請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32964完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 范文祥 | |
| dc.contributor.author | Hsu-Yang Lee | en |
| dc.contributor.author | 李旭洋 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:20:22Z | - |
| dc.date.available | 2006-07-27 | |
| dc.date.copyright | 2006-07-27 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-24 | |
| dc.identifier.citation | 1. Becker-Hickl GmbH cooperation, Manual of Time-Correlated Single Photon Counting Modules Multi SPC Software. www.becker-hickl.de/pdf/spc800ps01.pdf.
2. KAISER, W. and W.L. BON, Nitrogen, A Major Impurity in Common Type I Diamond. PHYSICAL REVIEW, 1959. 115(4): p. 857-863. 3. Davies, G. and M.F. Hamer, Optical Studies of 1.945 Ev Vibronic Band in Diamond. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences, 1976. 348(1653): p. 285-298. 4. Yu, J., et al., Probing gene expression in live cells, one protein molecule at a time. Science, 2006. 311(5767): p. 1600-1603. 5. Jelezko, F., et al., Spectroscopy of single N-V centers in diamond. Single Molecules, 2001. 2(4): p. 255-260. 6. Yu, S.J., et al., Bright fluorescent nanodiamonds: No photobleaching and low cytotoxicity. Journal of the American Chemical Society, 2005. 127(50): p. 17604-17605. 7. White, J.D., et al., Single molecule fluorescence spectroscopy. Journal of the Chinese Chemical Society, 2002. 49(5): p. 669-676. 8. Michalet, X., et al., Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005. 307(5709): p. 538-544. 9. Howarth, M., et al., Targeting quantum dots to surface proteins in living cells with biotin ligase. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(21): p. 7583-7588. 10. Weijer, C.J., Visualizing signals moving in cells. Science, 2003. 300(5616): p. 96-100. 11. Michalet, X., et al., The power and prospects of fluorescence microscopies and spectroscopies. Annu Rev Biophys Biomol Struct, 2003. 32: p. 161-82. 12. Weiss, S., Fluorescence spectroscopy of single biomolecules. Science, 1999. 283(5408): p. 1676-83. 13. Medintz, I.L., et al., Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater, 2005. 4(6): p. 435-46. 14. Gao, X.H., et al., In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 2004. 22(8): p. 969-976. 15. Sun, Y.P., et al., Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc, 2006. 128(24): p. 7756-7. 16. Ow, H., et al., Bright and stable core-shell fluorescent silica nanoparticles. Nano Letters, 2005. 5(1): p. 113-117. 17. Zhang, C.Y., et al., Single-quantum-dot-based DNA nanosensor. Nature Materials, 2005. 4(11): p. 826-831. 18. Gao, X.H., et al., In vivo molecular and cellular imaging with quantum dots. Current Opinion in Biotechnology, 2005. 16(1): p. 63-72. 19. Voura, E.B., et al., Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nature Medicine, 2004. 10(9): p. 993-998. 20. Lidke, D.S., et al., Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nature Biotechnology, 2004. 22(2): p. 198-203. 21. Wu, X.Y., et al., Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnology, 2003. 21(1): p. 41-46. 22. Lippincott-Schwartz, J. and G.H. Patterson, Development and use of fluorescent protein markers in living cells. Science, 2003. 300(5616): p. 87-91. 23. Taylor, J.R., M.M. Fang, and S.M. Nie, Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles. Analytical Chemistry, 2000. 72(9): p. 1979-1986. 24. Lacoste, T.D., et al., Ultrahigh-resolution multicolor colocalization of single fluorescent probes. Proc Natl Acad Sci U S A, 2000. 97(17): p. 9461-6. 25. Jakobs, S., et al., EGFP and DsRed expressing cultures of Escherichia coli imaged by confocal, two-photon and fluorescence lifetime microscopy. Febs Letters, 2000. 479(3): p. 131-135. 26. Wang, F., et al., Luminescent nanomaterials for biological labelling. Nanotechnology, 2006. 17(1): p. R1-R13. 27. So, M.K., et al., Self-illuminating quantum dot conjugates for in vivo imaging. Nature Biotechnology, 2006. 24(3): p. 339-343. 28. Smith, A.M., et al., Engineering luminescent quantum dots for In vivo molecular and cellular imaging. Annals of Biomedical Engineering, 2006. 34(1): p. 3-14. 29. Alivisatos, A.P., W.W. Gu, and C. Larabell, Quantum dots as cellular probes. Annual Review of Biomedical Engineering, 2005. 7: p. 55-76. 30. Jaiswal, J.K., et al., Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature Biotechnology, 2003. 21(1): p. 47-51. 31. Yao, J., et al., Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(40): p. 14284-14289. 32. Haes, A.J., et al., Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor. Journal of the American Chemical Society, 2005. 127(7): p. 2264-2271. 33. Park, S.Y., et al., Structures of DNA-linked nanoparticle aggregates. Journal of Physical Chemistry B, 2006. 110(25): p. 12673-12681. 34. Jin, R.C., et al., What controls the melting properties of DNA-linked gold nanoparticle assemblies? Journal of the American Chemical Society, 2003. 125(6): p. 1643-1654. 35. Storhoff, J.J., et al., What controls the optical properties of DNA-linked gold nanoparticle assemblies? Journal of the American Chemical Society, 2000. 122(19): p. 4640-4650. 36. Evans, T. and C. Phaal, Imperfections in Type I and Type II Diamonds. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1962. 270(1343): p. 538-552. 37. Iakoubovskii, K. and G.J. Adriaenssens, Luminescence excitation spectra in diamond. Physical Review B, 2000. 61(15): p. 10174-10182. 38. Kilin, S.Y., et al., Spectroscopy on single N-V defect centers in diamond: tunneling of nitrogen atoms into vacancies and fluorescence spectra. Journal of Luminescence, 2000. 86(3-4): p. 201-206. 39. Clark, C.D., R.W. Ditchburn, and H.B. Dyer, The Absorption Spectra of Natural and Irradiated Diamonds. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1956. 234(1198): p. 363-381. 40. Beveratos, A., et al., Room temperature stable single-photon source. European Physical Journal D, 2002. 18(2): p. 191-196. 41. Beveratos, A., et al., Single photon quantum cryptography. Physical Review Letters, 2002. 89(18): p. -. 42. Treussart, F., et al., Photoluminescence of single colour defects in 50 nm diamond nanocrystals. Physica B-Condensed Matter, 2006. 376: p. 926-929. 43. Colpin, Y., et al., Imaging and sizing of diamond nanoparticles. Optics Letters, 2006. 31(5): p. 625-627. 44. Mansfield, J.R., et al., Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging. Journal of Biomedical Optics, 2005. 10(4): p. -. 45. Harms, G.S., et al., Autofluorescent proteins in single-molecule research: applications to live cell imaging microscopy. Biophys J, 2001. 80(5): p. 2396-408. 46. Troy, T., et al., Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging, 2004. 3(1): p. 9-23. 47. Kong, X.L., et al., Polylysine-coated diamond nanocrystals for MALDI-TOF mass analysis of DNA oligonucleotides. Analytical Chemistry, 2005. 77(13): p. 4273-4277. 48. Kong, X.L., et al., High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. Analytical Chemistry, 2005. 77(1): p. 259-265. 49. Huang, L.C.L. and H.C. Chang, Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir, 2004. 20(14): p. 5879-5884. 50. Martin, R.R.J.J.F.A.E., Two Types of Diamond. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 1934. 232: p. 463-535. 51. Goss, J.P., et al., Interstitial nitrogen and its complexes in diamond. Physical Review B, 2004. 70(23). 52. Iakoubovskii, K., et al., Annealing of vacancies and interstitials in diamond. Physica B-Condensed Matter, 2003. 340: p. 67-75. 53. Collins, A.T. and A. Dahwich, The production of vacancies in type Ib diamond. Journal of Physics-Condensed Matter, 2003. 15(37): p. L591-L596. 54. Chang, H.C., K.W. Chen, and S. Kwok, Nanodiamond as a possible carrier of extended red emission. Astrophysical Journal, 2006. 639(2): p. L63-L66. 55. Manson, N.B. and J.P. Harrison, Photo-ionization of the nitrogen-vacancy center in diamond. Diamond and Related Materials, 2005. 14(10): p. 1705-1710. 56. Epstein, R.J., et al., Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond. Nature Physics, 2005. 1(2): p. 94-98. 57. Dumeige, Y., et al., Photo-induced creation of nitrogen-related color centers in diamond nanocrystals under femtosecond illumination. Journal of Luminescence, 2004. 109(2): p. 61-67. 58. Kuhn, S., et al., Diamond colour centres as a nanoscopic light source for scanning near-field optical microscopy. Journal of Microscopy-Oxford, 2001. 202: p. 2-6. 59. Beveratos, A., et al., Nonclassical radiation from diamond nanocrystals. Physical Review A, 2001. 6406(6): p. -. 60. Brouri, R., et al., Photon antibunching in the fluorescence of individual color centers in diamond. Optics Letters, 2000. 25(17): p. 1294-1296. 61. Martin, J., et al., Confocal microscopy of color center distributions in diamond. Journal of Luminescence, 1999. 83-4: p. 493-497. 62. Sildos, I. and A. Osvet, Spectral hole-burning study of radiation-induced defects in diamond. Physica Status Solidi a-Applied Research, 1999. 172(1): p. 15-24. 63. Drabenstedt, A., et al., Low-temperature microscopy and spectroscopy on single defect centers in diamond. Physical Review B, 1999. 60(16): p. 11503-11508. 64. Gruber, A., et al., Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science, 1997. 276(5321): p. 2012-2014. 65. Mita, Y., Change of absorption spectra in type-Ib diamond with heavy neutron irradiation. Physical Review B, 1996. 53(17): p. 11360-11364. 66. Lenef, A., et al., Electronic structure of the N-V center in diamond: Experiments. Physical Review B, 1996. 53(20): p. 13427-13440. 67. Martin, J., et al., Generation and detection of fluorescent color centers in diamond with submicron resolution. Applied Physics Letters, 1999. 75(20): p. 3096-3098. 68. Redman, D.A., et al., Spin Dynamics and Electronic States of N-V Centers in Diamond by Epr and 4-Wave-Mixing Spectroscopy. Physical Review Letters, 1991. 67(24): p. 3420-3423. 69. Harley, R.T., M.J. Henderson, and R.M. Macfarlane, Persistent Spectral Hole Burning of Color-Centers in Diamond. Journal of Physics C-Solid State Physics, 1984. 17(8): p. L233-L236. 70. Collins, A.T., M.F. Thomaz, and M.I.B. Jorge, Luminescence Decay Time of the 1.945 Ev Center in Type Ib Diamond. Journal of Physics C-Solid State Physics, 1983. 16(11): p. 2177-2181. 71. Manson, N.B., J.P. Harrison, and M.J. Sellars, The nitrogen-vacancy center in diamond re-visited. preprint: http://arxiv.org/abs/cond-mat/0601360, 2006. 72. ORTEC cooperation, Application Note AN50. http://www.ortec-online.com/pdf/an50.pdf. 73. Kam, N.W.S., et al., Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells. Journal of the American Chemical Society, 2004. 126(22): p. 6850-6851. 74. Kurtsiefer, C., et al., Stable solid-state source of single photons. Physical Review Letters, 2000. 85(2): p. 290-293. 75. Yoshikawa, M., et al., Raman-Scattering from Diamond Particles. Applied Physics Letters, 1993. 62(24): p. 3114-3116. 76. Yoshikawa, M., et al., Raman-Scattering from Nanometer-Sized Diamond. Applied Physics Letters, 1995. 67(5): p. 694-696. 77. Billinton, N. and A.W. Knight, Seeing the wood through the trees: A review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Analytical Biochemistry, 2001. 291(2): p. 175-197. 78. Hanzawa, H., Y. Nisida, and T. Kato, Measurement of decay time for the NV centre in Ib diamond with a picosecond laser pulse. Diamond and Related Materials, 1997. 6(11): p. 1595-1598. 79. Nizovtsev, A.P., et al., Spin-selective low temperature spectroscopy on single molecules with a triplet-triplet optical transition: Application to the NV defect center in diamond. Optics and Spectroscopy, 2003. 94(6): p. 848-858. 80. Dahan, M., et al., Time-gated biological imaging by use of colloidal quantum dots. Optics Letters, 2001. 26(11): p. 825-827. 81. Knemeyer, J.P., D.P. Herten, and M. Sauer, Detection and identification of single molecules in living cells using spectrally resolved fluorescence lifetime imaging microscopy. Analytical Chemistry, 2003. 75(9): p. 2147-2153. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32964 | - |
| dc.description.abstract | 生物標記,即在生物分子上連接一個可用光學方法觀測的生物標籤。因為這門技術在生物及生醫研究上的應用,使其在近年來成為一門重要的研究主題。螢光奈米鑽石,一種新穎、無毒性、光學穩定性佳的材料,是極有希望及備受矚目的生物標籤。在這個研究中,我們用共焦顯微鏡系統研究旋鍍在玻片上,經表面處理過的35奈米單顆螢光奈米鑽石,並和100奈米的螢光奈米鑽石的觀測結果作比較以瞭解其光學性質和大小的相關性。由來自掃瞄影像、時間曲線、光譜及生命期的證據,顯示其著稱的光學穩定性依舊明顯,且不因大小而有差別,但35奈米的螢光奈米鑽石的生命期則明顯較短。量到的光譜和細胞自發螢光的光譜明顯不同,意味著在細胞影像方面研究的應用性。為了證實這一點,我們用穿透式白光及廣視野螢光顯微鏡系統,觀察拍攝過螢光奈米鑽石的HeLa細胞。我們成功地在細胞內看到單顆螢光奈米鑽石,並確認他們的位置是在細胞質而非細胞核。最後我們提出了一些未來的研究方向。 | zh_TW |
| dc.description.abstract | Biolabeling, which is related to attaching an optically-visible marker on a biomolecule, has become a big issue in recent years because of its application in biological and biomedical studies. Fluorescent nanodiamond (FND), as a novel, non-toxic, photostable material, is a hopeful and eye-catching candidate among the biomarkers. In this work, we investigate the basic photophysical properties of the surface-functionalized single 35nm FNDs spin-coated on a coverglass with a confocal microscope system, and the size-dependence of these properties through a comparison with 100 nm FNDs. Evidence from the scanning image, intensity timetrace, spectra, and lifetime again show that their illustrious photostability, still prominent, is independent of both size and the surface treatment used in our study while the lifetime is significantly reduced by the smaller size. In light of the obtained spectrum, which is distinctly different from that of cell autofluorescence protein in both absorption and emission, application of the FNDs in cell imaging is suggested. To confirm this, after the uptake of the FNDs, HeLa cells are observed with both bright-field and wide-field epi-fluorescence system. We have succeeded to find single FNDs in cells and identified that they are in cytoplasm instead of the nucleus. Some future works of the FND research are proposed in the end. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:20:22Z (GMT). No. of bitstreams: 1 ntu-95-R93222072-1.pdf: 2764632 bytes, checksum: 57b3ed7a32810825bda24bebdde3faab (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Contents
Chapter 1 Introduction - 1 - Chapter 2 Principles - 6 - 2.1 Introduction to Fluorescent Diamonds - 6 - 2.2 Confocal Microscopy - 9 - 2.3 Wide-field Epi-fluorescence Microscopy - 10 - 2.4 Lifetime Measurement - 11 - 2.5 Some Estimations - 12 - Chapter 3 Experimental Setup - 14 - 3.1 Timetrace and Spectrum - 14 - 3.2 Observation of Single FNDs in Cells - 16 - 3.3 Lifetime Measurement - 17 - Chapter 4 Sample preparation - 19 - 4.1 Production of FNDs - 19 - 4.2 Surface Modification of FNDs - 20 - 4.3 Observation of Single FNDs on Coverglass Plates - 21 - 4.4 Cell Culture, FND Uptake, and Observation of Single FNDs in HeLa Cells - 23 - Chapter 5 Results and discussion - 24 - 5.1 Scanning Images and Timetraces - 24 - 5.2 Spectra - 30 - 5.3 Lifetime - 32 - 5.4 Observation of Single FNDs in Cells - 34 - Chapter 6 Conclusion - 37 - Bibliography - 39 - | |
| dc.language.iso | en | |
| dc.subject | 生物標籤 | zh_TW |
| dc.subject | 共焦顯微術 | zh_TW |
| dc.subject | 光物理 | zh_TW |
| dc.subject | 生物標記 | zh_TW |
| dc.subject | 螢光奈米鑽石 | zh_TW |
| dc.subject | 單分子 | zh_TW |
| dc.subject | blinking | en |
| dc.subject | fluorescent nanodiamonds | en |
| dc.subject | typeIb diamonds | en |
| dc.subject | single molecule | en |
| dc.subject | confocal | en |
| dc.subject | biolabeling | en |
| dc.subject | biomarker | en |
| dc.subject | HeLa cell | en |
| dc.subject | photophysics | en |
| dc.subject | photobleaching | en |
| dc.title | 單顆螢光奈米鑽石:基本光物理性質及生物應用 | zh_TW |
| dc.title | Single Fluorescent Nanodiamonds: Basic Photo-physics Properties and Bio-applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張煥正,曹培熙,白小明 | |
| dc.subject.keyword | 螢光奈米鑽石,單分子,生物標記,生物標籤,共焦顯微術,光物理, | zh_TW |
| dc.subject.keyword | fluorescent nanodiamonds,typeIb diamonds,single molecule,confocal,biolabeling,biomarker,HeLa cell,photophysics,photobleaching,blinking, | en |
| dc.relation.page | 45 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-24 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 2.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
