請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32930完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇銘嘉 | |
| dc.contributor.author | Chin-Wei Chiao | en |
| dc.contributor.author | 喬晉瑋 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:19:23Z | - |
| dc.date.available | 2016-07-24 | |
| dc.date.copyright | 2006-08-02 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-24 | |
| dc.identifier.citation | Anggard E (1994) Nitric oxide: mediator, murderer, and medicine. Lancet 343:1199-1206.
Arthur MJ, Kowalski-Saunders P and Wright R (1988) Effect of endotoxin on release of reactive oxygen intermediates by rat hepatic macrophages. Gastroenterology 95:1588-1594. Auguet M, Guillon JM, Delaflotte S, Etiemble E, Chabrier PE and Braquet P (1991) Endothelium independent protective effect of NG-monomethyl-L-arginine on endotoxin-induced alterations of vascular reactivity. Life Sci 48:189-193. Barron RL (1993) Pathophysiology of septic shock and implications for therapy. Clin Pharm 12:829-845. Bateman RM, Sharpe MD and Ellis CG (2003) Bench-to-bedside review: microvascular dysfunction in sepsis--hemodynamics, oxygen transport, and nitric oxide. Crit Care 7:359-373. Bautista AP, Meszaros K, Bojta J and Spitzer JJ (1990) Superoxide anion generation in the liver during the early stage of endotoxemia in rats. J Leukoc Biol 48:123-128. Beckman JS, Beckman TW, Chen J, Marshall PA and Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87:1620-1624. Beckman JS and Crow JP (1993) Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem Soc Trans 21:330-334. Bernard GR (2003) Drotrecogin alfa (activated) (recombinant human activated protein C) for the treatment of severe sepsis. Crit Care Med 31:S85-S93. Bernard GR, Vincent JL, Laterre PF, LaRosa SP, Dhainaut JF, Lopez-Rodriguez A, Steingrub JS, Garber GE, Helterbrand JD, Ely EW and Fisher CJ, Jr. (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344:699-709. Beutler B and Cerami A (1987) Cachectin: more than a tumor necrosis factor. N Engl J Med 316:379-385. Beutler B, Milsark IW and Cerami AC (1985) Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229:869-871. Bogdan C, Vodovotz Y and Nathan C (1991) Macrophage deactivation by interleukin 10. J Exp Med 174:1549-1555. Bone RC (1994) Gram-positive organisms and sepsis. Arch Intern Med 154:26-34. Bone RC, Fisher CJ, Jr., Clemmer TP, Slotman GJ, Metz CA and Balk RA (1989) Sepsis syndrome: a valid clinical entity. Methylprednisolone Severe Sepsis Study Group. Crit Care Med 17:389-393. Cerami A and Beutler B (1988) The role of cachectin/TNF in endotoxic shock and cachexia. Immunol Today 9:28-31. Chance B, Sies H and Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527-605. Chen CF, Chen LW, Chien CT, Wu MS and Tsai TJ (1996) Renal kallikrein in chronic hypoxic rats. Clin Exp Pharmacol Physiol 23:819-824. Chiao CW, Lee SS, Wu CC and Su MJ (2005) Thaliporphine increases survival rate and attenuates multiple organ injury in LPS-induced endotoxaemia. Naunyn Schmiedebergs Arch Pharmacol 371:34-43. Christman JW, Sadikot RT and Blackwell TS (2000) The role of nuclear factor-kappa B in pulmonary diseases. Chest 117:1482-1487. Cobb JP and Danner RL (1996) Nitric oxide and septic shock. JAMA 275:1192-1196. Cohen J (2002) The immunopathogenesis of sepsis. Nature 420:885-891. Crespo E, Macias M, Pozo D, Escames G, Martin M, Vives F, Guerrero JM and Acuna-Castroviejo D (1999) Melatonin inhibits expression of the inducible NO synthase II in liver and lung and prevents endotoxemia in lipopolysaccharide-induced multiple organ dysfunction syndrome in rats. FASEB J 13:1537-1546. Damas P, Reuter A, Gysen P, Demonty J, Lamy M and Franchimont P (1989) Tumor necrosis factor and interleukin-1 serum levels during severe sepsis in humans. Crit Care Med 17:975-978. Dhainaut JF, Thijs LG and Park G (2000) Septic shock. First ed., Harcourt Publishers, Lodon, pp.4-5. Dinarello CA and Wolff SM (1993) The role of interleukin-1 in disease. N Engl J Med 328:106-113. Doebber TW, Wu MS, Robbins JC, Choy BM, Chang MN and Shen TY (1985) Platelet activating factor (PAF) involvement in endotoxin-induced hypotension in rats. Studies with PAF-receptor antagonist kadsurenone. Biochem Biophys Res Commun 127:799-808. Dziarski R (1991) Peptidoglycan and lipopolysaccharide bind to the same binding site on lymphocytes. J Biol Chem 266:4719-4725. Esmon C (2000) The protein C pathway. Crit Care Med 28:S44-S48. Esmon CT (1989) The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem 264:4743-4746. Esmon CT, Taylor FB, Jr. and Snow TR (1991) Inflammation and coagulation: linked processes potentially regulated through a common pathway mediated by protein C. Thromb Haemost 66:160-165. Farmer MR, Roberts RE, Gardiner SM and Ralevic V (2003) Effects of in vivo lipopolysaccharide infusion on vasoconstrictor function of rat isolated mesentery, kidney, and aorta. J Pharmacol Exp Ther 306:538-545. Fiorentino DF, Bond MW and Mosmann TR (1989) Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 170:2081-2095. Fischer E, Marano MA, Barber AE, Hudson A, Lee K, Rock CS, Hawes AS, Thompson RC, Hayes TJ, Anderson TD and . (1991) Comparison between effects of interleukin-1 alpha administration and sublethal endotoxemia in primates. Am J Physiol 261:R442-R452. Fleming I, Dambacher T and Busse R (1992) Endothelium-derived kinins account for the immediate response of endothelial cells to bacterial lipopolysaccharide. J Cardiovasc Pharmacol 20 Suppl 12:S135-S138. Fleming I, Gray GA, Julou-Schaeffer G, Parratt JR and Stoclet JC (1990) Incubation with endotoxin activates the L-arginine pathway in vascular tissue. Biochem Biophys Res Commun 171:562-568. Forstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I and Kleinert H (1994) Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23:1121-1131. Fridovich I (1970) Quantitative aspects of the production of superoxide anion radical by milk xanthine oxidase. J Biol Chem 245:4053-4057. Furchgott RF and Vanhoutte PM (1989) Endothelium-derived relaxing and contracting factors. FASEB J 3:2007-2018. Furchgott RF and Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373-376. Galley HF, Howdle PD, Walker BE and Webster NR (1997) The effects of intravenous antioxidants in patients with septic shock. Free Radic Biol Med 23:768-774. Garrison RN, Wilson MA, Matheson PJ and Spain DA (1995) Nitric oxide mediates redistribution of intrarenal blood flow during bacteremia. J Trauma 39:90-96. Glauser MP, Heumann D, Baumgartner JD and Cohen J (1994) Pathogenesis and potential strategies for prevention and treatment of septic shock: an update. Clin Infect Dis 18 Suppl 2:S205-S216. Goldfarb RD and Szabo C (2005) Free radical scavenging as a therapeutic strategy for bacteremia. Crit Care Med 33:1163-1166. Goode HF and Webster NR (1993) Free radicals and antioxidants in sepsis. Crit Care Med 21:1770-1776. Guh JH, Hsieh CH and Teng CM (1999) Investigation of the effects of some alkaloidal alpha1-adrenoceptor antagonists on human hyperplastic prostate. Eur J Pharmacol 374:503-510. Guinaudeau H, Leboeuf M and Cave A (1975) Aporphine alkaloids. Lloydia 38:275-338. Gunnett CA, Chu Y, Heistad DD, Loihl A and Faraci FM (1998) Vascular effects of LPS in mice deficient in expression of the gene for inducible nitric oxide synthase. Am J Physiol 275:H416-H421. Harlan JM (1987) Neutrophil-mediated vascular injury. Acta Med Scand Suppl 715:123-129. Heard SO, Perkins MW and Fink MP (1992) Tumor necrosis factor-alpha causes myocardial depression in guinea pigs. Crit Care Med 20:523-527. Hung LM, Lee SS, Chen JK, Huang SS and Su MJ (2001) Thaliporphine protects ischemic and ischemic-reperfused rat hearts via an NO-dependent mechanism. Drug Development Research 52:446-453. Ignarro LJ, Buga GM, Wood KS, Byrns RE and Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 84:9265-9269. Joyce DE, Gelbert L, Ciaccia A, DeHoff B and Grinnell BW (2001) Gene expression profile of antithrombotic protein c defines new mechanisms modulating inflammation and apoptosis. J Biol Chem 276:11199-11203. Joyce DE, Nelson DR and Grinnell BW (2004) Leukocyte and endothelial cell interactions in sepsis: relevance of the protein C pathway. Crit Care Med 32:S280-S286. Julou-Schaeffer G, Gray GA, Fleming I, Schott C, Parratt JR and Stoclet JC (1990) Loss of vascular responsiveness induced by endotoxin involves L-arginine pathway. Am J Physiol 259:H1038-H1043. Junger WG, Hoyt DB, Redl H, Liu FC, Loomis WH, Davies J and Schlag G (1995) Tumor necrosis factor antibody treatment of septic baboons reduces the production of sustained T-cell suppressive factors. Shock 3:173-178. Kameswara Rao NS and Lee SS (2000) Preparation of thaliporphine and lirioferine from glaucine by treatment with hydrogen bromide. J Chin Chem Soc 47:1227-1230. Kengatharan KM, De KS, Robson C, Foster SJ and Thiemermann C (1998) Mechanism of gram-positive shock: identification of peptidoglycan and lipoteichoic acid moieties essential in the induction of nitric oxide synthase, shock, and multiple organ failure. J Exp Med 188:305-315. Khadour FH, Panas D, Ferdinandy P, Schulze C, Csont T, Lalu MM, Wildhirt SM and Schulz R (2002) Enhanced NO and superoxide generation in dysfunctional hearts from endotoxemic rats. Am J Physiol Heart Circ Physiol 283:H1108-H1115. Knotek M, Rogachev B, Wang W, Ecder T, Melnikov V, Gengaro PE, Esson M, Edelstein CL, Dinarello CA and Schrier RW (2001) Endotoxemic renal failure in mice: Role of tumor necrosis factor independent of inducible nitric oxide synthase. Kidney Int 59:2243-2249. Kosaka H, Watanabe M, Yoshihara H, Harada N and Shiga T (1992) Detection of nitric oxide production in lipopolysaccharide-treated rats by ESR using carbon monoxide hemoglobin. Biochem Biophys Res Commun 184:1119-1124. Landry DW and Oliver JA (2001) The pathogenesis of vasodilatory shock. N Engl J Med 345:588-595. Lee SS, Lin YJ, Chen MZ, Wu YC and Chen CM (1992) A facile semisynthesis of litebamine, a novel phenanthrene alkaloid, from boldine via a biogenetical approach. Tetrahedron Lett 33:6309-6310. Liaw WJ, Chen TH, Lai ZZ, Chen SJ, Chen A, Tzao C, Wu JY and Wu CC (2005) Effects of a membrane-permeable radical scavenger, Tempol, on intraperitoneal sepsis-induced organ injury in rats. Shock 23:88-96. Liu SF, Adcock IM, Old RW, Barnes PJ and Evans TW (1996) Differential regulation of the constitutive and inducible nitric oxide synthase mRNA by lipopolysaccharide treatment in vivo in the rat. Crit Care Med 24:1219-1225. Maiorino M, Chu FF, Ursini F, Davies KJ, Doroshow JH and Esworthy RS (1991) Phospholipid hydroperoxide glutathione peroxidase is the 18-kDa selenoprotein expressed in human tumor cell lines. J Biol Chem 266:7728-7732. Marchant A, Bruyns C, Vandenabeele P, Ducarme M, Gerard C, Delvaux A, De GD, Abramowicz D, Velu T and Goldman M (1994) Interleukin-10 controls interferon-gamma and tumor necrosis factor production during experimental endotoxemia. Eur J Immunol 24:1167-1171. McCabe WR, Treadwell TL and De MA, Jr. (1983) Pathophysiology of bacteremia. Am J Med 75:7-18. McCallum RE and Berry LJ (1973) Effects of endotoxin on gluconeogenesis, glycogen synthesis, and liver glycogen synthase in mice. Infect Immun 7:642-654. McCord JM and Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049-6055. Michie HR, Manogue KR, Spriggs DR, Revhaug A, O'Dwyer S, Dinarello CA, Cerami A, Wolff SM and Wilmore DW (1988) Detection of circulating tumor necrosis factor after endotoxin administration. N Engl J Med 318:1481-1486. Moncada S and Higgs A (1993) The L-arginine-nitric oxide pathway. N Engl J Med 329:2002-2012. Moncada S, Palmer RM and Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109-142. Morrison DC and Ulevitch RJ (1978) The effects of bacterial endotoxins on host mediation systems. A review. Am J Pathol 93:526-617. Murad F (1986) Cyclic guanosine monophosphate as a mediator of vasodilation. J Clin Invest 78:1-5. Oberholzer A, Oberholzer C and Moldawer LL (2002) Interleukin-10: a complex role in the pathogenesis of sepsis syndromes and its potential as an anti-inflammatory drug. Crit Care Med 30:S58-S63. Okusa MD (2002) The inflammatory cascade in acute ischemic renal failure. Nephron 90:133-138. Okusawa S, Gelfand JA, Ikejima T, Connolly RJ and Dinarello CA (1988) Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. J Clin Invest 81:1162-1172. Palmer RM, Ashton DS and Moncada S (1988a) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333:664-666. Palmer RM, Ferrige AG and Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524-526. Palmer RM, Rees DD, Ashton DS and Moncada S (1988b) L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation. Biochem Biophys Res Commun 153:1251-1256. Parks DA, Bulkley GB and Granger DN (1983) Role of oxygen free radicals in shock, ischemia, and organ preservation. Surgery 94:428-432. Parrillo JE (1993) Pathogenetic mechanisms of septic shock. N Engl J Med 328:1471-1477. Patel BM, Chittock DR, Russell JA and Walley KR (2002) Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology 96:576-582. Peavy DL and Fairchild EJ (1986) Evidence for lipid peroxidation in endotoxin-poisoned mice. Infect Immun 52:613-616. Pinsky MR (1996) Organ-specific therapy in critical illness: interfacing molecular mechanisms with physiological interventions. J Crit Care 11:95-107. Pinsky MR (2003) Antioxidant therapy for severe sepsis: promise and perspective. Crit Care Med 31:2697-2698. Preiser JC, Zhang H, Wachel D, Boeynaems JM, Buurman W and Vincent JL (1994) Is endotoxin-induced hypotension related to nitric oxide formation? Eur Surg Res 26:10-18. Rackow EC and Astiz ME (1991) Pathophysiology and treatment of septic shock. JAMA 266:548-554. Radomski MW, Palmer RM and Moncada S (1987) Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet 2:1057-1058. Rees DD, Palmer RM and Moncada S (1989) Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A 86:3375-3378. Riedemann NC, Guo RF and Ward PA (2003) Novel strategies for the treatment of sepsis. Nat Med 9:517-524. Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, Ulmer AJ, Zahringer U, Seydel U, Di PF and . (1994) Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 8:217-225. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E and Tomlanovich M (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368-1377. Saito S and Nakano M (1996) Nitric oxide production by peritoneal macrophages of Mycobacterium bovis BCG-infected or non-infected mice: regulatory role of T lymphocytes and cytokines. J Leukoc Biol 59:908-915. Sands KE, Bates DW, Lanken PN, Graman PS, Hibberd PL, Kahn KL, Parsonnet J, Panzer R, Orav EJ, Snydman DR, Black E, Schwartz JS, Moore R, Johnson BL, Jr. and Platt R (1997) Epidemiology of sepsis syndrome in 8 academic medical centers. JAMA 278:234-240. Satriano JA, Shuldiner M, Hora K, Xing Y, Shan Z and Schlondorff D (1993) Oxygen radicals as second messengers for expression of the monocyte chemoattractant protein, JE/MCP-1, and the monocyte colony-stimulating factor, CSF-1, in response to tumor necrosis factor-alpha and immunoglobulin G. Evidence for involvement of reduced nicotinamide adenine dinucleotide phosphate (NADPH)-dependent oxidase. J Clin Invest 92:1564-1571. Schmidt HH, Nau H, Wittfoht W, Gerlach J, Prescher KE, Klein MM, Niroomand F and Bohme E (1988) Arginine is a physiological precursor of endothelium-derived nitric oxide. Eur J Pharmacol 154:213-216. Schmidt-Supprian M, Murphy C, While B, Lawler M, Kapurniotu A, Voelter W, Smith O and Bernhagen J (2000) Activated protein C inhibits tumor necrosis factor and macrophage migration inhibitory factor production in monocytes. Eur Cytokine Netw 11:407-413. Schottmueller H (1914) Wesen und Behandlung der Sepsis. Verhandl Dtsch Kongress Innere Med 31:257-280. Schreck R and Baeuerle PA (1991) A role for oxygen radicals as second messengers. Trends Cell Biol 1:39-42. Schreck R, Rieber P and Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10:2247-2258. Schrier RW and Wang W (2004) Acute renal failure and sepsis. N Engl J Med 351:159-169. Shalaby MR, Waage A, Aarden L and Espevik T (1989) Endotoxin, tumor necrosis factor-alpha and interleukin 1 induce interleukin 6 production in vivo. Clin Immunol Immunopathol 53:488-498. Stadler J, Bentz BG, Harbrecht BG, Di Silvio M, Curran RD, Billiar TR, Hoffman RA and Simmons RL (1992) Tumor necrosis factor alpha inhibits hepatocyte mitochondrial respiration. Ann Surg 216:539-546. Stouthard JM, Levi M, Hack CE, Veenhof CH, Romijn HA, Sauerwein HP and van der PT (1996) Interleukin-6 stimulates coagulation, not fibrinolysis, in humans. Thromb Haemost 76:738-742. Su MJ, Chang YM, Chi JF and Lee SS (1994) Thaliporphine, a positive inotropic agent with a negative chronotropic action. Eur J Pharmacol 254:141-150. Sugino K, Dohi K, Yamada K and Kawasaki T (1987) The role of lipid peroxidation in endotoxin-induced hepatic damage and the protective effect of antioxidants. Surgery 101:746-752. Szabo C, Mitchell JA, Thiemermann C and Vane JR (1993) Nitric oxide-mediated hyporeactivity to noradrenaline precedes the induction of nitric oxide synthase in endotoxin shock. Br J Pharmacol 108:786-792. Teng CM, Hsiao G, Ko FN, Lin DT and Lee SS (1996) N-allylsecoboldine as a novel antioxidant against peroxidative damage. Eur J Pharmacol 303:129-139. Teng CM, Yu SM, Lee SS, Ko FN, Su MJ and Huang TF (1993) Vasoconstricting effect in rat aorta caused by thaliporphine isolated from the plant Neolitsea konishii K. Eur J Pharmacol 233:7-12. Thiemermann C (1994) The role of the L-arginine: nitric oxide pathway in circulatory shock. Adv Pharmacol 28:45-79. Thiemermann C and Vane J (1990) Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharides in the rat in vivo. Eur J Pharmacol 182:591-595. Tracey KJ, Beutler B, Lowry SF, Merryweather J, Wolpe S, Milsark IW, Hariri RJ, Fahey TJ, III, Zentella A, Albert JD and . (1986) Shock and tissue injury induced by recombinant human cachectin. Science 234:470-474. Uchikura K, Wada T, Hoshino S, Nagakawa Y, Aiko T, Bulkley GB, Klein AS and Sun Z (2004) Lipopolysaccharides induced increases in Fas ligand expression by Kupffer cells via mechanisms dependent on reactive oxygen species. Am J Physiol Gastrointest Liver Physiol 287:G620-G626. van der PT, Jansen J, Levi M, ten CH, ten Cate JW and van Deventer SJ (1994) Regulation of interleukin 10 release by tumor necrosis factor in humans and chimpanzees. J Exp Med 180:1985-1988. van Deventer SJ, Hart M, van der PT, Hack CE and Aarden LA (1993) Endotoxin and tumor necrosis factor-alpha-induced interleukin-8 release in humans. J Infect Dis 167:461-54. van d, V and Cross CE (2000) Oxidants, nitrosants, and the lung. Am J Med 109:398-421. Verhoef J and Mattsson E (1995) The role of cytokines in gram-positive bacterial shock. Trends Microbiol 3:136-140. Waage A and Aasen AO (1992) Different role of cytokine mediators in septic shock related to meningococcal disease and surgery/polytrauma. Immunol Rev 127:221-230. Wang S, Leonard SS, Castranova V, Vallyathan V and Shi X (1999) The role of superoxide radical in TNF-alpha induced NF-kappaB activation. Ann Clin Lab Sci 29:192-199. Wang W, Jittikanont S, Falk SA, Li P, Feng L, Gengaro PE, Poole BD, Bowler RP, Day BJ, Crapo JD and Schrier RW (2003) Interaction among nitric oxide, reactive oxygen species, and antioxidants during endotoxemia-related acute renal failure. Am J Physiol Renal Physiol 284:F532-F537. Wenzel RP, Pinsky MR, Ulevitch RJ and Young L (1996) Current understanding of sepsis. Clin Infect Dis 22:407-412. Wu CC, Chiao CW, Hsiao G, Chen A and Yen MH (2001) Melatonin prevents endotoxin-induced circulatory failure in rats. J Pineal Res 30:147-156. Wu MH, Su MJ, Lee SS and Young ML (1994) The electrophysiological effects of antiarrhythmic potential of a secoaporphine, N-allylsecoboldine. Br J Pharmacol 113:221-227. Yan SB and Dhainaut JF (2001) Activated protein C versus protein C in severe sepsis. Crit Care Med 29:S69-S74. Yu SM, Lee SS, Chou H and Teng CM (1993) Contractile effects caused by thaliporphine in the guinea-pig ileum. Eur J Pharmacol 234:121-123. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32930 | - |
| dc.description.abstract | 阻斷細胞介素或氧自由基的釋出被認為是可以有效的減少敗血症/敗血性休克造成的多重器官傷害,並可提高存活率。因此在本篇論文中,我們分兩部分探討來自於樟科植物中兩種具有抗氧化活性的阿醭酚生物鹼類藥物thaliporphine及合成之次阿醭酚化合物N-allylsecoboldine在敗血症的保護作用及其可能機轉。
第一部份 Thaliporphine增加脂多醣 (lipopolysaccharide, LPS) 誘導內毒素血症的存活率及減少多重器官損傷之作用 Thaliporphine是一種來自於中藥草的芳香環阿醭酚類生物鹼,具有抗氧化及a1受體拮抗劑的活性。給予大白鼠內毒素 (E. coli lipopolysaccharide, LPS) 可誘導嚴重低血壓及心搏過速,同時亦可看到以正腎上腺素測試的血管低反應性發生。預先給予thaliporphine,發現其可以有意義減少LPS誘導大白鼠所造成的後期的低血壓反應,而在較高劑量的thaliporphine (1 mg/kg) 則能減少LPS誘導大白鼠所產生的心搏過速。LPS有意義的增加一氧化氮 (nitric oxide, NO•) 及超氧游離基 (superoxide anion, O2•-) 亦可被預先給予的1 mg/kg thaliporphine減少。內毒素血症動物組於整個實驗240分鐘期間,造成血漿腫瘤壞死因子-a(tumor necrosis factor-alpha,TNF-alpha 呈現一鐘型曲線,且於實驗後的60分鐘達到最高;預先給予1 mg/kg thaliporphine則能有意義減少此60分鐘的高TNF-alpha血漿濃度。除此之外,LPS造成血糖呈現兩期變化,而thaliporphine可以改善後期血糖下降情形。內毒素血症誘導肝、腎及心臟等多重器官壞死的現象可由aspartate aminotransferase (GOT) , alanine aminotransferase (GPT) , creatinine (CRE) , lactate dehydrogenase (LDH) and creatine phosphate kinase muscle-brain (CKMB) 等血漿值增加而得知,thaliporphine不僅可以有意義減少這些生化值的減少,亦可以減少受傷組織導致發炎細胞浸潤現象。另外,thaliporphine以劑量依賴 (dose-dependence) 關係增加了LPS小鼠的存活率。因此,由本篇的結果認為thaliporphine可以作為一個新藥用於減少內毒素誘導造成的循環衰竭、多重器官損傷及增加存活率﹔而thaliporphine的貢獻可能在於抑制TNF-alpha、NO•及O2•-的產生。 第二部分 N-Allylsecoboldine可作為預防內毒素血症所導致之急性腎臟衰竭的新型作用劑 N-Allylsecoboldine是一種具有抗氧化及alpha1受體拮抗劑活性的secoapophine衍生物。預先給予N-allylsecoboldine可以有意義的減少因LPS造成大白鼠後期血壓下降、低血糖及血漿TNF-alpha增加的情形。因內毒素血症而過量產生的血漿NO•並不能被N-allylsecoboldine所改變,但是因內毒素血症而持續減少的尿中NO•含量有部分能被N-allylsecoboldine所恢復。然而,N-allylsecoldine可抑制內毒素血症鼠腎皮質的inducible nitric oxide synthase (iNOS) 蛋白質表現。從N-allylsecoboldine明顯恢復LPS鼠的許多生化酵素標記來看,可知N-allylsecoboldine亦具有改善內毒素血症所導致的器官衰竭能力。內毒素血症與腎功能不良的關聯可由腎血流、尿中鉀的排除及腎臟nitrate的清除率減少得知。然而,預先給予N-allylsecoboldine可以有意義的減少腎功能不良的發生。另外,給予低劑量的N-allylsecoboldine可以減少LPS小鼠的死亡率。此部分實驗證明了N-allylsecoboldine具有幫助對抗內毒素血症造成的急性腎衰竭及增加存活的能力。而其作用可能是由於抑制iNOS的蛋白質表現,TNF-alpha的產生,以及自由基清除的活性。然而,在敗血症發生時,N-allylsecoboldine具有保護的作用,但是對於其中alpha1受體拮抗作用所扮演的角色仍然不十分清楚。 | zh_TW |
| dc.description.abstract | Blockades of cytokine and oxygen free radicals release are considered to be beneficial in reducing multiple organ injury and increase the survival rate in sepsis/septic shock, so we discussed in the two parts about aporphine alkaloid agents – thaliporphine and N-allylsecoboldine, which were obtained from Chinese herb. Also, we attempted to elucidate the protective effects and the probably contributive mechanisms.
Part One: Thaliporphine increases survival rate and attenuates multiple organ injury in lipopolysaccharide-induced endotoxemia. Thaliporphine, a phenolic aporphine alkaloid obtained from Chinese herbs and possessing antioxidant and alpha1 adrenoceptor antagonistic activity, has protective effects in endotoxemic rats. Rats injected with endotoxin (E. coli lipopolysaccharide, LPS) developed severe hypotension and tachycardia as well as vascular hyporeactivity to norepinephrine. Pretreatment of LPS-treated rats with thaliporphine attenuated the delayed hypotension significantly whilst only a higher dose (1 mg/kg) of thaliporphine decreased LPS-induced tachycardia. LPS significantly increased nitric oxide (NO•) and superoxide anion (O2•-) levels, a response that was reduced by pretreatment with 1 mg/kg thaliporphine. Endotoxemia for 240 min resulted in a bell-shaped time course for the change of serum tumor necrosis factor-alpha (TNF-alpha) level with a peak at 60 min. Pretreatment of LPS-treated rats with 1 mg/kg thaliporphine significantly reduced the serum TNF-alpha level at 60 min. In addition, LPS caused a biphasic change in blood glucose and thaliporphine attenuated the late-phase decrease in blood glucose. Endotoxemia induced multiple organ injury in the liver, kidney and heart, as indicated by increases of aspartate aminotransferase (GOT), alanine aminotransferase (GPT), creatinine (CRE), lactate dehydrogenase (LDH) and creatine phosphate kinase muscle-brain (CKMB) levels in serum. These increases of biochemical markers and inflammatory cell infiltration into injured tissues were reduced significantly by treatment with thaliporphine. In addition, thaliporphine increased the survival rate of LPS treated mice dose-dependently. In conclusion, our results suggest that thaliporphine could be a novel agent for attenuating endotoxin-induced circulatory failure and multiple organ injury and may increase the survival rate. These beneficial effects of thaliporphine may be attributed to the suppression of TNF-alpha, NO• and O2•- production. Part Two: N-Allylsecoboldine as a novel agent prevents acute renal failure resulted from endotoxemia. N-Allylsecoboldine is a secoaporphine derivative with antioxidant and alpha1-adrenoceptor blocking activities. Pretreatment of LPS-treated rats with N-allylsecoboldine significantly attenuated the late-phase hypotension, hypoglycemia and incremental plasma tumor necrosis factor (TNF)-alpha. Overproduction of plasma nitrate in endotoxemia was not changed but the continuous decrease of urinary nitrate appeared to be partially ameliorated by N-allylsecoboldine. However, N-allylsecoboldine inhibited the inducible nitric oxide synthase (iNOS) protein expression in the renal cortex of endotoxemic rats. N-Allylsecoboldine also improved the endotoxemia-induced organ injury as demonstrated from the conspicuous recovery of marker enzymes in the LPS-treated rats. Endotoxemia was associated with renal dysfunctions as indicated by decreases in renal blood flow, urinary potassium excretion, and renal nitrate clearance. However, pretreatment with N-allylsecoboldine showed significant alleviation of these renal dysfunctions. In addition, a lower dose of N-allylsecoboldine ameliorated the mortality of LPS-treated mice. This study demonstrates N-allylsecoboldine's ability to avail against acute renal failure and increase survival rate during endotoxemia. These beneficial effects may be attributed to the inhibition of iNOS expression, TNF-alpha production, and free radical scavenging activities. However, the role of alpha1-adrenoceptor antagonism for N-allylsecoboldine in sepsis remains unclear. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:19:23Z (GMT). No. of bitstreams: 1 ntu-95-D89443006-1.pdf: 2205696 bytes, checksum: e081a0d1c20b4f2f6f94e5bd5f2a29b2 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目 錄 (Contents)
目錄………………………………………………….…....……i 縮寫表……………………………………..…..…….…….….iii 中文摘要…………………………………………………..…vii 英文摘要…………………………………………......…….....xi 第一章 緒論…………………………..…………………....1 第二章 實驗目的…………………………………….…...33 第三章 材料與方法……………………………….….......35 第四章 Thaliporphine增加脂多醣誘導內毒素血症 的存活率及減少多重器官損傷之作用 (Thaliporphine increases survival rate and attenuates multiple organ injury in lipopolysaccharide-induced endotoxemia)………………………………….........50 第五章 N-Allylsecoboldine可作為預防內毒素血症 所導致之急性腎臟衰竭的新型作用劑 (N-Allylsecoboldine as a novel agent prevents acute renal failure resulted from endotoxemia).......................75 第六章 總結及未來展望..……...………………….……103 參考文獻…………………………...……………………….108 論文相關著作及獎項………………….……………...…....133 | |
| dc.language.iso | zh-TW | |
| dc.subject | 敗血症 | zh_TW |
| dc.subject | 急性腎衰竭 | zh_TW |
| dc.subject | 循環衰竭 | zh_TW |
| dc.subject | 生物鹼 | zh_TW |
| dc.subject | 內毒素 | zh_TW |
| dc.subject | alkaloid | en |
| dc.subject | endotoxin | en |
| dc.subject | circulation failure | en |
| dc.subject | acute renal failure | en |
| dc.subject | sepsis | en |
| dc.title | 兩種阿醭酚生物鹼類藥物在內毒素血症保護作用之研究 | zh_TW |
| dc.title | Studies of Protective Effects of Two Aporphine Alkaloids on Endotoxemia | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 吳錦楨,林正一,曾淵如,吳美環 | |
| dc.subject.keyword | 敗血症,內毒素,生物鹼,循環衰竭,急性腎衰竭, | zh_TW |
| dc.subject.keyword | sepsis,endotoxin,alkaloid,circulation failure,acute renal failure, | en |
| dc.relation.page | 137 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-24 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 2.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
