請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32897完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王榮德(Jung-Der Wang) | |
| dc.contributor.author | Wei-Chung Hsu | en |
| dc.contributor.author | 許巍鐘 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:18:27Z | - |
| dc.date.available | 2008-08-03 | |
| dc.date.copyright | 2006-08-03 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-25 | |
| dc.identifier.citation | Manuscript 1:
References ACOEM evidence-based statement. Noise-induced hearing loss. JOEM. 2003; 45(6), 579-581. Ansari-Lari M, Saadat M, Hadi N. Influence of GSTT1 null genotype on the offspring sex ratio of gasoling filling station workers. J Epidemiol Community Health. 2004; 58(5): 393-394. Barr T. Transactions of the Philosophy Society of Glasgow 1886; 17: 223. Bauer P, Kovpert K, Neuberger M, et al. Risk factors for hearing loss at different frequencies in a population of 47,388 noise-exposed workers. J Acoust Soc Am. 1991; 90: 3086-3098. Chiang WK, Chan CC, Tseng CT, Wang JD. Reduction of post-shift traffic injuries among gasoline station workers: Are they related to the reduction of occupational gasoline vapor exposure? Accident Analysis and Prevention. 2005; 37: 956-961. Chen J-D, Tsai J-Y. Hearing loss among workers at an oil refinery in Taiwan. Arch Environ Health. 2003; 58(1): 55-58. Clark WW. Hearing: the effects of noise. Arch Otolarngol Head Neck Surg. 1992; 106: 669-676. Concha-Barrientos M, Campbell-Lendrum D, Steenland K. Occupational noise: assessing the burden of disease from work-related hearing impairment at national and local levels. Geneva, World Health Organization, 2004. (WHO Environmental Burden of Disease Series, No. 9). Dobies RA. Prevention of noise induced hearing loss. Arch Otolaryngol Head Neck Surg. 1995; 121: 385-391. Fechter LD. Combined effects of noise and chemicals. Occup Med State of Art Reviews. 1995; 10: 609-621. Fechter LD, Young JS, Carlisle L. Potentiation of noise-induced threshold shifts and hair cell loss by carbon monoxide. Hearing Res. 1988; 34: 39-48. Frost LS, Freels S, Persky V. Occupational lead exposure and hearing loss. J Occup Environ Med. 1997; 39: 658-666. Hessel PA. Hearing loss among construction workers in Edmonton, Alberta, Canada. J Occup Environ Med. 2000; 42(1): 57-63. Hetu R, Getty L, Quoc HT. Impact of occupational hearing loss on the lives of workers. Occup Med. 1995; 10: 495-512. Holt EE. Boilermaker’s deafness and hearing in noise. Trans Am Otol Soc. 1982; 3: 34-44. Hong O, Chen SC, Conrad KM. Noise-induced hearing loss among male airport workers in Korea. Assoc Am Occup Health Nurses. 1998; 46(2): 67-75. James WH. The sex ratio of offspring of male gasoline filling station workers. J Epidemiol Community Health. 2005; 59(4): 339. Johnson AC, Nylen PR. Effects of industrial solvents on hearing. Occup Med State of the Art Reviews. 1995; 10: 623-640. Kahan E, Ross E. Knowledge and attitude of a group of South African mine workers towards noise induced hearing loss and the use of hearing protective devices. S Afr J Commun Disord. 1994; 4: 37-47. Lippmann M. 1989 Alice Hamilton lecture. Lead and human health: background and recent findings. Environ Res. 1990; 51(1): 1-24. Lynge E, Andersen A, Nilsson R, Barlow L, Pukkala E, Nordlinder R, Boffetta P, Grandjean P, Heikkila P, Horte LG, Jakobsson R, Lundberg I, Moen B, Partanen T, Riise T. Risk of cancer and exposure to gasoline vapors. Am J Epidemiol. 1997; 145(5): 449-458. May JJ. Occupational hearing loss. Am J Ind Med. 2000; 37: 112-120. McBride DI, Firth HM, Herbison GP. Noise exposure and hearing loss in agriculture: A survey of farmers and farm workers in the Southland region of New Zealand. J Occup Environ Med. 2003; 45(12): 1281-1288. McBride DI, Williams S. Audiometric notch as a sign of noise induced hearing loss. Occup Environ Med. 2001a; 58: 46-51. McBride DI, William S. Characteristics of the audiometric notch as a clinical sign of noise exposure. Scand Audiol. 2001b; 30: 106-111. National Institutes of Health (NIH). Consensus Conference – Noise and hearing loss. JAMA. 1990; 263: 3185-3190. National Institute for Occupational Safety and Health (NIOSH). 1996. National Occupational Research Agenda. US Department of Health and Human Services, Public Health Service, Center for Disease Control and Prevention, Washington, DC. Pierson LL, Gerhardt KJ, Rodriguez GP, Yanke RB. Relationship between outer ear resonance and permanent noise-induced hearing loss. Am J Otolaryngol. 1994; 15(1): 37-40. Pranjic N, Mujagic H, Nurkic M, Karamehic J, Pavlovic S. Assessment of health effects in workers at gasoline station. Bosn J Basic Med Sci. 2002; 2: 35-45. Zwerling C, Whitten PS, Davis CS, Sprince NL. Occupational injuries among older workers with visual, auditory, and other impairments. A validation study. J Occup Environ Med. 1998; 40: 720-723. Manuscript 2: REFERENCES 1. RICKARDS F.W. & DEVIDI S. (1995) Exaggerated hearing loss in noise induced hearing loss compensation claims in Victoria. Med. J. Aust. 163, 360-363 2. BARRS D.M., ALTHOFF L.K., KRUEGER W.W. & OLSSON J.E. (1994) Work related noise induced hearing loss: evaluation including evoked potential audiometry. Otolaryngol. Head Neck Surg. 110, 177-184 3. GLEASON W.J. (1958) Psychological characteristics of the audiological inconsistent patients. Arch. Otolaryngol. Head Neck Surg. 68, 42-46 4. BROOKHOUSER P.E., GORGA M.P. & KELLY W.J. (1990) Auditory brainstem response results as predictors of behavior auditory thresholds in severe and profound hearing impairment. Laryngoscope 100, 803-810 5. KILENY P.R. & MAGATHAN M.G. (1987) Predictive value of ABR in infants and children with moderate to profound hearing impairment. Ear Hear. 8, 217-221 6. FIFER R.C. & SIERRA-IRIZARRY B. (1988) Clinical applications of the auditory middle latency response. Am. J. Otol. 9 (suppl), 47-56 7. JERGER J., OLIVER T. & CHMIEL R. (1988) Auditory middle latency response: a perspective. Semin. Hear. 9, 75-85 8. ALBERTI P.W. (1970) New tools for old tricks. Ann. Otol. Rhinol. Laryngol. 79, 800-807 9. ROSE D.E., KEATING L.W., HEDGECOCK L.D., SCHREURS K.K. & MILLER K.E. (1971) Aspects of aucoustically evoked responses. Arch. Otolaryngol. 94, 347-350 10. HYDE M., ALBERTI P., MATSUMOTO N. & LI Y.L. (1986) Auditory evoked potentials in audiometric assessment of compensation and medico-legal patients. Ann. Otol. Rhinol. Laryngol. 95, 514-519 11. PRASHER D., MULA M. & LUXON L. (1993) Cortical evoked potential criteria in the objective assessment of auditory threshold: a comparison of noise induced hearing loss with Meniere’s disease. J. Laryngol. Otol. 107, 780-786 12. KUWADA S., BATRA R. & MAHER V.L. (1986) Scalp potentials of normal and hearing-impaired subjects in response to sinusoidally amplitude-modulated tones. Hear. Res. 21, 179-192 13. LINS O.G., PICTON, P.E., PICTON T.W., CHAMPAGNE S.C. & DURIEUX-SMITH A. (1995) Auditory steady-state responses to tones amplitude-modulated at 80-110 Hz. J. Acoustic. Soc. Am. 97, 3051-3063 14. RANCE G., RICKARDS F.W., COHEN L.T., DE VIDI S. & CLARK G.M. (1995) The automated prediction of hearing thresholds in sleeping subjects using auditory steady-state evoked potential. Ear Hear. 16, 499-507 15. RANCE G., DOWELL R.C., RICKARDS F.W., BEER D.E. & CLARK G.M. (1998) Steady-state evoked potential and behavioral hearing thresholds in a group of children with absent clicked-evoked auditory brain stem response. Ear Hear. 19, 48-61 16. LINS O.G., PICTON T.W., BOUCHER B.L., DURIEUX-SMITH A., CHAMPAGNE S.C., MORAN L.M., PEREZ-ABALO M.C., MARTIN V. & SAVIO G. (1996) Frequency-specific audiometry using steady-state responses. Ear Hear. 17, 81-96 17. WU H.P., HSU W.C., CHU S.S., CHEN P.R., LIN K.N. & HSU C.J. (2001) Estimation of behavioral hearing thresholds through auditory steady-state evoked potentials. Formosan J. Med. 5, 269-276 18. LINDEN R.D., CAMPBELL K.B., HAMEL G. & PICTON T.W. (1985) Human auditory steady state evoked potentials during sleep. Ear Hear. 6, 167-174. 19. AOYAGI M., KIREN T., KIM Y., SUZUKI Y., FUSE T. & KOIKE Y. (1993) Optimal modulation frequency for amplitude-modulation following response in young children during sleep. Hear. Res. 65, 253-261 20. COHEN L.T., RICKARDS F.W. & CLARK G.M. (1991) A comparison of steady-state evoked potentials to modulated tones in awake and sleeping humans. J. Acoustic. Soc. Am. 90, 2467-2479 Manuscript 3: REFERENCES 1. White TW, Bruzzone R. Multiple connexin proteins in single intercellular channels: connexin compatibility and functional consequences. J Bioenerg Biomembr 1996; 28: 339-50. 2. Xiao Z, Xie D. Deafness genes for nonsyndromic hearing loss and current studies in China. Chin Med J 2002; 115(7): 1078-81. 3. Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Mueller RF, Leigh IM. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 1997; 387: 80-3, 1997. 4. Hwa HL, Ko TM, Hsu CJ, Huang CH, Chiang YL, Oong JL, Chen CC, Hsu CK. Mutation spectrum of the connexin 26 (GJB2) gene in Taiwanese patients with prelingual deafness. Genet Med 2003; 5(3): 161-5. 5. Morell RJ, Kim HJ, Hood LJ, Goforth L, Friderici K, Fisher R, Van Camp G, Berlin CI, Oddoux C, Ostrer H, Keats B, Friedman TB. Mutations in the connexin 26 gene (GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness, N Engl J Med 1998; 339: 1500-5, 1998. 6. Kikuchi T, Kimura R, Paul D, Adams J. Gap junctions in rat cochlea: immunohistochemical analysis. Anat Embryol 1995; 191: 101-18. 7. Lefebvre PP, Van De Water TR. Connexins, hearing and deafness: clinical aspects of mutations in the connexin 26 gene. Brain Res Brain Res Rev. 2002; 32(1): 159-62. 8. Suzuki T, Oyamada M, Takamatsu T. Different regulation of connexin 26 and ZO-1 in cochleas of developing rats and of guinea pigs with endolymphatic hydrops. J Histochem Cytochem 2001; 49: 573-86. 9. Kammen-Jolly K, Ichiki H, Scholtz AW, Gsenger M, Kreczy A, Schrott-Fischer A. Connexin 26 in human fetal development of the inner ear. Hear Res 2001; 160: 15-21. 10. Frenz CM, Van De Water TR. Immunolocalization of connexin 26 in the developing mouse cochlea. Brain Res Rev 2000; 32: 172-80. 11. Lefebvre PP, Weber T, Rigo JM, Delree P, Leprince P, Moonen G. Potassium-induced release of an endogenous toxic activity for outer hair cells and auditory neurons in the cochlea: a new pathophysiological mechanism in Meniere’s disease? Brain Res 1990; 47: 83-93. 12. Konishi T, Salt AN, Hamrick PE. Effects of exposure to noise on ion movement in guinea pig cochlea. Hear Res 1979; 1(4): 325-42. 13. Melichar I, Syka J, Ulehlova L. Recovery of the endocochlear potential and K+ concentrations in the cochlear fluids after acoustic trauma. Hear Res 1980; 2: 55-63. 14. Ichimiya I, Adams JC, Kimura RS. Changes in immunostaining of cochleas with experimentally induced endolymphatic hydrops. Ann Otol Rhinol Laryngol 1994; 103: 457-68. 15. Hsu CJ, Shau WY, Chen YS, Liu TC, Lin-Shiau SY. Activities of Na+, K+-ATPase and Ca2+-ATPase in cochlear lateral wall after acoustic trauma. Hear Res 2000; 142: 203-11. 16. Hsu CJ, Chen YS, Shau WY, Yeh TH, Lee SY, Lin-Shiau SY. Impact of activities of Na+, K+-ATPase and Ca2+-ATPase in the cochlear lateral wall on recovery from noise-induced temporary threshold shift. Ann Otol Rhinol Laryngol 2002; 111(9): 842-9. 17. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem 1985; 150: 76-85. 18. Kemperman MH, Hoefsloot LH, Cremers CWRJ. Hearing loss and connexin 26. J R Soc Med 2002; 95: 171-7. 19. Konishi T, Salt AN. Electrochemical profile for potassium ions across the cochlear hair cell membranes of normal and noise-exposed guinea pigs. Hear Res 1983; 11: 219-33. 20. Li W, Zhao L, Jiang S, Gu R. Effects of high intensity impulse noise on ionic concentrations in cochlear endolymph of the guinea pigs. Chin Med J 1997; 110: 883-6. 21. Kikuchi T, Kimura RS, Paul DL, Takasaka T, Adams JC. Gap junction systems in the mammalian cochlea. Brain Res Brain Res Rev 2000; 32: 163-6. Manuscript 4: References Attias J, Horovitz G, El-Hatib N, Nageris B: Detection and clinical diagnosis of noise-induced hearing loss by otoacoustic emissions. Noise Health 2001; 3:19-31. Bozovic D, Hudspeth, A J: Hair-bundle movements elicited by transepithelial electrical stimulation of hair cells in the sacculus of the bullfrog. Proc Natl Acad Sci U S A 2003; 100, 958-963. Burian M, Gstoettner W, Zundritsch R: Saccular afferent fibers to the cochlear nucleus in the guinea pig. Arch Otorhinolaryngol 1989; 246:238-241. Cazals Y, Aran JM, Erre JP, Guilhaume A: Acoustic responses after total destruction of the cochlear receptor: brainstem and auditory cortex. Science 1980; 210:83-86. Colebatch JG, Halmagyi GM, Skuse NF: Myogenic potentials generated by a click-evoked vestibulocollic reflex. J Neurol Neurosurg Psychiatry 1994; 57:190-197. Didier A, Cazals Y: Acoustic responses recorded from the saccular bundle on the eighth nerve of the guinea pigs. Hear Res 1989; 37:123-128. Eatock RA, Corey DP, Hudspeth AJ: Adaptation of mechanoelectrical transduction in hair cells of the bullfrog’s sacculus. J Neurosci 1987; 7, 2821-2836. Gao W, Ding D, Zheng X, Ruan F, Liu Y: A comparison of changes in the stereocilia between temporary and permanent hearing losses in acoustic trauma. Hear Res 1992; 62:27-41. Halmagyi GM, Curthoys IS, Colebatch JG, Aw ST: Vestibular responses to sound. Ann NY Acad Sci 2005; 1039:54-67. Hsu CJ, Shau WY, Chen YS, Liu TC, Lin-Shiau SY: Activities of Na+, K+-ATPase in cochlear lateral wall after acoustic trauma. Hear Res 2000; 142:203-211. Hsu WC, Wang JD, Hsu CJ, Lee SY, Yeh TH: Expression of connexin 26 in the lateral wall of the rat cochlea after acoustic trauma. Acta Otolaryngol 2004; 124:459-463. Kevetter GA, Perachio AA: Projections from the sacculus to the cochlear nuclei in the Mongolian gerbil. Brain Behav Evol 1989; 34:193-200. Liberman MC, Dodds LW: Acute ultrastructural changes in acoustic trauma: Serial-section reconstruction of stereocilia and cuticular plates. Hear Res 1987; 26:45-64. Lim D J: Effects of noise and ototoxic drugs at the cellular level in the cochlea; a review. Am J Otolaryngol 1986; 7:73-99. Lowenstein O, Roberts TDM: The localization and anamysis of the responses to vibration from the isolated elasmobranch labyrinth. A contribution to the problem of the evolution of hearing in vertebrates. J Physiol (Lond) 1951; 114:471-489. McCabe BF, Lawrence M: The effects of intense sound on the non-auditory labyrinth. Acta Otolaryngol 1958; 49:147-57. McCue MP, Guinan JJ: Acoustically responsive fibres in the vestibular nerve of the cat. J Neurosci 1994; 14:6058-6070. Perez R, Freeman S, Cohen D, Sohmer H: Functional impairment of the vestibular end organ resulting from impulse noise exposure. Laryngoscope 2002; 112:1110-1114. Saidel WM, Popper AN: The saccule may be the transducer for directional hearing of nonostariophysine teleosts. Exp Brain Res 1986; 50:149-152. Shupak A, Bar-EL E, Podoshin L, Spitzer O, Gordon CR, Ben-David J: Vestibular findings associated with chronic noise induced hearing impairment. Acta Otolaryngol (Stockh) 1994; 114:579-585. Von Bekesy GV: Uber akustische Reizung des Vestibularapparates. Pflugers Arch Gesamt Physio Mensche Tiere 1935; 236:59-76. Yang TH, Young Y-H: Click-evoked myogenic potentials recorded on aleart guinea pigs. Hear Res 2005; 205:277-283. Ylikoski J, Juntunen J, Matikainen E, Ylikoski M, Ojala M: Subclinical vestibular pathology in patients with noise-induced hearing loss from intense impulse noise. Acta Otolaryngol (Stockh) 1988; 105:558-563. Young ED, Fernandez C, Goldberg JM: Responses of squirrel monkey vestibular neurons to audiofrequency sound and head vibration. Acta Otolaryngol 1977; 84:352-360. Manuscript 5: References 1. ACOEM Noise and Hearing Conservation Committee. ACOEM evidence-based statement: noise-induced hearing loss. J Occup Environ Med 2003; 45: 579-81. 2. Ylikoski J, Juntunen J, Matikainen E, Ylikoski M, Ojala M. Subclinical vestibular pathology in patients with noise-induced hearing loss from intense impulse noise. Acta Otolaryngol 1988; 105:558-63. 3. Clark WW. Noise exposure from leisure activities: a review. J Acoust Soc Am 1991; 90: 175-81. 4. Tschopp K, Probst R. Acute acoustic trauma. A retrospective study of influencing factors and different therapies in 268 patients. Acta Otolaryngol 1989; 108: 378-84. 5. Young ED, Fernandez C, Goldberg JM. Responses of squirrel monkey vestibular neurons to audiofrequency sound and head vibration. Acta Otolaryngol 1977; 84: 352-60. 6. Cazals Y, Aran JM, Erre JP, Guilhaume A. Acoustic responses after total destruction of the cochlear receptor : brainstem and auditory cortex. Science 1980; 210: 83-6. 7. McCue MP, Guinan JJ. Acoustically responsive fibres in the vestibular nerve of the cat. J Neurosci 1994; 14: 6058-70. 8. Shupak A, Bar-el E, Podoshin L, et al. Vestibular findings associated with chronic noise induced hearing impairment. Acta Otolaryngol 1994; 114: 579-85. 9. Colebatch JG, Halmagyi GM, Skuse NF. Myogenic potentials generated by a click-evoked vestibulocollic reflex. J Neurol Neurosurg Psychiatry 1994; 57: 190-7. 10. Uchino, Y., Sato, H., Sasak, M., et al. Sacculocollic reflex arcs in cats. J Neurophysiol 1997; 77: 3003-12. 11. Wu CL, Young Y-H. Vestibular evoked myogenic potentials in acute low-tone sensorineural hearing loss. Laryngoscope 2004; 114: 2172-5. 12. Wang YP, Young Y-H. Experience in the treatment of sudden deafness during pregnancy. Acta Otolaryngol 2006; 126: 271-6. 13. Chen CH, Young Y-H. Vestibular evoked myogenic potentials in brainstem stroke. Laryngoscope 2003; 113:990-3. 14. Watson SRD, Halmagyi M, Colebatch J. Vestibular hypersensitivity to sound (Tullio phenomenon). Structural and function assessment. Neurology 2000; 54: 722-8. 15. Minor LB. Clinical manifestations of superior semicircular canal dehiscence. Laryngoscope 2005; 115: 1717-27. 16. Halmagyi GM, Curthoys IS, Colebatch JG, Aw ST. Vestibular responses to sound. Ann NY Acad Sci 2005; 1039: 54-67. 17. Goldberg JM. Afferent diversity and the organization of central vestibular pathways. Exp Brain Res 2000; 130: 277-97. 18. Lim DJ. Effects of noise and ototoxic drugs at the cellular level in the cochlea: a review. Am J Otolaryngol 1986; 7: 73-99. 19. Hamernik RP, Turrentine G, Roberto M, Salu R, Henderson D. Anatomical correlates of impulse noise-induced mechanical damage in the cochlea. Hear Res 1984; 13: 229-47. 20. McCabe BF, Lawrence M. The effects of intense sound on the non-auditory labyrinth. Acta Otolaryngol 1958; 49: 147-57. 21. Parving A, Bak-Pedersen K. Clinical findings and diagnostic problems in sensorineural low frequency hearing loss. Acta Otolaryngol 1978; 85: 184-90. 22.McGill TJI, Schuknecht HF. Human cochlear changes in noise induced hearing loss. Laryngoscope 1976: 86: 1293-302. 23. Shea JJJr, Ge X, Orchik DJ. Traumatic endolymphatic hydrops. Am J Otol 1995; 16: 235-40. 24. Ylikoski J. Impulse noise unduced damage in the vestibular end organs of the guinea pigs. Acta Otolaryngol 1987; 103: 415-21. 25. Murata K, Araki S, Aono H. Central and peripheral nervous system effects of hand-arm vibrating tool operation. A study of brainstem auditory-evoked potential and peripheral nerve conduction. Int Arch Occup Environ Health 1990; 62: 183-7. 26. Smoorenburg GF. Risk of noise-induced hearing loss following exposure to Chinese firecrackers. Audiology 1993; 32: 333-43. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32897 | - |
| dc.description.abstract | 職業性與環境性噪音所引起的聽力損失,長久以來,一直是後天性感覺神經性聽力損失的最重要一環;更是造成近年來全球性聽力損失疾病負擔的最主要原因之一。本論文結合環境與職業醫學和耳鼻喉科學的觀點,從職業場所的噪音危害評估、勞工的聽力保護、職業病鑑定;進而利用動物實驗基礎模型,以電生理學和分子生物學方法,研究噪音性聽力損失的機轉,以及噪音對於平衡系統的影響。
工作場所的噪音,一直是自工業革命以來,職業醫學中不容忽視的一環。不僅是噪音的來源無所不在,噪音性聽力損失的臨床診治,也一直困擾著耳鼻喉科醫師與職業病醫師。預防重於治療的公共衛生觀點,讓我們將聽力保護的觀念推廣到醫院以外的職場。藉由與某石油公司的合作,我們進行了一個橫斷面的研究,並根據此資料的分析得知,噪音性聽力損失在加油站男性勞工的高頻率區聽力圖表現,以6k Hz凹陷為最多,4k Hz凹陷其次;其危險因子主要為年齡及噪音暴露。並且,環境評估的個人噪音八小時累計音壓逼近一般所建議的85 dBA;頻譜分析顯示,主要的噪音源分布於500 Hz~4k Hz。 職業病鑑定是職業醫學訓練中的重要課題,如何準確而客觀的評估噪音對於勞工聽力的損害一直是聽力學上的挑戰之一。近年來,隨著醫療科技的精進,能夠客觀性評估聽覺功能的聽力檢查儀器推陳出新,譬如:耳聲傳射、聽性穩定狀態誘發電位聽力檢查等;除了讓我們可以更為客觀而準確的判斷勞工聽力損失的閾值之外;並且,更能提供臨床上職業醫學門診及耳鼻喉科醫師專業上,客觀而可信賴的鑑別診斷工具,特別是一些有爭議的職業病鑑定或是勞工殘廢補償判定時的詐聾案例。因此,藉由醫學中心職業病門診的噪音性聽力損失案例,結合耳鼻喉科與聽力學的專業知識,我們發現能夠提供臨床醫師客觀判斷勞工聽力閾值的新工具 “聽性穩定狀態誘發電位聽力檢查”。 噪音性聽力損失的基本分子機轉,一直是基礎耳科學研究中的熱門話題;因為,藉由基礎實驗的探討,不僅能讓臨床醫師更了解疾病的病理機制,更有機會能從這些基礎研究中,尋找治療噪音性聽力損失的契機。於是採用動物實驗模式,進行內耳耳蝸細胞的基礎實驗,發現耳蝸側壁細胞中,富含與先天性聽障基因有關的Connexin 26蛋白質;並且,經過噪音的急性刺激後,會有明顯的增加。可見Connexin 26蛋白基因,可能不只與先天性的遺傳性聽障有關,在後天性的噪音性聽力損失機轉中,仍有其重要地位。 噪音對於內耳系統的影響,除了表現出聽覺喪失外,還有不易察覺的平衡障礙。由於中樞系統的代償作用,往往使得這些平衡失調現象,潛藏在臨床症狀之下。近年來,藉由前庭誘發肌性電位的發展,提供了臨床醫師得以直接紀錄,並偵測內耳球囊頸肌反射的絕佳工具。所以,先採用動物實驗模式進行噪音刺激後天竺鼠前庭誘發肌性電位變化的研究;並進而在臨床上,驗證於急性音響外傷患者的變化。結果發現噪音對於天竺鼠及人類前庭功能的影響,有類似聽覺耳蝸系統的暫時性及永久性喪失之經時變化;而且,平衡系統的回復,早於聽覺系統的回復,可成為未來聽性外傷後,患者聽力是否可以回復的一項指標。 所以,本論文包括五部份: 第一部分以環境醫學觀點:研究男性加油站加油員高頻率凹陷型聽力圖的發生率及其危險因子 第二部分以職業醫學觀點:研究以聽性穩定狀態誘發電位聽力檢查作為客觀評估噪音性聽力損失者實際聽力閾值的工具 第三部分以分子生物學觀點:研究Connexin 26在天竺鼠耳蝸側壁經噪音聽性外傷刺激後的變化 第四部份以電生理學觀點:研究天竺鼠經急性音響外傷後前庭誘發肌性電位的永久性與暫時性變化 第五部份以臨床醫學觀點:研究急性音響外傷後患者之前庭誘發肌性電位的臨床表現 | zh_TW |
| dc.description.abstract | Hearing loss from occupational and environmental noise exposures remains the most significant causes of acquired sensorineural hearing loss in the world. The majority of global disease burden from hearing loss is attributed to occupational and environmental noise worldwide.
As recent medico-technological advancements of audiological battery in the objectively hearing assessment, such as otoacoustic emission, auditory steady state evoked potential, we could identify more objectively the hearing threshold level of workers, who suffered from hearing impairment. On the other hand, occupational clinician and otolaryngologist could also take this advantage to differentiate those workers who intended to malinger for occupational compensation or medico-legal issues. Moreover, although the 4k Hz dip was well known as the clinical sign of audiometry for noise-induced hearing loss and 85 dBA was well accepted for recommended permission exposure level in modern industry, we further investigate the major determinants of risk factors on high frequency notch audiogram among male gasoline distribution workers in Taiwan. With new understanding of mechanistic insights in noise-induced hearing loss from animal laboratory, we can identify the safe and effective interventions that provide scientific rationale to eliminate this most important cause of acquired hearing loss. Such as the role of gap junction protein, connexin 26, in the lateral wall of cochlea, this has been proved to be related to congenital and hereditary deafness. Moreover, a new electrophysiological tool, vestibular evoked myogenic potential, was applied in animal model of noise-induced hearing loss to assess objectively the permanent and temporary damages of vestibular system in inner ear after acoustic trauma. Here we present an update review and propose new tools to identify noise-induced hearing loss in epidemiological aspects from human workplaces exposure of male gasoline distribution workers in a petrochemical company in Taiwan. Besides, the pathophysiology of acute acoustic injury to inner ear, both cochlear and vestibular systems, was investigated by electrophysiological instruments and molecular biological techniques in animal experimental models, then applied to human subjects with acute acoustic trauma. There were five domain parts included in this thesis: Part I: Environmental perspective - Prevalence and determinants of high frequency audiometric notch in male gasoline distribution workers. Part II: Occupational perspective - Objective assessment of auditory thresholds in noise-induced hearing loss using steady-state evoked potentials. Part III: Molecular biological perspective - Expression of connexin 26 in the lateral wall of rat cochlea after acoustic trauma. Part IV: Electrophysiological perspective - Temporary and permanent loss of vestibular evoked myogenic potentials after acute acoustic trauma in guinea pigs. Part V: Clinical perspective - Vestibular evoked myogenic potentials in acute acoustic trauma | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:18:27Z (GMT). No. of bitstreams: 1 ntu-95-F90841001-1.pdf: 9861372 bytes, checksum: bd890a57e48d6adb8deae19d543f04e8 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Table of Contents
中文摘要 3 ABSTRACT 6 OVERALL RESEARCH 9 1. 研究背景 (Background) 10 2. 研究架構 (Overall framework) 10 3. 研究結果 (Overall findings) 11 4. 研究限制 (Limitation) 15 5. 未來研究 (Future works) 17 FIVE MANUSCRIPTS 20 1. Prevalence and determinants of high frequency audiometric notch in male gasoline distribution workers 21 2. Objective assessment of auditory thresholds in noise-induced hearing loss using steady-state evoked potentials (Clinical Otolaryngology 2003; 28: 195-198) 49 3. Expression of connexin 26 in the lateral wall of rat cochlea after acoustic trauma (Acta Otolaryngologica, 2004; 124: 459-463) 53 4. Temporary and permanent loss of vestibular evoked myogenic potential in guinea pigs 58 5. Vestibular evoked myogenic potentials in acute acoustic trauma (Otology & Neurotology, 2006, in press) 86 APPENDIX 92 | |
| dc.language.iso | zh-TW | |
| dc.subject | 噪音性聽力損失 | zh_TW |
| dc.subject | 聽性外傷 | zh_TW |
| dc.subject | 聽性穩定狀態誘發電位聽力檢查 | zh_TW |
| dc.subject | 前庭誘發肌性電位 | zh_TW |
| dc.subject | gasoline distribution worker | en |
| dc.subject | noise-induced hearing loss (NIHL) | en |
| dc.subject | acoustic trauma | en |
| dc.subject | steady-state evoked potential (SSEP) | en |
| dc.subject | connexin (Cx) | en |
| dc.subject | vestibular evoked myogenic potential (VEMP) | en |
| dc.title | 職業性噪音性聽力損失:從職場暴露到動物實驗 | zh_TW |
| dc.title | Occupational Noise-induced Hearing Loss: From workplace exposure to animal experiment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 楊怡和(Yi-Ho Young),許權振(Chuan-Jen Hsu),詹長權(Chang-Chuan Chan),劉殿禎(Tien-Chen Liu) | |
| dc.subject.keyword | 噪音性聽力損失,聽性外傷,聽性穩定狀態誘發電位聽力檢查,前庭誘發肌性電位, | zh_TW |
| dc.subject.keyword | noise-induced hearing loss (NIHL),acoustic trauma,steady-state evoked potential (SSEP),connexin (Cx),vestibular evoked myogenic potential (VEMP),gasoline distribution worker, | en |
| dc.relation.page | 105 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-25 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 職業醫學與工業衛生研究所 | zh_TW |
| 顯示於系所單位: | 職業醫學與工業衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 9.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
