請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32956
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王明光 | |
dc.contributor.author | Wei-Min Fu | en |
dc.contributor.author | 傅偉銘 | zh_TW |
dc.date.accessioned | 2021-06-13T04:20:07Z | - |
dc.date.available | 2008-07-31 | |
dc.date.copyright | 2006-07-31 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-22 | |
dc.identifier.citation | 蘇國雄、莊淑滿、陳錦松. 1981.重金屬鉻之毒性與汙染.公害與環境. 1: 76-78.
Aide, M. T., and M. F. Cummings. 1997. The influence of pH and phosphate on the adsorption of chromium (VI) on boehmite. Soil Sci. 162: 599-603. Ankudinov, A. L., B. Ravel, J. J. Rehr, and S. D. Conradson. 1998. FEFF8.20. Phys. Review. B 58: 7565-7576. Barriga, C., M. Gaitan, I. Pavlovic, M. A. Ulbarri, M. C. Hermonsin, and J. Cornejo. 2002. Hydrotalcites as sorbnet for 2, 4, 6-trinitrophenol: influence of the layer composition and interlayer anion. J. Mater. Chem. 12: 1027-1034. Bartlett, N. J., and J. M. Kimble. 1976. Behavior of chromium in soils: II. Hexavalent forms. J. Environ. Qual. 5: 383-386. Bektas, N., H. Akulut, H. Inan, and A. Dimoglo. 2004. Removal of phosphate from aqueous solutions by electro-coagulation. J. Hazardous Mater. 106: 101-105. Bloomfield, C., and G. Pruden. 1980. The behavior of Cr(VI) in soil under aerobic and anaerobic conditions. Environ. Pollut. Ser. A. 23: 103-114. Borggard, O. K., J. P. Jorgensen, J. P. Morberg, and B. Raben-Lange. 1990. Influence of organic matter on phosphate adsorption by aluminum and iron oxides in sandy soils. J. Soil Sci. 41:443-449. Châteket, L., J. Y. Bottero, J. Yvon, and A. Bouchelaghem. 1996. Competition between monovalent and divalent anions for calcined and uncalcined hydrotalcite: anion exchange and adsorption sites. Colloids Surf. A. 111: 167-175. Cheng, N., Y. L. Wei, L. H. Hsu, J. F. Lee, 2005. XAS study of chromium in thermally cured mixture of clay and Cr-containing plating sludge. J. Electron Spectro. Related Phenom. 144-147: 821-823. Chien, S. H., W. R. Clayton. 1980. Application of Elovich equation to the kinetics of phosphate releasr and sorption in soils. Soil Sci. Soc. Am. J. 44: 265-268. Choy, J. H., S. Y. Kwak, Y. J. Jeong, and J. S. Sparks. 2000. Inorganic layered double hydroxides as an nonviral vector. Angewandte Chemie. 39:4042-4045. Das, J., D. Das, G. P. Dash, D. P. Das, and K. Pardia. 2004a. Studies on Mg / Fe Hydrotalcite-like-compound (HTlc): removal of chromium (VI) from aqueous solution. Intern. J. Environ. Studies. 61: 605-616. Das, N. N., J. Konar, M. K. Mohanta, and S. C. Srivastava. 2004b. Adsorption of Cr(VI) and Se(IV) from their aqueous solutions onto Zr4+-substituted ZnAl/MgAl-layered double hydroxides: effect of Zr4+ substitution in the layer. J. Colloid Interface Cci. 270: 1-8. De Melo, J. V., S. Cosnier, C. Mousty, C. Martelet, and N. Jaffrezic-Renault. 2002. Urea biosensors based on immobilization of urease into two oppositely charged clays (Laponite and Zn-Al layered double hydroxides). Anal. Chem. 74: 4037-4043. Fendorf, S., M. J. Eick, P. Frossl, and D. L. Sparks. 1997. Arsenate and chromate retention mechanism on goethite. 1. Surface structure. Environ. Sci. Technol. 31: 315-320. Grossl, P. R., M. Eick, D. L. Sparks, S. Goldberg, and C. C. Ainsworth. 1997. Arsenate and chromate retention mechanism on goethite. 2. kinetic evaluation using a pressure-jump relaxation technique. Environ. Sci. Technol. 31: 321-326. Goswamee R. L., P. Sengupta, K. G. Bhattachryya, and D. K. Dutta. 1998. Adsorption of Cr( VI) in layered double hydroxidies. Appl. Clay Sci. 13: 21-34. Hernandez-Moreno, M. J., M. A. Ulibarri, J. L. Rendon, and C. J. Serna. 1985. IR characteristics of hydrotalcite-like compounds. Phys. Chem. Miner. 12: 34-38. James, B., and N. J. Bartlett. 1983. Behavior of chromium in soils: VII. Adsorption and reduction of hexavalant forms. J. Environ. Qual. 12: 177-181. Kagunya, W., Z. Hassan, and W. Jones. 1996. Catalytic properties of layered double hydroxides and their calcined derivatives. Inorg. Chem. 35: 5970-5974. Kannan, S., S. Velu, V. Ramkumar, and C. S. Swamy. 1995. Synthesis and physicochemical properties of cobalt aluminum hydrotalcites. J. Mater. Sci. 30: 1462-1468. Kolitsch, U. 2002. K4(CrO4)(NO3)2, the first chromate(VI)-nitrate. Acta Cryst. (2002). E58: 88-90. Kolitsch, U. and K. Schwendtner. 2004. A new chromate of tetravalent cerium: Ce2(CrO4)4.2H2O. Acta Cryst. C60: 89-90. Labajos, F. M., V.Rives, and M. A. Ulibarri. 1992. Effect of hydrothermal and thermal treatments on the physicochemical properties of Mg-Al hydrotalcite-like materials. J. Mater. Sci. 27: 1546-1552. Lazaridis, N. K., T. A. Pandi, and K. A. Matis. 2004a. Chromium (VI) removal from aqueous solutions by Mg-Al-CO3 hydrotalcite: sorption - desorption kinetic and equilibrium studies. Ind. Eng. Chem. Res. 43: 2209-2215. Lazaridis, N. K., T. D. Karapantsios, and D. Georgantas. 2003b. Kinetic analisis for the removal of reactive dye from aqueous solution onto hydrotalcite by adsorption. Water Res. 37: 3023-3033. Lee, D. Y., and H.C.Zheng. 1994. Simulations extraction of soil cadmium, copper, lead by chelatinf resin membrane. Plant and Soil. 164: 19-23. Lee, J. F., S. Bajt, S. B. Clark, G. M. Lamble, C. A. Langton, and L. Oji. 1995. Chromium speciation in hazardous, cement-based waste forms. Physica B 208&209: 577-578. Lindsay, W. L. 1979. Chemical Equilibria in soils. A Wiley-Interscience publication, New York. Liu, C., and P. M. Huang. 2000. Kinetics of phosphate adsorption on iron oxides formed under the influence of citrate. Can. J. Soil Sci. 80: 445-454. Mckelvey, V. E. 1973. Abundance and distribution of phosphorus in the lithosphere.13-33. In Griffith, E. J., A. Beeton, J. M. Spencer, and D. T. Mitchell(ed.) Environmental phosphorus handbook. Chap.2.John Wiley and Sons, New York. Milman, V., E. V. Akhmatskaya, R. H. Nobes, B. Winkler, C. J. Pickard, and J. A.White. 2001. Systematic ab initio study of the compressibility of silicate garnets. Acta Cryst. B57: 163-177. Miyata, S., 1975. The syntheses of hydrotalcite-like compound and their structures and physico-chemical properties-1:The systems Mg2+-Al3+- NO-, Mg2+-Al3+-Cl-, Mg2+-Al3+-ClO-, Ni2+-Al3+-Cl-, Zn2+-Al3-Cl-. Clays and Clay miner. 23: 369-375. Moore J., and R. G. Pearson. 1981. Kinetics and Mechanisms. 3rd ed. John Weily & Sons, New York. Mudakavi, J. R., G. Venkateshwar, and M. Ravindram. 1995. Removal of chromium from electroplating effluents by the sulphide process. Indian J. Chem. Technol. 2: 53-58. National Research Council. Committee on biologic effects of atmospheric pollutants. 1974. Chromium. National Academy of Science, Washington, DC. Peterson, M. L., G. E. Brown, G. A. Parks, and C. L. Stein. 1997. Differential redox and sorption of Cr( III / VI ) on natural silicate and oxide minerals: EXAFS and XANES results. Geochim. cosmochim. acta. 61, 16: 3399-3412. Peterson, R. R., S. E. Fendorf, and M. Fendorf. 1997. Reduction of hexavalant chromium by amorphous iron sulfide. Environ. Sci. Technol. 31: 2039-2044. Robins, D. S., R. L. Parfitt, A. R. Fraser, and V. C. Farmer. 1974. Surface structure of gibbsite, goethite and phosphated goethite. Nature, London. 248: 220-221. Ross, D. S., R. E. Sjogren, and R. J. Bartlett. 1981. Behavior of chromium in soils: IV. Toxicity to microorganisms. J. Environ. Qual. 10: 145-148. Rydon, J. C., J. R. Mclaughlin, and J. K. Syers. 1997 Time-dependent sorption of phosphate by soils and hydrous ferric oxides. J. Soil Sci. 28: 585-595. Shin, H. S., M. J. Kim, S.Y. Nam, and H. C. Moon. 1996. Phosphorus removal by hydrotalcite-like compounds (HTLcs). Wat. Sci. Tech. 34: 161-168. Singh, B., and R. J. Gilkes. 1991. Phosphorus sorption in relation to soil properties for the major soil type of south-westen Austalia. Aust. J. Soil Res. 28: 259-266. Sparks, D. L. 1989. Kinetics of Soil Chemical Processes. Academic Press, New York. Stern, E. A. 1988. Theory of EXAFS. In X-ray adsorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES (eds. D. C. Koningsberger and R. Prins). John Wiley & Sons, New York. Ulibarri, M. A., I. Pavlovic, C. Barriga, M. C. Hermosín, and J. Cornejo. 2001. Adsorption of anion species on hydrotalcite-like compounds: effect of interlayer anion and crystallinity. Appl. Clay Sci. 18: 17-27. Villapando, R. R., and D. A. Graetz. 2001 Phosphorous sorption and desorption properties of the spodic horizon from selected density and soil aggregation. Soil Sci. Soc. Am. J. 65: 331-339. Wang, M. K.,and Y. M. Tzou. 1995. Phosphate sorption by calcite, and iron-rich calcareous soils. Geoderma. 65: 249-261. Yang, Li., Z. Shahrivari, P. K. T. Liu, M. Sahimi, and T. T. Tsotsis. 2005. Removal of trace level of arsenic and selenium from aqueous solution by calcined and uncalcined layered double hydroxides(LDH). Ind. Eng. Chem. Res. 44: 6804- 6815. Youwen, Y., H. Zhao, and G. F. Vance, 2002. Adsorption of dicamba (3, 6-dichloro-2-methoxy benzoic acid) in aqueous solution by calcined-layered double hydroxide. Appl. Clay Sci. 21: 217-226. Zachara, J. M., C. C. Ainsworth, C. E. Cowan, and C. T. Resch. 1989. Adsorption of chromate by subsurface soil horizons. Soil Sci. Soc. Am. J. 53: 418-428. Zhao, D., A. K. SenGupta, and L. Stewart. 1998. Seletive removal of Cr (VI) oxyanions with a new anion exchanger. Ind. Eng. Chem. Res. 37: 4383-4387. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32956 | - |
dc.description.abstract | 利用吸附移除自然環境中之污染物是種常用的處理方法,菱水鎂鋁石(HT)具有類似水鎂石構造(brucite-like)之帶正電荷層,因此被認為是種有潛力的陰離子吸附劑。本研究目的在了解HT移除水溶液中鉻酸根與磷酸根離子之影響因子及移除效果。研究中分別在不同條件下之進行吸附實驗。等溫吸附實驗結果套入Langmuir等溫吸附方程式而得鉻酸根與磷酸根離子之最大單層吸附量分別為0.042與0.146 mmol g-1。不同pH值之動力吸附結果顯示pH值5時HT可移除溶液中49 %之鉻酸根或81 %之磷酸根離子,吸附量會隨著pH上升而減少。在添加不同劑量HT之動力吸附實驗中,雖然移除效果會隨著HT劑量增加而增加,但HT之單位吸附量則會下降,可能因為HT在溶液中聚集成塊而減少了吸附位置。將動力吸附結果套入五種動力學方程式,以Elovich方程式最適合用來描述鉻酸根與磷酸根離子在HT上之吸附現象。競爭實驗結果顯示HT溶液中含有少量磷酸根離子即可抑制鉻酸根離子在HT上之吸附,但鉻酸根離子對磷酸根離子之吸附影響並不大。從X光近邊緣結構( X-ray Absorption Near-Edge Structure )分析結果顯示鉻酸根離子在吸附於HT時不會產生價數變化,延伸X光吸收精細結構(Extended X-ray Absorption Fine Structure)結果發現鉻有可能與構造中心的鋁產生鍵結而吸附。 | zh_TW |
dc.description.abstract | The adsorption is a common treatment to remove pollutants from natural environments. Hydrotalcite(HT) consists of brucite-like positively layers is considered as a potential anion sorbent.The aims of this study were to understand the influence of adsorption factors of chromate and phosphate adsorb on HT and investigate the removal effects. The sorption maximum of chromate and phosphate on HT were 0.042 and 0.146 mmol g-1 which calculated from Langmuir equation, respectively. The kinetics sorption indicate that chromate and phosphate anion were removed 49% and 81% by HT from solution at pH 5. In the different kinetic sorption of pH, the sorption amounts of chromate and phosphate were increased with decreasing pH. In the different kinetic sorption of different amounts of sorbents, chromate and phosphate sorbed by HT increased with increasing the quantity of sorbents, but the HT sorption amount per weight was decreased, thus suggested that HT particles in the suspension was aggregated, reducing the active sorption sites. The kinetic data was fitted with five kinetic models and showed the Elovich equation was suitable for describing the sorption behavior of chromate and phosphate on HT. The competition research showed that HT was prefer to sorb phosphate than chromate. Sorb of chromate on HT decreased with increasing phosphate.According to X-ray absorption near-edge structure (XANES) analysis result, Cr(VI) were not be reduced into Cr(III) when sorb on HT. On the hand,extended X-ray absorption fine structure (EXAFS) analysis showed that chromate bond with aluminum in the structure of HT. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T04:20:07Z (GMT). No. of bitstreams: 1 ntu-95-R92623009-1.pdf: 879160 bytes, checksum: 16c066ac666a8364cf785129300c4f40 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 中文摘要………………………………………………………………I
英文摘要………………………………………………………………II目錄……………………………………………………………………III 圖目錄…………………………………………………………………IV 表目錄…………………………………………………………………VI 第一章 前言……………………………………………………………1 第二章 材料與方法……………………………………………………11 2-1. 合成菱水鎂鋁石……………………………………………11 2-2. 菱水鎂鋁石基本性質測定…………………………………11 2-3. 吸附實驗……………………………………………………13 2-4. 動力學方程式………………………………………………15 2-5. X光吸收光譜研究…………………………………………17 第三章 結果與討論……………………………………………………19 3-1. 菱水鎂鋁石之基本性質……………………………………19 3-2. 吸附實驗……………………………………………………22 3-3. X光吸收光譜研究…………………………………………48 第四章 結論……………………………………………………………55 第五章 參考文獻………………………………………………………56 | |
dc.language.iso | zh-TW | |
dc.title | 以菱水鎂鋁石移除水溶液之鉻酸根與磷酸根陰離子 | zh_TW |
dc.title | Removal of Chromate and Phosphate by Hydrotalcite from Aqueous Solutions | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李達源,何聖賓,張大偉,鄒裕民 | |
dc.subject.keyword | 菱水鎂鋁石,鉻酸根離子,磷酸根離子, | zh_TW |
dc.subject.keyword | Hydrotalcite,Chromate,Phosphate, | en |
dc.relation.page | 60 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-24 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 858.55 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。