請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32908完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳正興 | |
| dc.contributor.author | Chung-Chieh Hsu | en |
| dc.contributor.author | 許宗傑 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:18:45Z | - |
| dc.date.available | 2006-07-28 | |
| dc.date.copyright | 2006-07-28 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-23 | |
| dc.identifier.citation | 1. Arulanandan, K., Li, X. S. and Sivathasan, K.,“Numerical simulation of liquefaction-induced deformations”, Journal of Geotechnical Engineering, ASCE, Vol.126, No.7, pp.657-666 (2000).
2. Ambraseys, N. N. and Menu, J. M.,“Earthquake induced ground displacements”,Earthquake Engineering and Structure Dynamics, Vol. 16, pp. 985-1006 (1988). 3. Bartlett, S. F. and Youd, T. L.,“Case studies of liquefaction and lifeline performance during past earthquakes, Vol. 2, united states case studies”, NCEER Technical Report, Buffalo, New York (1992a). 4. Bartlett, S. F. and Youd, T. L.,“Empirical analysis of horizontal ground displacement generated by liquefaction-induced lateral spreads”, NCEER Technical Report, Buffalo, New York (1992b). 5. Bartlett, S. F. and Youd, T. L.,“Empirical prediction of liquefaction-induced lateral spread”, Journal of Geotechnical Engineering, ASCE, Vol. 121, No.4, pp.316-329 (1995). 6. Baska, D. A.,“An analytical/empirical model for predition of lateral spread displacements”, Ph.D. Dissertation, Department of Civil Engineering, University of Washington, Seattle, Washington (2002). 7. Baziar, M. H. and Dobry, R.,“Liquefaction ground deformation predicted from laboratory test”, Proceedings of 2nd International Conference on Recent Advances Geotechnical Earthquake Engneering and Soil Dynamics, Vol. 1, pp.451-458 (1991). 8. Baziar, M. H., Dobry, R. and Elgamel, A. W. M., “Engineering evaluation of permanent ground displacement due to seismically-induced liquefaction”, NCEER Technical Report, Buffalo, New York(1992). 9. Beaty, M. H. and Byrne, P. M.,“A synthesized approach for modeling liquefaction and displacement”, FLAC and Numerical Modeling in Geomechanics, Balkema, Rotterdam, pp.339-347 (1999). 10. Byrne, P. M.,“A model for predicting liquefaction induced displacement”, Proceedings of 2nd International Conference on Recent Advances Geotechnical Earthquake Engneering and Soil Dynamics, Vol.2, pp.1027-1035 (1991). 11. Byrne, P. B.,“A model for prediction liquefaction induced displacement”, Proceedings of 2nd International Conference on Recent Advances in Geotechnical Earthquake and Soil Dynamics, St. Louis, Missouri, pp.7-14 (1991). 12. Byrne, P. B., Jitno, H., Anderson, D. L. and Haile, J.,“A procedure for predicting seismic displacement of earth dams”, Proceedings of 13th International Conference on Soil Mechanics and Foundation Engineering, Vol.3, pp.1047-1052 (1994). 13. Castro, G.. and Poulos, S. J.,“Factors affecting liquefaction and cyclic mobility”, Journal of Geotechnical Engineering, ASCE, Vol.103, No.GT6, pp.501-516 (1977). 14. Cetin, K. O., Youd, T. L., Seed, R. B., Bray, J. D., Stewart, J. P., Durgunoglu, H. T., Lettis, W. and Yilmaz, M. T.,“Liquefaction-induced lateral spreading at izmit bay during the Locaeli(Izmit)-Turkey earthquake”, Journal of Geotechnical and Geoenvironmental Engineering , ASCE, Vol.130, No.12, pp.1300-1313 (2004). 15. Committee on Soil Dynamics of the Geotechnical Engineering Division, “Definition of terms related to liquefaction”, Journal of Geotechnical Engineering, ASCE, Vol.104, No.GT9, pp.1197-1200 (1978). 16. Coulter, H.W. and Migliaccio, R. R.,“Effects of the earthquake of march 27, 1964, at valdez alaska”, U. S. Geological Survey Professional Paper 542-C (1966). 17. Cubrinovski, M. and Ishihara, K.,“Simplified method for analysis of pile undergoing lateral spreading in liquefied soils”, Soils and Foundations, Vol.44, No.5, pp.119-133 (2004). 18. Dobry, R. and Baziar M. H.,“Permanent ground deformations due to lateral spreading during earthquake”, Proceedings of 3rd Japan-US Workshop on Soil Liquefaction , New York, pp.209-223 (1990). 19. Elgamal, A., Yang, Z. and Parra, E.,“Computational modeling of cyclic mobility and post-liquefaction site response”, Soil Dynamics and Earthquake Engineering, Vol.22, pp.259-271 (2002). 20. Elgamal, A., Yang, Z., Parra, E. and Ragheb, A.,“Modeling of cyclic mobility in saturated cohesionless soils” , International Journal of Plasticity, Vol.19, pp.883-905 (2003). 21. Feng, Z., Lin, J. S., Chi, J. C. and Chern, J. C.,“Numerical simulations for liquefiable sands”, Proceedings of the 10th Conference on Geotechnical Engineering in Taiwan, Taiwan, Sanchih, pp.17-20 (2003). 22. Fiegel, G. L. and Kutter, B. L.,“liquefaction-induced lateral spreading of mildly sloping ground” , Journal of Geotechnical Engineering, ASCE, Vol.120, No.12, pp.2236-2243 (1994). 23. Finn, W. D., L., Lee, K. W. and Martin, G. R.,“ An effective stress model for liquefaction,”, Journal of Geotechnical Engineering, ASCE, Vol. 103, No. GT6, pp.517-533 (1977). 24. FLAC, Fast Lagrangian Analysis of Continua, Version 4.0, Volume I :User’s Manual, Itasca Consulting Group Inc., U.S.A. (2000). 25. FLAC, Fast Lagrangian Analysis of Continua, Version 4.0, Volume III :Fluid – Mechanical Interaction, Itasca Consulting Group Inc., U.S.A. (2000). 26. FLAC, Fast Lagrangian Analysis of Continua, Version 4.0, Volume V :Optional Features, Itasca Consulting Group Inc., U.S.A. (2000). 27. Franklin, A. G. and Chang, F. K.,“Permanent displacement of earth embankments by Newmark sliding block analysis”, U. S. Army Waterways Experiment Station Miscellaneous Paper S-71-17 (1977) . 28. Gu, W. H., Morgenstern, N. R. and Robertson, P. K., “Progressive failure of Lower San Fernando Dam”, Journal of Geotechnical Engineering, ASCE, Vol.119, No.2, pp.333-349 (1993). 29. Hadush, S.,Yashima, A. and Uzuoka, R.,“Improtance of viscous fluid characteristics in liquefaction induced lateral spreading analysis”, Computers and Geotechnics,Vol.27,pp.199-224 (2000). 30. Hamada, M., Yasuda, S., Isoyama, R., and Emoto, K., “Study on liquefaction induced permanent ground displacement”, Report published by the Association for the Development of Earthquake Prediction, Tokyo, Japan (1986). 31. Hamada, M., Towhata, I., Yasada, S. and Isoyama, R.,“Study on permanent ground displacement induced by seismic liquefaction”, Computers and Geotechnics, Vol.4, No.4, pp.197-220 (1987). 32. Hamada, M., and O’Rourke, T. D., “Case studies of liquefaction and lifeline performance during past earthquakes, vol. 1: japanese case studies”, NCEER Technical Report, Buffalo, New York (1992). 33. Hamada, M., and O’Rourke, T. D., “Case studies of liquefaction and lifeline performance during past earthquakes, vol. 2: united states case studies”, NCEER Technical Report, Buffalo, New York (1992). 34. Holzer, T. L., Noce, T. E., Bennett, M. J., Alessandro, C. D., Boatwright, J., Tinsley, J. C., Sell, R. W. and Rosengerg, L. I.,“Liquefaction-induced lateral spreading in oceano, california, during the 2003 san simeon earthquake ”, U. S. Geological Survey Report, Menlo Park, California, pp.6-36 (2004). 35. Ishihara, K., Tatsuoka, F. and Yasuda, A.,“Undrained deformation and liquefaction of sand under cyclic stresses”, Soils and Foundations, Vol.15, No.1, pp.29-44 (1975). 36. Ishihara, K., Yasuda, S. and Yoshida, A.,“Liquefaction-induced flow failure of embankments and residual strength of silty sands”, Soils and Foundations, Vol.30, No.3, pp.69-80 (1990a). 37. Ishihara, K., Okusa, S., Oyagi, N. and Ischuk, A.,“Liquefaction-induced flow slide in the collapsible loess deposit in Soviet Tajik”, Soils and Foundations, Vol.30, No.4, pp.73-89 (1990b). 38. Ishihara, K.,“Liquefaction and flow failure during earthquakes”, Geotechnique, Vol.43, No.3, pp.351-415 (1993). 39. Ishihara, K., Soil Behavior in Earthquake Geotechnics, Clarendon press, Oxford (1996). 40. Jeyapalan, J. K., Duncan, J. and Seed, H. B.,“Analysis of flow failure of mine tailing dams”, Journal of Geotechnical Engineering, ASCE, Vol.113, No.11, pp.1374-1392 (1983). 41. Kandiah, A. and Ronald F. Scott, Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems, Vol.2, Balkema, Netherlands (1994). 42. Keane, C., M. and Prevost, J. H.,“Preliminary results of a numerical technique to model flow failure induced by soil liquefaction”, Proceedings of 3rd Japan-US Workshop on Earthquake Resistant Design on Lifeline Facilities and Countermeasures for Soil Liquefaction, San Francisco, pp.253-267 (1990). 43. Kramer, S. L., Geotechnical Earthquake Engineering, Prentice-Hall, New Jersey (1996). 44. Kramer, S.L. and Smith, M.W., “Modified newmark model for seismic displacements of compliant slopes”, Journal of Geotechnical and Environmental Engineering, ASCE, Vol. 123, No. 7, pp 635-644 (1997). 45. Kuwano, J. and Ishihara, K.,“Analysis of permanent deformation of earth dams due to earthquake”, Soils and Foundations, Vol.28, No.1, pp.41-55 (1988). 46. Li, X. S. and Ming, H. Y.,“Unified modeling of liquefaction and cyclic mobility”, Soil Dynamics and Earthquake Engineering, Vol.19, pp.363-369 (2000). 47. Madisi, F. I. and Seed, H. B.,“Simplified procedure for estimating dam and embankment earthquake-induced deformation”, Journal of Geotechnical Engineering, ASCE, Vol.104, No.7, pp.849-867 (1978). 48. Martin, G.. R., Finn, W. D. L. and Seed, H. B.,“Fundamentals of liquefaction under cyclic loading”, Journal of Geotechnical Engineering, ASCE, Vol.101, No.GT5, pp.423-238 (1975). 49. Matsuo, O., Saito, Y., Sasaki, T., Kondoh, K. and Sato, T., “Earthquake-induced flow slides of fills and infinite slopes”, Soils and Foundations, Vol.42, No.1, pp.89-104 (2002). 50. Miyajima, M., Aydan, O., Ulusay, R. and Yoshida M.,“Liquefied-induced ground flow in natural deposits during algeria and trukey earthquake”, Proceedings of 2004 Taiwan-Japan Joint Workshop on Geotechnical Hazards from Large Earthquake and Heavy Rainfall , Taipei, pp.121-123 (2004). 51. Newmark, N. M.,“Effects of earthquakes on dams and embankments”, Geotechnique, Vol.5, No.2, pp.137-160 (1965). 52. Osamu, M., Yukiko, S., Tetsuya, S., Koichi, K. and Takashi, S., “Earthquake-induced flow slides of fills and infinite slopes”, Soils and Foundations, Vol.32, No.3, pp.79-96 (2002). 53. Pinto, P. S. E., Soil Dynamics and Geotechnical Earthquake Engineering, Balkema, Netherlands, pp.59-65 (1993). 54. Rauch, A.F. and Martin, J. R.,“EPOLLS model for predicting average displacements of lateral spreads”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 126, No. 4, pp. 360-371 (2000). 55. Sasaki, Y., Tokida, K., Matsumoto, H. and Saya, S., “Shake table tests on lateral ground flow induced by soil liquefaction”, Proceedings of 3rd Japan-US Workshop on Earthquake Resistant Design on Lifeline Facilities and Countermeasures for Soil Liquefaction, San Francisco, pp.371-385 (1991). 56. Sasaki, Y., Towhata, I., Tokida, K., Yamada, K., Matsumoto, H., Tamari, Y. and Saya, S., “Mechanism of permanent displacement displacement of ground caused by seismic liquefaction”, Soils and Foundations, Vol.32, No.3, pp.79-96 (1992). 57. Sawada, T., Chen, W. F. and Nomachi, S. G.,“Assessment of seismic displacements of slopes”, Soil Dynamics and Earthquake Engineering, Vol.12, No.6, pp.357-362 (1993). 58. Seed, H. B. and Lee, K. L.,“Liquefaction of saturated sands during cyclic loading”, Journal of Soil Mechanics and Foundation, ASCE, Vol. 92, No. SM6, pp.105-134 (1966). 59. Seed, H. B., Lee, K. L. and Idriss, I. M.,“Analysis of Sheffield Dam failure”, Journal of Soil Mechanics and Foundation, ASCE, Vol. 95, No. SM6, pp.1453-1490 (1969). 60. Seed, H. B., Lee, K. L., Idriss, I. M. and Makdisi, F.,“The slides in the San Fernando Dams during the earthquake of February 9, 1971”, Journal of Geotechnical Engineering, ASCE, Vol. 101, No. GT7, pp.651-688 (1973). 61. Seed, H. B., Idriss, I. M., Lee, K. L. and Makdisi, F.,“Dynamic analysis of the slide in the Lower San Fernando dam during the earthquake of February 9, 1971”, Journal of Geotechnical Engineering, ASCE, Vol. 101, No. GT9, pp.889-911 (1975b). 62. Seed, H. B.,“Design problems in soil liquefaction”, Journal of Geotechnical Engineering, ASCE, Vol. 113, No. 8, pp.827-845 (1987). 63. Shamoto, Y., Zhang, J. M. and Goto, S., “Mechanism of large post- liquefaction deformation in saturated sand”, Soils and Foundations, Vol.37, No.2, pp.71-80 (1997). 64. Stamatopoulos, C. A., Bouckovalas, G. and Whitman, R. V.,“Analytical prediction of earthquake-induced permanent deformations”, Journal of Geotechnical Engineering, ASCE, Vol.117, No.10, pp.1471-1491 (1991). 65. Stark, T. D. and Mesri,“Undrained shear strength of liquefied sands for stability analysis”, Journal of Geotechnical Engineering, ASCE, Vol.118, No.11, pp.1727-1747 (1992). 66. Stark, T. D. and Olsen, S. M.,“Liquefaction resistance using CPT and field case histories”, Journal of Geotechnical Engineering, ASCE, Vol.121, No.12, pp.856-869 (1995). 67. Steven, L. K., Geotechnical Earthquake Engineering, 1st ed. Prentice Hall, London (1996). 68. Succarieh, M. F., Lin, J. I. and Elgamal, A. W. M.,“Computation of dynamic large displacements in earth systems”, Proceedings of the 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, Vol.2, pp.1005-1012 (1991). 69. Tokimatsu, K., Kojima, H., Kuwayama, S. and Midorikawa, S.,“Liquefaction-induced Damage to Buildings in Luzon Earthquake”, Journal of Geotechnical Engineering, ASCE, Vol.120, No.2, pp.290-307 (1994). 70. Towhata, I., and Islam, M. S.,“Prediction of lateral displacement of anchored bulkheads induced by seismic liquefaction”, Soils and Foundations, Vol.27, No.4, pp.137-147 (1987). 71. Towhata, I., Yasuda, S., Ootomo, K. and Yamada, K.,“Experimental studies on liquefaction induced permanent ground displacement”, Proceedings of the 1st Japan-US Workshop on Liquefaction Large Ground Deformaiton and Their Effect on Lifeline Facilities, Tokyo, pp.81-92 (1988). 72. Towhata, I., Tokida, K., Tamari, H., Matsumoto, H. and Yamada, K., “Prediction of permanent lateral displacement of liquefied ground by means of variational principle”, Proceedings of 3rd Japan-US Workshop on Earthquake Resistant Design on Lifeline Facilities and Countermeasures for Soil Liquefaction, San Francisco, pp.237-251 (1991). 73. Towhata, I., Sasaki, Y., Tokida, K., Matsumoto, H., Tamari, Y. and Yamada, K., “Prediction of permanent displacement of liquefied ground by means of minimum energy principle”, Soils and Foundations, Vol.32, No.3, pp.97-116 (1992). 74. Towhata, I., Toyota, H. and Vargas-Monge, W.,“Dynamics in lateral flow of liquefied ground”, Proceedings of the 10th Asian Regional Conference on Soil Mechanics and Foundation Engineering, Vol.1, pp.497-500 (1995). 75. Towhata, I.,“Liquefaction and associated phenomenon”, Proceedings of the 1st International Conference on Earthquake Geotechnical Engineering, Tokyo, Vo3, pp.1411-1434 (1996). 76. Towhata, I., Vargas-Monge, W. and Yao, M.,“Mechanical properties of loose liquefied sand undergoing lateral flow”, Proceedings of the International Symposium on Landslide Hazard Assessment, Xian, China, pp.57-64 (1997). 77. Towhata, I. and Tamate, S.,“Numerical simulation of ground flow caused by seismic liquefaction”, Soil Dynamics and Earthquake Engineering , Vol.18, pp.473-485 (1999). 78. Toyota, H., Towhata, I, Imamura, S. and Kudo, K.,“Shaking table tests on flow dynamics in liquefied slope ”, Soils and Foundations, Vol.44, No.5, pp.67-84 (2004). 79. Vaid, Y. P. and Thomas, J.,“Liquefaction and postliquefaction behavior of sand”, Journal of Geotechnical Engineering, ASCE, Vol.121, No.2, pp.163-173 (1995). 80. Wang, C. H.,“Prediction of the residual strength of liquefied soils”, Ph.D. Dissertation, Department of Civil Engineering, University of Washington, Seattle, Washington (2003). 81. Yasuda, S., Hamada, M., Wakamatsu, K., and Morimoto, I., “Liquefaction induced ground displacement in Niigata city,” Proceedings of 2nd US-Japan Workshop on Liquefaction, Large Ground Deformaiton, and Their Effects on Lifeline Facilities, Buffalo, pp. 62-73 (1989). 82. Yasuda, S., Nagase, H., Kiku, H. and Uchida, Y.,“The mechanism and a simplified procedure for the analysis of permanent ground displacement due to liquefaction ”, Soils and Foundations, Vol.32, No.1, pp.149-160 (1992). 83. Youd, T.L. and Perkins, D. M., “Mapping liquefaction-induced ground failure potential”, Journal of Geotechnical Engineering Division, ASCE, Vol. 104, No. GT4, pp. 433-446 (1978). 84. Youd, T. L. and Perkins, D. M., “Mapping of liquefaction severity index”, Journal of Geotechnical Engineering, ASCE, Vol.113, No.11, pp.1374-1392 (1987). 85. Youd, T. L., and Idriss, I. M., “Liquefaction resistance of soils : summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 4, pp. 297-313 (2001). 86. Youd, T. L., Hansen, C. M. and Bartlett, S. F.,“Revised multilinear regression equations for prediction of lateral spread displacement”, Journal of Geotechnical and Geoenvironmental Engineering , ASCE, Vol.128, No.12, pp.1007-1017 (2002). 87. 地盤工學會,地盤側方流動,土質基礎工學叢書38,第175-237頁(1994)。(日文書)。 88. 孔繁偉,「開挖對砂土海床邊坡流動滑動穩定性影響之研究」,碩士論文,國立台灣大學,台北(1986)。 89. 林美聆、陳榮河、廖洪鈞、周功台、翁作新、陳正興,「九二一集集大地震全面勘災報告—大地工程震災調查」,國家地震工程研究中心研究報告(1999)。 90. 亞新工程顧問公司,「南投、霧峰地區土壤液化調查研究」(2000b)。 91. 吳俊逸,「土壤液化引致之地盤永久位移之研究」,碩士論文,國立中央大學,中壢(2000)。 92. 黃俊鴻,「地震災害潛勢與損害評估方法研究-子計畫:土壤液化引致地盤永久變位之研究」,行政院國家科學委員會研究報告(2000)。 93. 黃俊鴻、楊志文、譚志豪、陳正興,「集集地震土壤液化之調查與分析」,地工技術,第77期,第51-64頁(2000)。 94. 褚柄麟、張益銘、陳冠閔、徐松析、張錦銘,「921地震霧峰、太平地區液化及下陷調查分析」,地工技術,第77期,第19-28頁(2000)。 95. 褚柄麟、徐松析、賴聖耀,「九二一大地震霧峰地區土壤液化潛能評估」,行政院國家科學委員會研究報告(2000)。 96. 李佳翰,「沉箱式碼頭受震引致土壤液化之數值模擬」,碩士論文,國立中央大學,中壢(2001)。 97. 余明山,「河岸橋樑基礎之液化案例分析」,2002集集地震液化工程問題研討會論文集,第79-102頁(2002)。 98. 林成川,「921集集大地震霧峰地區側潰研究」,碩士論文,國立中興大學,台中(2002)。 99. 張吉佐、方仲欣、黃俊鴻,「貓羅溪河堤之液化分析與對策」,2002集集地震液化工程問題研討會論文集,第103-114頁(2002)。 100. 李承泰,「基礎土壤液化引致路堤變形之研究」,碩士論文,國立中央大學,中壢(2004)。 101. 陳正興,「土壤液化對交通結構物之影響及液化潛能評估方法與災害分析模式之研究(1/2)」,交通部科技顧問室研究報告(2004)。 102. 陳正興,「土壤液化對交通結構物之影響及液化潛能評估方法與災害分析模式之研究(2/2)」,交通部科技顧問室研究報告(2005)。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32908 | - |
| dc.description.abstract | 本論文以傾斜地盤受震液化引致之側向變位為主題,進行簡化理論分析模式與數值模擬之研究,旨在建立一套合理之側向變位量分析模式以供工程分析與設計之用。
Towhata(1992)根據案例調查及模型試驗結果,推導出一套側向變位量理論解,由於理論解包含五組公式,公式之型式與參數相當複雜,且存在高估側向變位量之現象,故值得進一步改善以提昇其應用性。本研究以Towhata(1992)理論模式為基礎,採用最小勢能法並配合因次分析進行理論估算式之推導,提出第一階與第二階近似理論解,公式中之參數已合理簡化並具備明確之物理意義。針對緩坡及近河岸兩類地形條件,應用近似理論解建立簡化分析模式,並藉由一系列現地案例與震動台模型試驗結果進行驗證分析,結果顯示本研究所提之簡化模式能夠合理評估側向變位量,並改善Towhata模式高估變位量之現象。 數值模擬方面,本研究採用有限差分程式FLAC,應用Mohr-Coulomb塑性組成律與Martin et al.(1975)應變式孔隙水壓模式,建立有效應力分析模式。根據震動台模型試驗之模擬分析結果,證明本研究之數值模式能夠合理模擬液化地盤側向變位之行為與特性,並提供準確性良好之模擬結果。 最後將本研究所建立之簡化分析模式與數值模式應用於1999年台灣集集地震中貓羅溪案例與霧峰太子城堡案例之分析。由地表側向變位量分析值與現地實測數據之比對結果,顯示本研究之簡化分析模式能夠合理評估地表側向變位量;數值模擬則能夠完整呈現地盤受震過程中,土體之孔隙水壓與應力狀態之變化趨勢及地盤變位之特性,並合理解釋土壤液化引致側向變位之現象。 | zh_TW |
| dc.description.abstract | Lateral spreading occurred on liquefied ground will cause significant damages to supporting structures and buried facilities. The purpose of this study is to develop a simplified analytical model as well as a numerical model to evaluate the amount of lateral displacement induced by soil liquefactions for engineering applications.
This study follows the analytical approach proposed by Towhata (1992) through modifications and dimensional analysis to deduce a simpler solution. Two sets of approximate solutions are presented which are applicable to the condition of a continuous gently sloping ground and the condition of a river bank with cutting free-face, respectively. For verifications, nine cases of in-situ measurements during past earthquakes are analyzed. Results obtained show that the proposed simplified model can reasonably predict the lateral displacements associated with soil liquefactions. For numerical modeling, the program FLAC is used to simulate the phenomenon of lateral spreading induced by soil liquefactions. The analysis performed is the effective stress approach modeled with Martin’s pore pressure model. Analysis on two sets of shaking table tests are carried out to verify the applicability of the numerical model proposed. The results show that the numerical approach can reasonably simulate the behavior of lateral displacement of liquefied ground. For applications, three cases of lateral spreading occurred in 1999 Taiwan Chi-chi earthquake are analyzed with the proposed simplified model and numerical approach. From the results obtained, it is shown that the simplified model can reasonably predict the lateral displacements of liquefied ground, while the numerical approach can simulate the characteristics and mechanism of lateral displacement induced by soil liquefactions. Based on the studies presented herein, the proposed simplified model is convenient and sufficiently accurate to be used for engineering applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:18:45Z (GMT). No. of bitstreams: 1 ntu-95-D89521018-1.pdf: 7286505 bytes, checksum: 105bffc6a0bce56babd6a622f90ef2af (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 誌 謝 I
摘 要 I Abstract Ⅲ 目 錄 Ⅳ 表目錄 Ⅷ 相片目錄 Ⅹ 圖目錄…. ⅩI 第一章 緒 論 1-1 1.1 研究背景 1-1 1.2 研究目標與內容 1-2 第二章 文獻回顧 2-1 2.1 地盤液化後之側向變位型態 2-1 2.2 液化地盤側向變位之特性 2-3 2.2.1 案例研究 2-3 2.2.2 模型試驗 2-8 2.3 液化地盤側向變位之分析方法 2-10 2.3.1 經驗模式 2-10 2.3.2 理論模式 2-18 2.3.3 數值分析 2-26 2.4 綜合討論 2-28 第三章 傾斜液化地盤側向變位之近似理論解 3-1 3.1 Towhata(1992)理論模式應用性探討 3-1 3.2 簡化模型與假設條件 3-3 3.3 系統總勢能增量分析 3-6 3.4 控制方程式推導 3-8 3.5 因次分析 3-9 3.6 近似理論解推導 3-10 3.6.1第一階近似理論解 3-10 3.6.2第二階近似理論解 3-13 3.7 綜合討論 3-17 第四章 簡化理論分析模式之案例分析 4-1 4.1 現地地形分類與簡化理論分析模式 4-1 4.1.1現地地形分類 4-1 4.1.2緩坡地形分析模式 4-2 4.1.3近河岸地形分析模式 4-3 4.2 緩坡地形案例分析 4-5 4.2.1日本能代(Noshiro)市Maeyama地區液化案例 4-5 4.2.2日本能代(Noshiro)市北區液化案例 4-6 4.3 近河岸地形案例分析 4-7 4.3.1日本新潟Oogata地區液化案例 4-7 4.3.2日本Kasukabe地區液化案例 4-9 4.4 應用於震動台模型試驗之分析 4-11 4.5 1964年日本新潟地震案例分析 4-12 4.5.1新潟飯店案例 4-12 4.5.2新潟火車站案例 4-14 4.5.3 Shitayama小學案例 4-15 4.5.4 Shinkawa地區Tsusen河岸案例 4-16 4.6綜合討論 4-18 第五章 傾斜液化地盤側向變位之數值分析模式 5-1 5.1 數值模式之建立 5-1 5.1.1 FLAC程式簡介 5-1 5.1.2數值模式之架構與分析流程 5-8 5.2 數值模式之驗證 5-10 5.2.1地盤模型 5-10 5.2.2材料參數 5-10 5.2.3動力分析 5-11 5.2.4分析結果 5-12 5.3 小尺寸震動台模型試驗之模擬分析 5-13 5.3.1震動台模型試驗概述 5-14 5.3.2數值地盤模型 5-14 5.3.3材料參數 5-14 5.3.4動力分析 5-15 5.3.5分析結果 5-16 5.4大尺寸震動台模型試驗之模擬分析 5-18 5.4.1震動台模型試驗概述 5-18 5.4.2數值地盤模型 5-19 5.4.3材料參數 5-19 5.4.4動力分析 5-20 5.4.5分析結果 5-20 5.5 綜合討論 5-24 第六章 921集集地震案例分析 6-1 6.1 921地震貓羅溪沿岸側向變位案例概述 6-1 6.1.1地表側向變位情形 6-1 6.1.2地質調查結果 6-2 6.2 分析參數之評估方法 6-3 6.3簡化理論模式分析 6-4 6.3.1貓羅溪河岸剖面一 6-4 6.3.2貓羅溪河岸剖面二 6-6 6.4數值模擬分析 6-7 6.4.1地震資料分析 6-7 6.4.2土壤材料參數評估 6-9 6.4.3貓羅溪河岸剖面一 6-10 6.4.4貓羅溪河岸剖面二 6-12 6.5 霧峰太子城堡社區對岸水稻田側向變位案例概述 6-15 6.5.1地表側向變位之情形 6-15 6.5.2地質調查結果 6-16 6.6 簡化理論模式分析 6-18 6.7數值模擬分析 6-19 6.7.1地震資料分析 6-19 6.7.2土壤材料參數評估 6-20 6.7.3太子城堡對岸水稻田案例分析 6-22 6.8分析結果之比較與討論 6-25 第七章 結論與建議 7-1 7.1 結論 7-1 7.1 建議 7-3 參考文獻 R-1 | |
| dc.language.iso | zh-TW | |
| dc.subject | 數值模擬 | zh_TW |
| dc.subject | 土壤液化 | zh_TW |
| dc.subject | 側向變位 | zh_TW |
| dc.subject | 簡化分析模式 | zh_TW |
| dc.subject | soil liquefaction | en |
| dc.subject | numerical simulation | en |
| dc.subject | simplified analytical model | en |
| dc.subject | lateral displacement | en |
| dc.title | 傾斜液化地盤側向變位分析模式之研究 | zh_TW |
| dc.title | Analysis for Lateral Displacement of Liquefied Ground | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 林美聆,黃俊鴻,翁作新,林炳森,林三賢 | |
| dc.subject.keyword | 土壤液化,側向變位,簡化分析模式,數值模擬, | zh_TW |
| dc.subject.keyword | soil liquefaction,lateral displacement,simplified analytical model,numerical simulation, | en |
| dc.relation.page | 281 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 7.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
