請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32981完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃鵬鵬(Pung-Pung Hwang) | |
| dc.contributor.author | Ang-Ni Deng | en |
| dc.contributor.author | 鄧昂妮 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:20:53Z | - |
| dc.date.available | 2007-07-27 | |
| dc.date.copyright | 2006-07-27 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-21 | |
| dc.identifier.citation | Abbink W, Bevelander GS, Rotllant J, Canario AV, Flik G. 2004. Calcium handling in Sparus auratus: effects of water and dietary calcium levels on mineral composition, cortisol and PTHrP levels. J Exp Biol. 207(Pt 23):4077-4084.
Armbrecht HJ, Boltz MA, and Kumar VB. 1999. Intestinal plasma membrane calcium pump protein and its induction by 1,25(OH)(2)D(3) decrease with age. Am J Physiol. 277:G41-47. Baker PF, Blaustein MP, Hodgkin AL, and Steinhardt RA. 1969. The influence of calcium on sodium efflux in squid axons. J Physiol. 200(2):431-58. Belkacemi L, Zuegel U, Steinmeyer A, Dion JP, and Lafond J. 2005. Calbindin-D28k (CaBP28k) identification and regulation by 1,25-dihydroxyvitamin D3 in human choriocarcinoma cell line JEG-3. Mol Cell Endocrinol. 236(1-2): 31-41. Berridge MJ. 1994. The biology and medicine of calcium signaling. Mol Cell Endocrinol. 98(2): 119-124. Blaustein MP, and Lederer WJ. 1999. Sodium/calcium exchange: its physiological implications. Physiol Rev. 79(3):763-854. Brown AJ, Krits I, and Armbrecht HJ. 2005. Effect of age, vitamin D, and calcium on the regulation of rat intestinal epithelial calcium channels. Arch Biochem Biophys. 437(1):51-8. Bolt MJ, Cao LP, Kong J, Sitrin MD, and Li YC. 2005. Vitamin D receptor is required for dietary calcium-induced repression of calbindin-D9k expression in mice. J Nutr Biochem. 16(5): 286-290. Bouillon R, Van Cromphaut S, and Carmeliet G. 2003. Intestinal calcium absorption: Molecular vitamin D mediated mechanisms. J Cell Biochem. 88(2):332-9. Cai Q, Chandler JS, Wasserman RH, Kumar R, and Penniston JT. 1993. Vitamin D and adaptation to dietary calcium and phosphate deficiencies increase intestinal plasma membrane calcium pump gene expression. Proc Natl Acad Sci U S A. 90(4):1345-9. Cao LP, Bolt MJ, Wei M, Sitrin MD, and Chun Li Y. 2002. Regulation of calbindin-D9k expression by 1,25-dihydroxyvitamin D3 and parathyroid hormone in mouse primary renal tubular cells. Arch Biochem Biophys. 400(1): 118-124. Chang IC, Lee TH, Yang CH, Wei YY, Chou FI, and Hwang PP. 2001. Morphology and function of gill mitochondria-rich cells in fish acclimated to different environments. Physiolo Biochem Zool. 74(1): 111-119. Chang IC, Wei YY, Chou FI, and Hwang PP. 2003. Stimulation of Cl- uptake and morphological changes in gill mitochondriz-rich cells in freshwater tilapia(Oreochromis mossambicus). Physiolo Biochem Zool. 76(4): 544-552. Chen YY, Lu FI, and Hwang PP. 2003. Comparisons of calcium regulation in fish larvae. J Exp Zoolog A Comp Exp Biol. 295(2):127-135. Chou MY, Yang Ch, Lu FI, Lin HC, and Hwang PP. 2002. Modulation of calcium balance in tilapia larvae(Oreochromis mossambicus) acclimated to low-calcium environments. J Comp Physiol [B]. 172(2): 109-114. Christakos S, Gabrielides C, and Rhoten WB. 1989. Vitamin D-dependent calcium binding proteins: chemistry, distribution, functional considerations, and molecular biology. Endocr Rev. 10(1): 3-26 Ciesielski F, Rochel N, Mitschler A, Kouzmenko A, and Moras D. 2004. Structural investigation of the ligand binding domain of the zebrafish VDR in complexes with 1alpha,25(OH)2D3 and Gemini: purification, crystallization and preliminary X-ray diffraction analysis. J Steroid Biochem Mol Biol. 89-90(1-5):55-9. Clemens TL, McGlade SA, Garrett KP, Craviso GL, and Hendy GN. 1989. Extracellular calcium modulates vitamin D-dependent calbindin-D28K gene expression in chick kidney cells. Endocrinoology. 124)3): 1582-1584. Cui J, Bian JS, Kagan A, McDonald TV. 2002. CaT1 contributes to the stores-operated calcium current in Jurkat T-lymphocytes. J Biol Chem. 6;277(49):47175-83. Dominguez JH, Juhaszova M, and Feister HA. 1992. The renal sodium-calcium exchanger. J Lab Clin Med. 119(6):640-9. den Dekker E, Hoenderop GJ, Nilius B, and Bindels RJ. 2003. The epithelial calcium channels, TRPV5 & TRPV6: from identification towards regulation. Cells calium. 33(5-6): 497-507. Du Y, Carlock L, and Kuo TH. 1995. The mouse plasma membrane Ca2+ pump isoform 1 promoter: cloning and characterization. Arch Biochem Biophys. 316(1):302-10. Flik G, Fenwick JC, Kolar Z, Mayer-Gostan N, and Wendelaar Bonga SE. 1985. Whole-body calcium flux in cichlid teleost fish Oreochromis mossambicus adapted to freshwater. Am J Physiol Regul Integr Comp Physiol. 249: R432-R437. Flik G, and Verbost PM. 1993. Calcium transport in fish gills and intestine. J Exp Biol. 184: 17-29. Flik G, Verbost PM, Atsma W, Lucu C. 1994. Calcium transport in gill plasma membranes of the crab Carcinus maenas: evidence for carriers driven by ATP and a Na+ gradient. J Exp Biol. 195:109-22. Flik G, Verbost PM, and Wendelaar Bonga SE. 1995. Calcium transport processes in fishes. In: Wood CM, Shuttleworth TJ, editors. Cellular and molecular approaches to fish ionic regulation. Academic Press, San Diego. P317-336. Friedman PA. 2000. Mechanisms of renal calcium transport. Exp Nephrol. 8(6): 343-350. Guerreiro PM, Fuentes J, Flik G, Rotllant J, Power DM, Canario AV. 2004. Water calcium concentration modifies whole-body calcium uptake in sea bream larvae during short-term adaptation to altered salinities. J Exp Biol. 207(Pt 4):645-653. Guerini D. 1998. The significance of the isoforms of plasma membrane calcium ATPase. Cell Tissue Res. 292(2):191-7. Hoenderop JG, van der Kemp AW, Hartog A, van de Graaf SF, Van Os CH, Willems PH, and Bindels RJ. 1999. Molecular identification of the apical Ca2+ channel in 1,25-dihydroxyvitamin D3-responsive epithelia. J Biol Chem. 274: 8375-8378. Hoenderop JG, Willems PH, and Bindels RJ. 2000. Toward a comprehensive molecular model of active calcium reabsorption. Am J Physiol Renal Physiol. 278(3): F352-360. Hoenderop JG, Muller D, Van Der Kemp AW, Hartog A, Suzuki M, Ishibashi K, Imai M, Sweep F, Willems PH, Van Os CH, and Bindels RJ. 2001. Calcitriol controls the epithelial calcium channel in kidney. J Am Soc Nephrol. 12(7): 1342-1349. Hoenderop JG, Nilius Bernd, and Bindels RJ. 2002a. ECaC: the gatekeeper of transepithelial Ca2+ transport. Biochim Biophys Acta. 1600(1-2): 6-11. Hoenderop JG, Nilius Bernd, and Bindels RJ. 2002b. Molecular mechanism of active Ca2+ reabsorption in the distal nephron. Annu Rev Physiol. 64: 529-549. Hoenderop JG, Dardenne O, Van Abel M, Van Der Kemp AW, Van Os CH, St -Arnaud R, and Bindels RJ. 2002c. Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1alpha-hydroxylase knockout mice. FASEB J. 16(11):1398-406. Hoenderop JG, van Leeuwen JP, van der Eerden BC, Kersten FF, van der Kemp AW, Merillat AM, Waarsing JH, Rossier BC, Vallon V, Hummler E, and Bindels RJ. 2003. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest. 112(12): 1906-1914. Ishihara A, and Muyiya Y. 1987. Ultrastructural evidence of calcium uptake by chloride cells in the gills of goldfish, Carassius auratus. J Exp Zool. 242: 121-129. James P, Vorherr T, Thulin E, Forsen S, and Carafoli E. 1991. Identification and primary structure of a calbindin 9K binding domain in the plasma membrane Ca2+ pump. FEBS Lett. 278(2):155-9. Katz U, van Driessche W, and Scheffey C. 1985. The role of mitochondriz-rich cells in the chloride current conductance across toad skin. Biol Cell. 55(3): 245-250. Kikuchi K, Kikuchi T, and Ghishan FK. 1988. Characterization of calcium transport by basolateral membrane vesicles of human small intestine. Am J Physiol. 255(4 Pt 1):G482-9. Lee TH, Hwang PP, and Feng SH. 1996a. Morphological studies on gill and mitochondria-rich cells in stenohaline cyprinid teleosts, Cyprinus carpio and Carassius auratus, adapted to various hypotonic environments. Zool Stud. 35: 272-278. Lee TH, Hwang PP, Lin HC, and Huang FL. 1996b. Mitochondria-rich cells in the branchial epithelium of the teleost, Oreochromis mossambicus, acclimated to various hypotonic environments. Fish Physiol Biochem. 15: 513-523. Lledo PM, Somasundaram B, Morton AJ, Emson PC, and Mason WT. 1992. Stable transfection of calbindin-D28k into the GH3 cell line alters calcium currents and intracellular calcium homeostasis. Neuron. 9(5): 943-954. Lomri N, Perret C, Gouhier N, and Thomasset M. 1989. Cloning and analysis of calbindin-D28K cDNA and its expression in the central nervous system. Gene. 80(1): 87-98. Marshall WS, Bryson SE, and Wood CM. 1992. Calcium transport by isolated skin of rainbow trout. J Exp Biol. 166: 297-316. Magyar CE, White KE, Rojas R, Apodaca G, and Friedman PA. 2002. Plasma membrane Ca2+-ATPase and NCX1 Na+/Ca2+ exchanger expression in distal convoluted tubule cells. Am J Physiol Renal Physiol. 283(1):F29-40. Manunta P, Hamilton BP, and Hamlyn JM. 2006. Salt intake and depletion increase circulating levels of endogenous ouabain in normal men. Am J Physiol Regul Integr Comp Physiol. 290(3):R553-559. Marshall WS, and Bryson SE. 1998. Transport mechanisms of seawater teleost chloride cells: an inclusive model of a multifunctional cell. Comp Biochem Physiol. 199A: 97-106. Marshall WS. 2002. Na+, Cl-, Ca2+ and Zn2+ transport by fish gill: retrospective review and prospective synthesis. J Exp Zool. 293(3): 264-283. McCormick SD, Hasegawa S, and Hirano T. 1992. Calcium uptake in the skin of a freshwater teleost. Proc Natl Acad Sci USA. 89: 3635-3638. Morris R, and Pickering AD. 1975. Ultrastructure of the presumed ion-transporting cells in the gills of ammocoete lampreys, Lampetra fluviatilis (L.) and Lampetra planeri (Bloch). Cell Tissue Res. 163(3): 327-341. Mukherjee D, Sen U, Bhattacharyya SP, and Mukherjee D. 2004. Inhibition of whole body Ca2+ uptake in fresh water teleosts, Channa punctatus and Cyprinus carpio in response to salmon calcitonin. J Exp Zoolog A Comp Exp Biol. 301(11):882-90. Nilius B, Vennekens R, Prenen J, Hoenderop JG, Droogmans G, and Bindels RJ. 2001. The single pore residue Asp542 determines Ca2+ permeation and Mg2+ block of the epithelial Ca2+ channel. J Biol Chem. 276(2): 1020-1025. Nicoll DA, Longoni S, and Philipson KD. 1990. Molecular cloning and functional expression of the cardiac sarcolemmal Na+-Ca2+ exchanger. Science. 250(4980):562-5. Nijenhuis T, Hoenderop JG, van der Kemp AW, and Bindels RJ. 2003. Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney. J Am Soc Nephrol. 14(11):2731-40. Peng JB, Chen XZ, Berger UV, Vassilev PM, Tsukaguchi H, Brown EM, and Hediger MA. 1999. Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem. 274: 22739-22746. Payan P, Mayer-Gostan N, and Pan PKT. 1981. Site of calcium uptake in the freshwater trout gill. J Exp Zool. 216: 345-347. Pan TC, Liao BK, Huang CJ, Lin LY, and Hwang PP. 2005. Epithelial Ca2+ channel expression and Ca2+ uptake in developing zebrafish. Am J Physiol Regul Integr Comp Physiol. 289: R1202-R1211. Perry SF, and Flik G. 1998. Characterization of branchial transepithelial calcium fluxes in freshwater trout, Salmo girdneri. Am J Physiol. 254(3 Pt 2): R491-498. Perry SF, Shahsavarani A, Georgalis T, Bayaa M, Furimsky M, and Thomas SL. 2003. Channels, pumps, and exchangers in the gill and kidney of freshwater fishes: their role in ionic and acid-base regulation. J Exp Zoolog Part A Comp Exp Biol. 300(1): 53-62. Philipson KD, and Nicoll DA. 2000. Sodium-calcium exchange: a molecular perspective. Annu Rev Physiol. 62:111-33. Rodriguez-Moldes I, Timmermans JP, Adrizensen D, De Groodt-Lasseel MH, Scheuermann DW, and Anadon R. 1990. Immunohistochemical localization of calbindin-D28K in the brain of a cartilaginous fish, the dogfish (Scyliorhinus canicula L.). Acta Anat (Basel). 137(4): 293-302. Rotllant J, Guerreiro PM, Redruello B, Fernandes H, Apolonia L, Anjos L, Canario AV, Power DM. 2006. Ligand binding and signalling pathways of PTH receptors in sea bream (Sparus auratus) enterocytes. Cell Tissue Res. 323(2):333-41. Schoenmakers TJ, and Flik G. 1992. Sodium-extruding and calcium-extruding sodium/calcium exchangers display similar calcium affinities. J Exp Biol. 168:151-159. Schwarz EC, Wissenbach U, Niemeyer BA, Strauss B, Philipp SE, Flockerzi V, and Hoth M. 2006. TRPV6 potentiates calcium-dependent cell proliferation. Cell Calcium. 39(2): 163-173. Shull GE, and Greeb J. 1988. Molecular cloning of two isoforms of the plasma membrane Ca2+-transporting ATPase from rat brain. Structural and functional domains exhibit similarity to Na+, K+- and other cation transport ATPase. J Biol Chem. 263(18): 8646-8657. Shull GE. 2000. Gene knockout studies of Ca2+-transporting ATPases. Eur J Biochem. 267(17):5284-90. Strehler EE, and Zacharias DA. 2001. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev. 81(1):21-50. Sui Y, Stehno-Bittel L, Li S, Loganathan R, Dhillon NK, Pinson D, Nath A, Kolson D, Narayan O, and Buch S. 2006. CXCL10-induced cell death in neurons: role of calcium dysregulation. Eur J Neurosci. 23(4): 957-964. Tfelt-Hansen J, Hansen JL, Smajilovic S, Terwilliger EF, Haunso S, Sheikh SP. 2006. Calcium receptor is functionally expressed in rat neonatal ventricular cardiomyocytes. Am J Physiol Heart Circ Physiol. 290(3):H1165-1171. Tsai JC, and Hwang PP. 1998. Effects of wheat germ agglutinin and colchicine on microtubules of the mitochondria-rich cells and Ca2+ uptake in tilapia (Oreochromis mossambicus) larvae. J Exp Biol. 201(Pt 15):2263-2271. van Abel M, Hoenderop JG, van der Kemp AW, Friedlaender MM, van Leeuwen JP, and Bindels RJ. 2005. Coordinated control of renal Ca2+ transport proteins by parathyroid hormone. Kidney Int. 68(4):1708-21. van Cromphaut SJ, Dewerchin M, Hoenderop JG, Stockmans I, Van Herck E, Kato S, Bindels RJ, Collen D, Carmeliet P, Bouillon R, and Carmeliet G. 2001. Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects. Proc Natl Acad Sci USA. 98(23): 13324-13329. van der Heijden AJ, Verbost PM, Bijvelds MJ, Atsma W, Wendelaar Bonga SE, and Flik G. 1999. Effects of sea water and stanniectomy on branchial Ca2+ handling and drinking rate in eel (Anguilla anguilla L.). J Exp Biol. 202(Pt 18):2505-2511. van Os CH. 1987. Transcellular calcium transport in intestinal and renal epithelial cells. Biochim Biophys Acta. 906(2):195-222. Van Cromphaut SJ, Dewerchin M, Hoenderop JG, Stockmans I, Van Herck E, Kato S, Bindels RJ, Collen D, Carmeliet P, Bouillon R, and Carmeliet G. 2001. Duodenal calcium absorption in vitamin D receptor-knockout mice: functional and molecular aspects. Proc Natl Acad Sci U S A. 98(23):13324-9. Verbost PM, Butkus A, Atsma W, Willems P, Flik G, and Bonga SE. 1993. Studies on stanniocalcin: characterization of bioactive and antigenic domains of the hormone. Mol Cell Endocrinol. 93(1):11-6. Verbost PM, Schoenmakers TJ, Flik G and, and Wendelaar Bonga SE. 1994. Kinetics of ATP- and Na+-gradient driven Ca2+ transport in basolateral membranes from gills of freshwater- and seawater-adapted tilapia. J Exp Biol. 186: 95-108. Vonck AP, Wendelaar Bonga SE, Flik G. 1998. Sodium and calcium balance in Mozambique tilapia, Oreochromis mossambicus, raised at different salinities. Comp Biochem Physiol A Mol Integr Physiol. 119(2):441-449. Wilson PW, Harding M and, and Lawson DE. 1985. Putative amino acid sequence of chick calcium-binding protein deduced from a complementary DNA sequence. Nucleic Acids Res. 13(24): 8867-8881. Zelinski JM, Sykes DE, and Weiser MM. 1991. The effect of vitamin D on rat intestinal plasma membrane Ca-pump mRNA. Biochem Biophys Res Commun. 179(2):749-55. Zupanc MM, and Zupanc GK. 2006. Upregulation of calbindin-D28k expression during regeneration in the adult fish cerebellum. Brain Res. 9(4c), In press. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32981 | - |
| dc.description.abstract | 淡水魚主要由水體中吸收鈣離子,超過百分之九十五的鈣吸收是由鰓上的富含粒腺體細胞(mitochondria-rich cells, MRCs)主動運輸所達成。根據目前魚類鈣吸收模式,鈣離子首先被動地透過一個未知的非膜電位依賴性鈣離子通道進入細胞質中,並在底側膜端由鈉鈣交換蛋白以及細胞膜鈣幫浦主動地送入血液中。然而現今並沒有足夠的分子證據可以支持這個模式。本論文之目的為利用環境中鈣離子的變化,來探討鈣離子運輸蛋白在魚類鈣離子吸收機制的角色。
首先,莫三比克吳郭魚(Oreochromis mossambicus)鰓在原位雜合反應及細胞免疫螢光染色的結果,發現上皮細胞鈣離子通道(tECaC)表現在MRCs(鰓上最主要的離子運輸細胞)中,但只有一部份的MRCs表現tECaC,顯示這一型MRCs主要負責調控鈣離子之吸收,細胞膜鈣幫浦第2型(tPMCA2)及鈉鈣交換蛋白第1型b(tNCX1b)表現位置結果與tECaC結果相同。在斑馬魚(Danio rerio)的實驗結果,zECaC、zPMCA2及zNCX1b皆表現在鰓離子運輸細胞。 進一步,以即時定量聚合酶鏈反應(qRT-PCR) 比較適應高、低鈣淡水的吳郭魚稚魚鰓mRNA的表現,結果發現tECaC及tNCX1b mRNA表現量在低鈣處理組顯著高於高鈣處理組,tPMCA2 mRNA則兩者處理無顯著的差異。適應高、低鈣淡水的斑馬魚,鰓zECaC mRNA表現量與吳郭魚有相似的結果,而zPMCA2及zNCX1b mRNA則兩者處理無顯著的差異。比較吳郭魚稚魚適應淡水和海水其鰓上mRNA的表現,結果發現tECaC mRNA表現量在海水組高於淡水組,tPMCA2 mRNA表現量在海水組顯著低於淡水組,而tNCX1b mRNA則兩者處理無顯著的差異。從不同魚種及水環境的差異,可得知ECaC在魚類的鈣離子吸收中扮演最重要角色之一。 綜合以上結果,魚類鈣吸收機制主要由特定一型的MRCs,經由ECaC、PMCA2或NCX1b來進行,但是ECaC扮演著關鍵的受調控之角色。 | zh_TW |
| dc.description.abstract | Freshwater fish absorb Ca2+ mainly from environment, and over 95% of Ca2+ is actively absorbed via gill mitochondria-rich cells (MRCs). In the current model for Ca2+ in fish gill MRCs, Ca2+ is passively diffused into the cytosol through the apical unidentified voltage-independent Ca2+ channels, and then is transported out of the cells via the basolateral plasma Ca2+-ATPase (PMCA) and Na+/Ca2+ exchanger (NCX). However, so far there is only very few convincing molecular and cellular evidence to support this model. In the present study, we aimed: (1) to provide molecular evidence for the current model for Ca2+ uptake in fish gill MR cells; (2) to examine how environmental Ca2+ concentration regulates gene expressions of Ca2+ transporters in fish gills.
Experiments of in situ hybridization and immunocytochemistry showed that Na+/K+-ATPase (a marker for MRCs) and the tilapia epithelial Ca2+ channel (ECaC) mRNA were colocalized in tilapia (Oreochromis mossambicus) gills, and only part of MRCs express the tECaC, the expression patterns of the tPMCA2 and tNCX1b were similar to the pattern of tECaC. The zECaC, zPMCA2 and zNCX1b were also found specifically expressed in zebrafish (Danio rerio) gills. These indicate that a subtype of MRCs is specifically responsible for Ca2+ uptake. Quantitative-PCR(qRT-PCR) results showed that mRNA expression of the tECaC and NCX1b in gills was higher in tilapia acclimated to low-Ca2+ freshwater (FW) than that acclimated to high-Ca2+ FW. However, tPMCA2 mRNA expression did not show any significant change between the 2 groups. In the experiments on the model animal, zebrafish, the expression patterns of the zECaC was similar to that in tilapia, but zPMCA2 and zNCX1b mRNA expression did not show any significant change between the 2 groups. In another experiments, the expression level of tECaC was higher in SW acclimated tilapia gill than that in FW group. The expression of tPMCA2 was higher in FW gill than that in SW ones. However, tNCX1b mRNA did not show any significant changes in all the conditions. For conclusions, ECaC, PMCA and NCX1b, co-expressed in a subtype of MRCs, may be the major players in Ca2+ uptake function of fish gills, and ECaC is probably the main regulatory transporter in this mechanism. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:20:53Z (GMT). No. of bitstreams: 1 ntu-95-R93b45002-1.pdf: 1385817 bytes, checksum: 01d0f3e921dad48088f4cd6832d37531 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 致謝••••••••••••••••••••••••••••••••••••1
中文摘要••••••••••••••••••••••••••••••••••3 Abstract•••••••••••••••••••••••••••••••••••4 前言••••••••••••••••••••••••••••••••••••5 材料與方法•••••••••••••••••••••••••••••••••11 結果••••••••••••••••••••••••••••••••••••15 討論••••••••••••••••••••••••••••••••••••18 文獻參考••••••••••••••••••••••••••••••••••23 圖•••••••••••••••••••••••••••••••••••••32 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鈣離子 | zh_TW |
| dc.subject | 富含粒腺體細胞 | zh_TW |
| dc.subject | 離子調控 | zh_TW |
| dc.subject | calcium | en |
| dc.subject | MR cells | en |
| dc.subject | ion regulation | en |
| dc.title | 環境中鈣離子濃度對魚類鈣離子吸收之影響 | zh_TW |
| dc.title | Effects of environmental calcium concentration on calcium absorption in fish | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 羅秀婉(Show-Wan Lou) | |
| dc.contributor.oralexamcommittee | 黃銓珍(Chang-Jen Huang),嚴宏洋(Hong-Young Yan),張清風(Ching-Fong Chang) | |
| dc.subject.keyword | 鈣離子,富含粒腺體細胞,離子調控, | zh_TW |
| dc.subject.keyword | calcium,MR cells,ion regulation, | en |
| dc.relation.page | 43 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-24 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
