Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32978
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅清華
dc.contributor.authorBoukare Tapsobaen
dc.contributor.author卜佳利zh_TW
dc.date.accessioned2021-06-13T04:20:48Z-
dc.date.available2006-07-28
dc.date.copyright2006-07-28
dc.date.issued2006
dc.date.submitted2006-07-22
dc.identifier.citationReferences
Bertrand, G. and Rangin C. (2003) Tectonics of the western margin of the Shan plateau (central Myanmar): implication for the India-Indochina oblique convergence since the Oligocene: Journal of Asian Earth Sciences 21, 1139-1157.
Bertrand, G., Rangin, C., Maluski, H., Bellon, H., GIAC Scientific Party (2001) Diachronous cooling along the Mogok Metamorphic Belt (Shan scarp, Myanmar): the trace of the northward migration of the Indian syntaxis: Journal of Asian Earth Sciences 19, 649-659.
Beth, P.S., Burbank, D.W., Heimsath, A., Ojha, T. (2004) Landscape disequilibrium on 1000–10,000 year scales Marsyandi River, Nepal, central Himalaya: Geomorphology 58, 223-241.
Bodet, F. and Scharer, U. (2000) Evolution of the SE-Asian continent from U-Pb and Hf isotopes grains of zircon and baddeleyite from large rivers: Geochimica et Cosmochimica Acta 64, 12, 2067-2091.
Brookfield, M.E. (1998) The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: Rivers draining southwards: Geomorphology 22, 285-312.
Chung, S.L., Chu, M.F., Zhang, Y., Xie, Y., Lo, C.H., Lee, T.Y., Lan, C.Y., Li, X., Zhang, Q., Wang, Y. (2005) Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism: Earth-Science Reviews 68, 173-196.
Chung, S.L., Liu, D., Ji, J., Chu, M.F., Lee, H.Y., Wen, D.J., Lo, C.H., Lee, T.Y., Qian, Q., Zhang, Q. (2003) Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet: Geology 31, 1021-1024.
Clark, M.K., Schoenbohm, L.M., Royden, L.H., Whipple, K.X., Burchfiel, B.C., Zhang, X., Tang, W., Wang, E., Chen, L. (2004) Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns: Tectonics 23, TC1006, doi: 10.1029/2002TC001402.
Copland, P. and Harrison, T.M. (1990) Episodic rapid uplift in the Himalaya revealed by 40Ar/39Ar analysis of detrital K-feldspar and muscovite, Bengal fan: Geology 18, 354-357.
DeCelles, P.G., Gehrels, G.E., Najman, Y., Martin, A.J., Carter, A., Garzanti, E. (2004) Detrital geochronology and geochemistry of Cretaceous-Early Miocene strata of Nepal: implications for timing and diachroneity of initial Himalayan orogenesis: Earth and Planetary Science Letters 227, 313-330.
DeCelles, P.G., Gehrels, G.E., Quade, J., LaReau, B., Spurlin, M. (2000) Tectonic Implications of U-Pb Zircon Ages of the Himalayan Orogenic Belt in Nepal: Science 288, 5465, 497-499.
Ding, L., Zhong, D., Yin, A., Kapp, P., Harrison, T.M. (2001) Cenozoic structural and metamorphic evolution of the eastern Himalaya syntaxis (Namche Barwa): Earth and Planetary Science Letters 192, 423-438.
Harrison, M.K., Yin, A., Grove, M., Lovera, O.M., Ryerson, F.J., Zhou, X. (2000) The Zedong window: A record of superposed Tertiary convergence in southeastern Tibet: Journal of Geophysical Research 105, 19,211-19,230.
Hodges, K.V., Ruhl, K.W., Wobus, C.W., Pringle, M.S. (2005) 40Ar/39Ar Thermochronology of Detrital Minerals: Reviews in Mineralogy & Geochemistry 58, 239-257.
Hodges, K.V., (2000) Tectonics of the Himalaya and southern Tibet from two perspectives: Geological Society of America - Bulletin 112, 3, 324-350.
Hubbard, M.S. and Harrison, T.M. (1989) 40Ar/39Ar age constraints on deformation and metamorphism in the Main Central Thrust zone and Tibetan slab, Eastern Nepal, Himalaya: Tectonics 8, 865-880.
Kapp, J.L.D., Harrison, T.M., Kapp, P., Grove, M., Lovera, O.M., Ding, L. (2005) Nyainqentanghla Shan: A window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet: Journal of Geophysical Research 110, B08413, doi:10.1029/2004JB003330.
Liang, Y.H. (2006) Detrital zircon study of Yarlung-Tsangpo and Irrawaddy Rivers. Master thesis, National Taiwan University.
Lo, C.H., Chung, S.L., Lee, T.Y., Wu, G. (2002) Age of the Emeishan flood magmatism and relations to Permian-Triassic boundary events: Earth and Planetary Science Letters 198, 449-458.
Maluski, H., Matte, P., Brunel, M., Xiao, X. (1988) 40Ar/39Ar dating of metamorphic and plutonic events in the north and high Himalayan belts (southern Tibet-China): Tectonics 7, 2, 299-326.
Maluski, H., Proust, F., Xiao, X.C. (1982) 40Ar/39Ar dating of the trans-Himalayan calc-alkaline magmatism of southern Tibet: Nature 298, 152-154.
McDougall I. and Harrison T.M. (1999) Geochronology and Thermochronology by 40Ar/39Ar method: Second Edition, Oxford University Press, New York.
Pik, R., France-Lanord, C., Carignan, J. (2005) Extreme uplift and erosion rates in eastern Himalayas (Siang-Brahmaputra basin) revealed by detrital (U-Th)/He thermochronology: Geophysical Research Abstracts 7, 09421.
Reid, A.J., Fowler, A.P., Phillips, D., Wilson, C.J.L. (2005) Thermochronology of the Yidun Arc, central eastern Tibetan Plateau: constraints from 40Ar/39Ar K-feldspar and apatite fission track data: Journal of Asian Earth Sciences 25, 915-935.
Renne, P.R., Swisher, C.C., Deino, A.L., Karner, D.B., Owens, T. and DePaolo, D.J. (1998) Intercalibration of Standards, Absolute Ages and Uncertainties in 40Ar/39Ar Dating: Chemical Geology (Isotope Geoscience Section) 145, 1-2, 117-152.
Robinson, D.M., DeCelles, P.G., Garzione C.N., Pearson, O.N., Harrison, T.M., Catlos, E.J. (2003) Kinematic model for the Main Central thrust in Nepal: Geology 31, 4, 359-362.
Singh, S.K. and France-Lanord, C. (2002) Tracing the distribution of erosion in the Brahmaputra watershed from isotopic compositions of stream sediments: Earth and Planetary Science Letters 202, 645-662.
Singh, S.K., Reisberg, L., France-Lanord, C. (2003) Re-Os isotope systematics of sediments of the Brahmaputra River system: Geochimica et Cosmochimica Acta 67, 21, 4101-4111.
Stüwe, K. and Foster, D. (2001) 40Ar/39Ar, pressure, temperature and fission track constraints on the age and nature of metamorphism around the main central thrust in the eastern Bhutan Himalaya: Journal of Asian Earth Sciences 19, 85-95.
Yin, A. (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation: Earth-Science Reviews 76, 1-131.
Yin, A. and Harrison, T.M. (2000) Geologic evolution of the Himalayan-Tibetan Orogen: Annual Review of Earth and Planetary Sciences 28, 211-80.
Yin, A., Harrison, T.M., Murphy, M.A., Grove, M., Nie, S., Ryerson, F.J., Wang, X.F., Chen, Z.L. (1999) Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision: Geological Society of America - Bulletin 111,
11, 1644-1664.
Zhu, B., Kidd, W.S.F., Rowley, D.B., Currie, B. S., Shafique, N. (2005) Age of Initiation of the India-Asia Collision in the East-Central Himalaya: The journal of Geology 113, 265-285.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32978-
dc.description.abstract本研究嘗試尋找西藏高原地區Tsangpo River及Brahmaputra River之沉積物來源,並希望藉此了解河流演化構造機制。該河向東沿Yarlung-Tsangpo suture zone流經西藏東南區域,切過古生代至中生代的沉積地層與Trans-Himalayan深成及火成岩體,繞著南加巴瓦山結外圍轉向,再切過Lesser Himalaya和sub-Himalaya區域。
三個沉積物樣本分別沿著雅魯藏布江採集自29.35oN, 89.63 oE, 3780 m; 29.27 oN, 91.91 oE, 3559 m;和29.2 oN, 95.15 oE, 600 m。黑雲母、角閃石、鉀長石及白雲母碎屑在鏡下分離後進行雷射氬氬定年分析。分析結果與他人定年資料對比,指出鉀長石與角閃石樣本可能來自Tsangpo River北邊的Gangdese batholith,而黑、白雲母樣本以Himalaya變質岩來源為主。這些結果顯示,Tsangpo River的河道並未明顯改變。本研究同時也提供未來將相同技術應用於Irrawaddy River和Red River的基本參考架構。
zh_TW
dc.description.abstractThe present study examines the source provenances of sediments of the Tsangpo River, the Tibetan part of the Brahmaputra River, and attempts to clarify its dynamics. The river drains the southeastern Tibetan plateau and flows eastward along the depression of the Yarlung-Tsangpo suture zone. On the plateau the river cuts and erodes Paleozoic to Eocene sedimentary formations associated with the Trans-Himalayan plutonic and volcanic rocks along the suture. The river takes a turn to the northeast near Pai, followed by an 180˚ Big Bend gorge that cuts the Greater Himalayan sequences around the Namche Barwa Syntaxis and forms a south-westerly course that enters Arunachal Pradesh in India where it is known as Siang or Dihang. The river then flows to the southeast, cuts through the Lesser Himalaya and sub-Himalaya, and enters the Brahmaputra plain at Pasighat.
River sediment samples (ST140, ST118-B and DD-2) were collected from three localities at 29.35oN, 89.63 oE, 3780 m; 29.27 oN, 91.91 oE, 3559 m; and 29.2 oN, 95.15 oE, 600 m, along the Tsangpo River. Detrital grains of biotite, hornblende, K-feldspar, and muscovite were separated under microscope and subjected to laser 40Ar/39Ar total fusion analyses and 31 to 72 grains of each mineral were analyzed. Analytical results for K-feldspars can be summarized as: (1) ST140 shows 81% of Ar ages between 28 and 56 Ma, with a peak age at 39.5 Ma; (2) ST118-B has 63% of the ages between 36 and 58 Ma, with a peak age at 49.3 Ma; and (3) DD-2 yields Ar ages falling within a range between 26 and 82 Ma (83% between 26 and 58 Ma) with a peak at 43.6 Ma. Those for Hornblendes include: (1) ST118-B bears 74% from 20 to 48 Ma, with the peak at 37.4 Ma. (2) DD-2, with 84% ages are from 30 to 168 Ma, in this sample a more constrained peak age gives an interval from 49 to 121 Ma that accounts for 45% of the total grains analyzed, this sample shows multi-peak ages of 48.8 Ma, 75 Ma and 121.3 Ma. Biotite ages are only obtained for sample DD-2 that shows 86% between 8 and 40 Ma, with a peak age at 24.9 Ma. Muscovite ages obtained for DD-2 range between 8 and 40 Ma, with a peak age of 13.4 Ma. The laser step heating experiment on muscovite grain indicates a presence of many phases and the derived apparent plateau age of 13.6 ±0.1 Ma confirms the total fusion peak age.
Comparing with the published age data for the basement rocks in the region of the Tsangpo River, the present data suggest that the most likely sources for K-feldspar and hornblende detrital grains are the Gangdese batholith, part of the Trans-Himalayan plutons (emplaced from ca. 120 to 40 Ma), cropping out in the north of the Tsangpo River. The biotite and muscovite grains in sample DD-2, by contrast, have a dominant Himalayan metamorphic origin related probably to the river’s focused erosion within the Big Bend gorge. These results suggest that the Tsangpo River in its way to the Big bend gorge did not experience significant change from its actual course, and corroborates the hypothesis of Brookfield (1998) that a paleo Tsangpo-Irrawaddy was flowing parallel to the three large rivers of Southeast Asia, the Yangtze, Mekong and Salween on the Tibetan plateau. In conclusion, the study results constitute a basis for future argon geochronology work on samples of the Irrawaddy and Red River to better constrain the supposed paleo Tsangpo-Irrawaddy and paleo Tsangpo-Red River.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:20:48Z (GMT). No. of bitstreams: 1
ntu-95-R93224212-1.pdf: 685125 bytes, checksum: 8e8ad03acf94c5cfa9086df7550f277c (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsTABLE OF CONTENT
ACKNOWLEDGEMENTS iii
Abstract iv
LIST OF FIGURES viii
LIST OF TABLES ix
Chapter 1 Introduction 1
Chapter 2 Geologic background 3
2.1. Lhasa terrane 3
2.2. Tethyan Himalayan sequence 4
2.3. Greater Himalayan sequence 5
2.4. Lesser Himalayan sequence 5
2.5. Yunnan-Myanmar area 6
Chapter 3 Samples and Methods 8
Chapter 4 Results 10
Chapter 5 Discussion 31
5.1. Possible source regions 32
5.2. Evolution of the river system 35
Chapter 6 Summary and conclusion 36
REFERENCES 37
APPENDIX 42
dc.language.isoen
dc.subject雷射氬氬定年zh_TW
dc.subject喜馬拉雅河流系統zh_TW
dc.subject西藏東南zh_TW
dc.subjectTsangpo Riveren
dc.subjectdetrital mineralsen
dc.subjectHimalaya River systemen
dc.subjectGangdese bathotithen
dc.subjectSouth East Tibeten
dc.subjectLaser 40Ar/39Ar datingen
dc.title藏東南雅魯藏布江河流沉積物之雷射氬氬定年研究及其河系演化之隱示zh_TW
dc.titleLaser 40Ar/ 39Ar dating of single detrital minerals from the Tsangpo River sediments, SE Tibet: Implications for source provenances and river dynamicsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鍾孫霖,李通藝
dc.subject.keyword雷射氬氬定年,西藏東南,喜馬拉雅河流系統,zh_TW
dc.subject.keywordTsangpo River,detrital minerals,Laser 40Ar/39Ar dating,South East Tibet,Gangdese bathotith,Himalaya River system,en
dc.relation.page61
dc.rights.note有償授權
dc.date.accepted2006-07-24
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
669.07 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved