請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32913完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫啟光(Chi-Kuan Sun) | |
| dc.contributor.author | Hung-Wen Chen | en |
| dc.contributor.author | 陳鴻文 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:18:54Z | - |
| dc.date.available | 2007-09-27 | |
| dc.date.copyright | 2006-07-27 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-24 | |
| dc.identifier.citation | [1.1] S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett., Vol. 76, pp. 1987-1989, 2000.
[1.2] R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys., Vol. 88, pp. 4449-4451, 2000. [1.3] H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett., Vol. 80, pp. 2634−2636, 2002. [1.4] M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys., Vol. 43, L317-L319, 2004. [1.5] K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature, Vol. 432, pp. 376-379, 2004. [1.6] T. I. Jeon, J. Zhang, and D. Grischkowsky, “Terahertz sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett., Vol. 86, 161904-1-3, 2005. [1.7] L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,“ Opt. Lett., Vol. 31, pp. 308-310, 2006. [2.1] L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding, ” Opt. Lett., Vol. 31, pp. 308-310, 2006. [2.2] D. H. Martin, and E. Puplett, “Polarised interferometric spectrometry for the the millimetre and submillimetre spectrum,” Infrared Physics, Vol. 10, pp. 105-109, 1969. [2.3] P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting dipole antennas,” IEEE J. of Quantum Electron., Vol. 24, pp. 255-260, 1988. [2.4] K. D. Möller and W. G. Rothshild, Far-infrared Spectroscopy, John Wiley & Sons, New York, 1971. [2.5] B. C. Smith, Fourier Transform Infrared Spectroscopy, CRC Press, Boca Raton, Cambridge, 1996. [2.6] P. Griffiths, A. James, and D. Haseth, Fourier Transform Infrared Spectrometry, John Wiley & Sons, 1986. [2.7] M. Exter, C. Fattinger and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett., Vol. 14, pp. 1128–1130, 1989. [3.1] L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,“ Opt. Lett., Vol. 31, pp. 308-310, 2006. [3.2] D. H. Auston, K. P. Cheung, P. R. Smith, “ Picosecond photoconducting Hertzian dipoles,“ Appl. Phys. Lett., Vol. 45, pp. 284-286, 1984. [3.3] W. M. Eisasser, “Attenuation in a dielectric circular rod,“ J. Appl. Phys., Vol. 20, pp. 1193-1196, 1949. [3.4] M. Sumetsky, “How thin can a microfiber be and still guide light? ,” Opt. Lett., Vol. 31, pp. 870-872, 2006. [3.5] A. Yariv, Optical Electronics in Modern Communications, Oxford University Press, fifth edition, New York, 1997. [3.6] J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infra. Milli. Waves, Vol. 17, No. 12, pp. 1997-2034, 1996. [3.7] L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express, Vol. 12, pp. 1025-1035, 2004. [3.8] J. R. Birch, G. J. Simonis, M. N. Afsar, R. N. Clarke, J. M. Dutta, H. M. Frost, X. Gerbaus, A. Hadni, W. F. Hall, R. Heidinger, W. W. Ho, C. R. Jones, F. Koniger,R. L. Moore, H. Matsuo, T. Nakano, W. Richter, K. Sakai, M. R. Stead, U. Stumper, R. S. Vigil, and T. B. Wells, “An intercomparison of measurement techniques for the determination of the dielectric properties of solids at near millimetre wavelengths,” IEEE Trans. Microwave Theory Tech., Vol. 42, pp. 956-965, 1994. [3.9] C. D. Han and R. R. Lamonte, “Studies on melting spinning. I. Effect of molecular structure and molecular weight distribution on elongation viscosity,” J. rheol. (N.Y. N.Y.) , Vol. 16, pp. 447-472, 1972. [3.10] A. W. Snyder and J. D. Love, Optical Waveguide Theory, Chapman & Hall, London, 1983. [3.11] A. M. Dykhne, “Adiabatic perturbation of discrete spectrum states,” Sov. Phys. JETP, Vol. 14, pp. 941-943, 1962. [3.12] L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon, second edition, 1965. [3.13] G. Brambilla, V. Finazzi, and D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Optics Express, Vol. 12, pp. 2258-2263, 2004. [4.1] A. W. Snyder and J. D. Love, Optical Waveguide Theory., London, England: Chapman and Hall, Ch. 14, 1983. [4.2] D. Marcuse, “The coupling of degenerate modes in two parallel dielectric waveguides,” Bell Syst. Tech. J., Vol. 50, pp. 1791-1816, 1971. [4.3] H. S. Huang and H. C. Chang, “Analysis of optical fiber directional coupling based on the modes-Part I: The identical-core case,” J. Lightwave Technol., Vol. 8, pp. 823-831, 1990. [4.4] F. Bilodeau, K. O. Hill, D. C. Johnson, and S. Faucher, “Compact, low-loss, fused biconical taper couplers: overcoupled operation and antisymmetric supermode cutoff,” Optics Letters, Vol. 12, pp. 634-636, 1987. [4.5] É. I. Alekseev and E. N. Bazarov, “Enhancement of the precision of fiber-optic interferometers by using couplers with high spectral power or antisymmetric supermode cutoff,” Tech. Phys. Lett., Vol. 23, pp. 568-569, 1997. [4.6] A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Amer., Vol. 62, pp. 1267-1277, 1972. [4.7] A. Ankiewicz, A. W. Snyder and X. H. Zheng, “Coupling between parallel optical cores- critical examination,” J. Lightwave Technol., Vol. 4, pp. 1317-1323, 1986. [4.8] P. J. Chiang, C. S. Yang, C. L. Wu, C. H. Teng, and H. C. Chang, “Application of Pseudospectral Methods to Optical Waveguide Mode Solvers, ” in OSA 2005 Integrated Photonics Research and Applications (IPRA '05), Technical Digest (CD-ROM), paper IMG4, San Diego, California, April 11-13, 2005. [4.9] T. K. Wu, Frequency Selective Surface and Grid Array, John Wiley & Sons, New York, 1995. [4.10] C. Winnewisser, F. T. Lewen, M.Schall, M. Walther, and H. Helm, “Characterization and application of dichroic filters in the 0.1–3-THz region,” IEEE Trans. Microwave Theory Tech., Vol. 48, pp. 744-749, 2000. [4.11] C. L. Pan, C. F. Hsieh, R. P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, “Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal,” Optics Express, Vol. 13, pp. 3921 - 3930, 2005. [5.1] A. P. Abel, M. G. Weller, G. L. Duveneck, M. Ehrat, and H. M. Widmer, “Fiber-optic evanescent wave biosensor for the detection of oligonucleotides,” Anal. Chem., Vol. 68, pp. 2905-2912, 1996. [5.2] M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations, ” Science, Vol. 299, pp. 682-686, 2003. [5.3] D.M. Mittleman, R. H. Jacobsen, and M. C. Nuss, ”T-ray imaging,” IEEE J. Select. Top. Quant. Electron., Vol. 2, pp. 679–692, 1996. [5.4] M. Nagel, M. Főrst, and H. Kurz, ”Terahertz biosensing devices: fundamentals and technology,” J. phys., Condens. matter, Vol. 18, S601–S608, 2006. [5.5] M. Walther, M. R. Freeman, and F. A. Hegmann, “ Metal wires terahertz time-domain spectroscopy, ” Appl. Phys. Lett., Vol. 87, 261107-1-3, 2005. [5.6] R. H. Jacobsen, D.M. Mittleman, and M. C. Nuss, “Chemical recognition of gases and gas mixtures with terahertz waves,” Opt. Lett., Vol. 21, pp. 2011–2013, 1996. [5.7] R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys., Vol. 29, pp. 257-261, 2003. [5.8] D. Crawley, C. Longbottom, V. P. Wallace, B. Cole, D. D. Arnone, and M. Pepper, “Three-dimensional terahertz pulse imaging of dental tissue,” J. Biomed. Opt., Vol. 8, pp. 303-307, 2003. [5.9] K. Kawase, Y. Ogawa, and Y. Watanabe, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express, Vol. 11, pp. 2549–2554, 2003. [5.10] S. Wang and X.-C. Zhang, “Pulsed terahertz tomography,” J. Phys. D, Vol. 37, R1-R36, 2004. [5.11] D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baranuik, J. V. Rudd, and M. Koch, “Recent advances in terahertz imaging,” Appl. Phys. B, Vol. 68, pp. 1085-1094, 1999. [5.12] P. P. Bishnu, Fundamentals of Fibre Optics in Telecommunication and Sensor Systems, John Wiley & Sons, New York, 1993. [5.13] R. G. Hunsperger, Photonic Devices and Systems, M. Dekker, New York, 1994. [5.14] S. Sanghera and I. D. Aggarwal, Infrared Fiber Optics, CRC Press, New York, 1998. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32913 | - |
| dc.description.abstract | 近二十幾年來,兆赫波(100GHz-10THz)的產生及偵測技術都有很大的進步。然而,由於許多物質在此波段都有很強的吸收,要如何有效的傳遞兆赫波仍是一個大問題。目前絕大部分有關兆赫波的實驗,都是靠架在光學桌上的反射鏡來傳遞兆赫波。這種固定、無法變動的架構,在應用上有相當多的限制。若有像optical fiber這樣的東西來傳遞兆赫波,兆赫波就能更廣泛的被運用。
因此,我們去年利用次波長光纖傳遞兆赫波,這種波導可塑性大,製作簡單,成本便宜,且損耗低。而這回,我們首先改善次波長光纖兩個缺點,並建立一結合寬頻的兆赫波源與Martin-Puplett偏振式干涉儀的系統後,進一步研究次波長光纖,發現改良過的次波長光纖損耗更低。有趣的是,次波長光纖具類似帶通濾波器的效果,且不同線徑的光纖會在相異的特定頻率有最小的損耗。所以,若想傳遞某特定頻率的兆赫波,只要經由選擇適當的線徑,便可將損耗降到最低。 甚者,將次波長光纖應用在方向耦合器上,我們成功地結合次波長光纖與聚乙烯薄膜,建立全世界第一個兆赫波光纖方向耦合器。特別的是,這種情況下,反對稱模態是截止的,故有別於一般傳統的方向耦合器,其耦合比例與耦合長度有很大的關係;但此耦合器的耦合比例可高達47%,與耦合長度及波長無關,極適合做為3dB power divider。 相信這些兆赫波光纖的研究,對於往後的應用,如:兆赫波光纖感測、兆赫波光纖影像系統、兆赫波內視鏡、兆赫波通訊等將有很大的幫助。 | zh_TW |
| dc.description.abstract | The scientific investigation about the terahertz phenomena was intensively performed in the past twenty years out of the rapid development of the terahertz generation and the detection technique. Among all the setups of THz application systems nowadays, most of them are constructed with planar or curved metal reflectors fixed on an optical table. Such system is very rigid and vulnerable to environmental disturbances. With the perspective on a controllable, reliable, and flexible THz system for various applications, a low-loss THz waveguide is indeed essential. Last year, we proposed and demonstrated a subwavelength THz fiber for terahertz wave guiding with a low attenuation constant (~ cm-1).
In this thesis, we successfully established a single-mode fiber-based THz directional coupler. We first modified two major shortcomings of the subwavelength fiber and established a system composed of a photoconductive antenna as a broadband source and a Martin-Puplett interferometer to further investigate its spectral characteristics. Interestingly, we found that the characteristics of the subwavelength fiber are like a band-pass filter and the attenuation of THz waves could be on the order of or less than cm-1 at a specific wavelength which depends on the fiber diameter. It implies that the THz attenuation at the operating frequency can be greatly minimized by the proper design of the diameter of the subwavelength fiber. Moreover, we applied the subwavelength fiber to the THz directional coupler. By using PE films and subwavelength fibers, we established a single-mode fiber-based THz directional coupler. The anti-symmetric mode in the established coupler was found to be cutoff. The coupling ratio is thus independent of the coupling length and the wavelength, which is much different from the traditional directional coupler. This subwavelength directional coupler with a coupling ratio up to 47% is expected to be good for the application of the 3dB power divider. We believe that these will be very versatile for the terahertz applications such as fiber sensing, fiber imaging, endoscope, terahertz communication, and so on. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:18:54Z (GMT). No. of bitstreams: 1 ntu-95-R93941039-1.pdf: 1261314 bytes, checksum: 806596322345b015395e8ea2f6eb803d (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Contents
Chapter 1 Introduction 1 1.1 Background of Terahertz Technology 2 1.2 Organization of the Thesis 4 Chapter 2 Construction of a Martin-Puplett Interferometer 6 2.1 Principle of the Martin-Puplett Interferometer 7 2.1.1 Basics of the MPI 7 2.1.2 The Interferogram and theSpectrum 8 2.2 Experimental results of the MPI 10 2.2.1 Photoconductive Antenna 10 2.2.2 Experimental Setup 10 2.2.3 Measurement of the Spectrum 13 2.3 Discussion 15 Chapter 3 Investigation of Subwavelength Terahertz Fiber 17 3.1 Review of the Low-Loss Subwavelength THz Fiber 18 3.1.1 Basic Model of the Subwavelength THz Fiber 18 3.1.2 The Low-Loss Subwavelength PE Fiber 21 3.2 The Subwavelength Terahertz Fiber Measurement 24 3.2.1 Fiber Preparation and Experimental Setup 25 3.2.2 Measurement of Fiber Attenuation 28 3.2.3 Discussion 33 3.3 Study of the Loss Mechanisms 34 3.3.1 Radiation Loss out of Diameter Variation 34 3.3.2 Adiabatic Approximations 36 3.3.3 Discussion 41 Chapter 4 Single-Mode Fiber-Based THz Directional Coupler 49 4.1 Principle of the THz Directional Coupler 50 4.1.1 Modes of Two Parallel Fibers 50 4.1.2 Anti-symmetric mode Cutoff 53 4.2 THz Directional Coupler Measurement 53 4.2.1 Preparation for Directional Coupler 53 4.2.2 Measurement of the THz Directional Coupler 55 Chapter 5 Conclusions 61 5.1 Summary 61 5.2 Future Works 63 | |
| dc.language.iso | en | |
| dc.subject | 方向耦合器 | zh_TW |
| dc.subject | 兆赫波 | zh_TW |
| dc.subject | 次波長 | zh_TW |
| dc.subject | THz | en |
| dc.subject | directional coupler | en |
| dc.subject | subwavelength | en |
| dc.subject | Terahertz | en |
| dc.title | 兆赫波光纖方向耦合器 | zh_TW |
| dc.title | Single-Mode Fiber-Based THz Directional Coupler | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 潘犀靈(Ci-Ling Pan),張宏鈞(Hung-Chun Chang),黃衍介(Yen-Chieh Huang) | |
| dc.subject.keyword | 兆赫波,次波長,方向耦合器, | zh_TW |
| dc.subject.keyword | THz,Terahertz,subwavelength,directional coupler, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-25 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
