. E., Hsieh, H. V., and Pitner, J. B. (2001), “Using receptor comformational change to detect low molecular weight analytes by surface plasmon resonance,” Anal. Chem., 73, 5732-5737.
[9] Langmuir, I., and Schaefer, VJ. (1936), “Optical measurements of the thickness of a film absorbed from a solution,” J. Am. Chem. Soc., 59,1406-1409.
[10] Elwing, H. (1998), “Protein Absoption and Elliposometry in biomaterial research,” Biomaterials, 19, 397-406.
[11] 徐維良(2004),光學與電子生醫檢測技術之開發:多功光電生醫晶片儀與新式電化學量測方式,國立台灣大學應用力學研究所碩士論文。
[12] Cross, G. H., Reeves, A. A., Brand, S., Popplewell, J.F., Peel, L. L., Swann, M. J., Freeman, N. J. (2003), “A new quantitative optical biosensor for protein characterisation,” Sensors and Actuators B, 19, 383-390.
[13] Nellen, P. M., Tiefenthaler, K., and Lukosz, W. (1988), “Integrated optical input gating couplers as biomedical sensors,” Sens. Actuat., 15, 285-295.
[14] 黃念組(2005),生醫檢測用旋轉分析版雙偏極光波導干涉儀之設計與研製,國立台灣大學應用力學研究所碩士論文。
[15] Culshaw, B., and Dakin, J., (1988), “Optical Fiber Sensors: System and Application,” Vols. 2, Artech House, Boston.
[16] Ansari, F. (1993), “Applications of Fiber Optic Sensors In Engineering Mechanics,” American Society of Civil Engineers, New York.
[17] Jackson, D. A., Dandridge, A., and Sheem, S. K. (1980), “Measurements of small phase using a single mode optical fiber interferometer,” Opt. Lett., 5, 139-141.
[18] Yu, F. T. S., and Yin, S. (2002), “Fiber Optic Sensors,” Dekker, New York.
[19] Petuchowski, S. J., Giallorenzi, T. G., and Sheem, S. K. (1981), ”A sensitive fiber-optic Fabry-Perot interferometer,” IEEE Quantum Electron,17, 2168-2170.
[20] Ligler, F. S., and Taitt, C. A. R. (2002), “Optical Biosensors: Present and Future,” Elsevier Science, 277-304.
[21] Lukosz, W., (1995) “Integrated optical chemical and direct biochemical sensors,” Sensors and Actuators B, 29, 37-50.
[22] Lukosz, W., Stamm, C., Moser, H.R. Ryf R., Dübendorfer J. (1997), “Difference interferometer with new phase-measurement method as integrated-optical refractometer, humidity sensor and biosensor,” Sensors and Actuators B, 38-39, 316-323.
[23] Klotz, A., Brecht, A., and Gauglitz, G. (1997), “Channel waveguide mode beat interferometer,” Sensors and Actuators B, 38, 310-315.
[24] Lu, J. R., Swann, M. J., Peel, L. L., and Freeman, N. J. (2004),”Lysozyme Adsorption studies at the silica/water interface using dual polarization interferometry,” Langmuir, 20 (5), 1827-1832.
[25] Armstrong, J., Salacinski, H. J., Mu, Q., Seifalian, A. M., Peel, L., Freeman, N., Holt, C.M., and Lu, J.R.(2004), “ Interface adsorption of fibrinogen and its inhibition by RGD peptide: a combined physical study, ” J. Phys.: Condens. Mater., 16, S2483-2491
[26] Swann, M. J., Peel, L. L., Carrington, S., and Freeman N. J. (2004), “Dual-polarization interferometry: an analytical technique to measure changes in protein structure in real time, to determine the stoichiometry of binding events, and to differentiate between specific and nonspecific interactions,” Analytical Biochemistry, 329, 190-198.
[27] Heideman, R. G., Kooyman, R. P. H., Greve, J., and Altenburg B. S. F. (1991), “Simple interferometer for evanescent fild refractive index sensing as a feasibility study for an immunosensor,“Applied optics, 30 (12), 1474-1479.
[28] Duport, I. S., Benech, P., and Rimet, R. (1994), ”New integrated-optics interferometer in planar technology,” Applied optics, 33 (25), 5954-5958.
[29] Schubert, Th., Haase, N., Kuck, H., and Gottfried-Gottfried, R. (1997), “Refractive-index measurements using an integrated Mach-Zehnder interferometer,” Sensors and Actuators A, 60, 108-112.
[30] Luff, B. J., Wilkinson, J. S., Piehler, J., Hollenbach, U., Ingenhoff, J., and Fabricius, N. (1998), “Integrated Optical Mach-Zehnder Biosensor,” JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 16, NO. 4, 583-590.
[31] Ymeti, A., Kanger, J. S., Wijn, R., Lambeck, P. V., Greve, J. (2002), “Development of a multichannel integrated interferometer immunosensor,” Sensors and Actuators B, 83, 1-7.
[32] Ymeti, A., Kanger, J. S., Greve, J., Lambeck, P. V., Wijn, R., and Heideman, R. G. (2003), “Realization of a multichannel integrated Young interferometer chemical sensor,” Applied Optics, 42(28), 5649-5660.
[33] Ymeti, A., Kanger, J. S., Greve, J., Lambeck, P. V., Wijn, R., and Heideman, R. G. (2003), “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosensors and Bioelectronics, 20, 1417-1421.
[34] Sarkisov, S. S., Diggs, D. E., Adamovsky, G., and Curley, M. J. (2001), “Single-arm double-mode double-order planar waveguide interferometric sensor,” Applied Optics, 40(3), 349-359.
[35] Qi, Z. M., Matsuda, N., and Santos, J. H. (2002), “Prism-coupled multimode waveguide refractometer,” OPTICS LETTERS, 27(9),689-691
[36] Qi, Z. M., Matsuda, N., Itoh, K., and Qing, D. (2002), “Characterization of an optical waveguide with a composite structure,” JOURNAL OF LIGHTWAVE TECHNOLOGY, 20(8), 1598-1603.
[37] Kurrat, R., Textor, M., Ramsden, J. J., Boni, P., and Spencer, N. D. (1997), “Instrumental improvements in optical waveguide light mode spectroscopy for the study of biomolecule adsorption,” Rev. Sci. Instrum., 68(5), 2172-2176
[38] Horvath, R., Pedersen, H. C., and Larsen, N. B. (2002), “Demonstration of reverse symmetry waveguide sensing in aqueous solution,” Appl. Phys. Lett.,81(12), 2166-2168.
[39] Voros, J., Graf, R., Kenausis, G. L., Bruinink, A., Mayer, J., Textor, M., Wintermantel, E., and Spencer, N.D. (2000), “Feasibility study of an online toxicological sensor based on the optical waveguide technique,” Biosensor & Bioelectronics, 15, 423-429.
[40] 李政隆(2004),掺鍺二氧化矽光波導表面電漿共振生物感測晶片之研發,國立台灣大學醫學工程研究所碩士論文。
[41] Horvath, R., Lindvold, L. R., and Larsen, N. B. (2002), “Reverse-symmetry waveguides: theory and fabrication,” Appl. Phys. B, 74, 383-393.
[42] Horvath, R., Pedersen, H.C., and Skivesen, N. (2003), “Optical waveguide sensor for on-line monitoring of bacteria,” Optics letters, 28(14), 1233-1235.
[43] Sheridan, A. K., Harris, R. D., Bartlett, P. N., Wilkinson, J. S. (2004), ”Phase interrogation of an integrated optical SPR sensor,” Sensors and Actuators B, 97, 114-121.
[44] Hunsperger, R. G. (1982),” Integrated Optics: Theory and Technology,” Springer, New York.
[45] Pedrotti, F. L., and PPedrotti, L. S. (1993), “Introduction to Optics,” Prentice Hall ,New Jersey.
[46] 陳政德(2003),即時雙軸奈米精度干涉儀之研製,國立台灣大學應用力學工程研究所碩士論文。
[47] Jones, R. C.(1941), “A new calculus for the treatment of optical systems,” Journal of the optical society, (31), 488.
[48] 莊叢優(2005),高速化多工光電生醫晶片儀之研發,國立台灣大學工業工程與海洋工程學工程研究所碩士論文。
[49] Tiefenthaler, K., and W. Lukosz(1989), “Sensitivity of grating couplers as integrated-optical chemical sensors, J. Opt. Soc. Am. B, 6(2), 209-220.
[50] http://www.farfield-sensors.co.uk
[51] 陳逸文(2005),相位偵測是多功生醫晶片儀與電化學檢測儀之研發:以血糖檢測為研發平台,國立台灣大學應用力學研究所碩士論文。
[52] 吳乾埼(2001),繞射式雷射光學尺之研製,國立台灣大學機械工程研究所博士論文。
[53] http://www.optiwave.us/fdtd/optifdtd.html
[54] http://wwwhome.math.utwente.nl/~hammer/oms.html
[55] http://www.kyoto-kem.com
[56] http://www.sigmaaldrich.com/Local/SA_Splash.html
[57] http://www.cdc.gov/niosh/2001-115.html
[58] http://www.isotope.com/cil/products/displayproduct.cfm?prod_id=4806
[59] 黃榮章(2006),奈米力學建構之感測器應用於生物分子辨識之研究,國立台灣大學應用力學研究所博士論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/33003-
dc.description.abstract波導干涉術(Waveguide Inteferometery)的基本原理是利用全反射的方式將光侷限在一介質中傳遞,當周遭的介質特性發生變化時,會使得光通過波導所產生的相位變化有所差異且TE與TM偏極態所產生的變異量不同,藉由干涉術的方式以及演算法可將兩偏極態的相位變化分別取出。由於此方式能提供兩偏極態對於邊界上變化的檢測資訊,因此可應用於生物分子反應的檢測。
本研究主要目的為建構一套多通道的波導干涉儀系統,其中包含多通道的波導晶片與光學機構設計。波導晶片方面乃利用半導體製程中的電漿輔助氣相沉積法(Plasmon Enhanced Chemical Vapor Deposition, PECVD)製造摻鍺二氧化矽(SiO2-Ge)做為光波導材料,並使用蝕刻的方式做出多個通道於波導晶片上,特色為成本低且架構簡單;在系統光路方面可切換物光與參考光的偏極態,並使用分光鏡與一可調整角度之反射鏡將光分別導入兩不同波導通道中,通過波導後再利用楊氏干涉儀架構將兩道光結合,接著通過四分之一波板與分析板以CCD擷取拍攝干涉條紋,影像由IMAQ影像擷取卡送回個人電腦作以五步相移演算法分析,其中相移的方式是旋轉系統中的分析板來達成。最後可由本系統程式根據物光的相位變化量算出波導邊界上的改變。
實驗中首先採不同濃度之葡萄糖(Glucose)水溶液為檢測樣本,經實驗結果驗證隨濃度增加相位變化亦隨之增加,經分析後可得到此系統具有量測小數點下四位折射率的解析度。此外本系統以ELISA之方式量測C反應蛋白(C-reactive protein, CRP)之專一性鍵結反應,並藉由雙偏極態所量測的訊號可反解出生物樣本薄膜的折射率與厚度值,該檢測結果將可使研究學者對於C反應蛋白之特性有更進一步的瞭解。
zh_TW
dc.description.abstractWaveguide interferometer is a special kind of evanescent wave sensors, which combines waveguide and interferometer. When a light beam propagates in a waveguide structure, the evanescent field can detect the property of surrounding dielectric media. Since the optical phase of TE and TM polarized light is influenced by both the boundary index and thickness variations to different degree, the evanescent wave can detect the boundary index and thickness variations precisely. Capitalize on this effect, the TE and TM mode polarizations can be used to provide independent information so as to deconvolute the thickness and the refractive index of bio-samples.
In this dissertation, a multi-channel waveguide interferometer system that includes low-cost optical wavrguide and new optical mechanism was built. The newly proposed waveguide chip is fabricated using a plasma enhanced chemical vapor deposition (PECVD) system. Since this process is a standard semiconductor fabrication technique in silicon oxynitride on silicon, the success rate of making this chip is high. The composition of waveguide was SiO2 permeating by Ge. By adding the flux time of Ge, the index would increase. In addition, the channel structure was fabricated by wet eaching process. The optical configuration was developed based on Young’s Interferometry and the the polarization of amplelight and reference light could be exchanged in the system. Besides, a quarter wave plate, an analyzer, a CCD camera, and a personal computer consisted the phase modulation and signal analysis system of this waveguide interferometer.
This newly developed multi-channeled waveguide interferometer system has been proved to have the ability of having 10-4 resolution in measuring reflective indices by measuring different glucose concentrations solutions. Furthermore, the study also verifies the capability of the ELISA experiment inherented within the newly developed system by detecting C-creative protein (CRP). By measuring both the TE and the TM modes, the newly developed system program converts the experimental results into the related bio-reaction information for further researches.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:21:37Z (GMT). No. of bitstreams: 1
ntu-95-R93543003-1.pdf: 2659441 bytes, checksum: 8baa4829f0704f5795a7009cce9ad849 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 x
第 1 章 緒論 1
1-1 研究背景與動機 1
1-2 文獻探討 3
1-2-1 生醫晶片檢測系統 3
1-2-2 波導干涉技術之研究與應用 6
1-3 研究貢獻 10
1-4 論文架構 10
第 2 章 波導干涉儀之基本原理 12
2-1 三層波導之分析 12
2-1-1 波動光學分析法 12
2-1-2 漸逝波現象 20
2-1-3 幾何光學分析法 22
2-2 波導模態之耦合方式 26
2-3 光學干涉原理 29
2-3-1 基本光學干涉 29
2-3-2 光相位解析法 33
2-3-3 步進式相移架構 37
2-3-4 旋轉分析板相移法 39
2-4 波導干涉儀系統靈敏度之探討 41
2-5 生物樣本參數之分析 43
2-5-1 四層波導之分析 43
2-5-2 光學參數與生物樣本參數之關係 46
第 3 章 多通道波導晶片設計與製作 48
3-1 波導晶片介紹 48
3-2 波導晶片材料備製 49
3-2-1 電漿輔助氣相沈積法 49
3-2-2 波導基板與材料選擇 51
3-3 波導晶片製作流程 52
3-4 波導晶片參數量測 58
第 4 章 多通道波導干涉儀之研製 59
4-1 系統光路設計 59
4-2 系統元件選擇與機構設計 61
4-2-1 元件選擇 61
4-2-2 機構設計 63
4-2-3 系統流道製作 65
4-3 校正系統光路 66
4-3-1 光路校準步驟 66
4-3-2 偏極元件校準步驟 69
4-3-3 波導耦合調校步驟 70
4-4 系統檢測流程 71
4-4-1 系統操作界面 71
4-4-2 系統量測步驟 73
第 5 章 實驗模擬與分析 75
5-1 波導模態分析 75
5-2 波傳常數模擬 77
5-3 多披覆層折射率與厚度變化分析 82
第 6 章 實驗結果與討論 84
6-1 多通道波導晶片導光性測試 84
6-2 旋轉分析板相位調製法測試 85
6-3 葡萄糖水溶液量測 87
6-3-1 葡萄糖水溶液樣本備製 87
6-3-2 訊號重複性與再現性 88
6-3-3 樣本折射率量測 90
6-4 生物薄膜量測 93
6-4-1 酵素免疫分析法(ELISA)反應與量測步驟 94
6-4-2 分子薄膜量測結果與分析 95
第 7 章 結論與未來展望 100
7-1 結論 100
7-2 未來展望 101
第 8 章 參考文獻 103
dc.language.isozh-TW
dc.title多通道波導干涉儀之設計與研製zh_TW
dc.titleDesign and Fabrication of a Multi-Channel Waveguide Interferometeren
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.coadvisor吳光鐘
dc.contributor.oralexamcommittee林世明,黃榮山,金立德
dc.subject.keyword波導干涉儀,多通道,zh_TW
dc.subject.keywordwaveguide interferometer,multi-channel,en
dc.relation.page108
dc.rights.note有償授權
dc.date.accepted2006-07-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
2.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved