請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32896
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 宋家驥(Chia-Chi Sung) | |
dc.contributor.author | Yen-Wen Chang | en |
dc.contributor.author | 張彥文 | zh_TW |
dc.date.accessioned | 2021-06-13T04:18:25Z | - |
dc.date.available | 2011-07-29 | |
dc.date.copyright | 2011-07-29 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-27 | |
dc.identifier.citation | [1] Hofmann-Wellenhof, B.; Lichtenegger, H.; Collins, J., “Global Positioning System: Theory and Practice”, J. Springer, Wien (Austria), 347p., ISBN 3-211-82477-4. ISBN 0-387-82477-4 (USA) , 1993.
[2] 李俊賢,“無限感測網路與ZigBee協定簡介”, 電信國家型科學計畫, 77期, 2006. [3] Krysztof W. Kolodziej; Johan Hjelm, “Local Positioning Systems: LBS Applications and Services” , Taylor and Francis, 463p, ISBN:1420005006, 2006. [4] Chong Wang; Hongyi Wu; Nian-Feng Tzeng, “RFID-Based 3-D Positioning Schemes”, INFOCOM 2007. 26th IEEE International Conference on Computer Communications, 1235-1243, 2007. [5] Bandara U.; Hasegawa M.; Inoue M.; Morikawa H.; Aoyama T., “Design and Implementation of Bluetooth based Indoor Location-sensing System”, Joho Shori Gakkai Kenkyu Hokoku, no. 4, 9-16, 2004. [6] Ahuja David Cooper; Hardy Andrew; Kanji Imran, “A Bluetooth Based Local Positioning System”, University of Guelph, Proceedings of the ENGG 3100: Design III projects, 2007. [7] Karim Khalil; Hiroshi Mizuno; Ken Sasaki; Hiroshi Hosaka; Pierre Maret, “Bluetooth Indoor Positioning and Ambient Information System”, Developing Ambient Intelligence, 133-142, 2008. [8] Jing-Chi Lin, “Analysis of the Quality of Service in Indoor Positioning Systems”, Master dissertation, NCKU Electrical Engineering, 2005, [9] KunChou Lee; JhihSian Ou; MinChih Huang, “Underwater acoustic localization by principal components analysesbased probabilistic approach”, Applied Acoustics, vol. 70, Issue 9, 1168-1174, 2009. [10] Thanos Manesis ; Nikolaos Avouris, “Survey of Position Location Techniques in Mobile Systems ', Proceedings of the 7th international conference on Human computer interaction with mobile devices & services, ACM International Conference Proceeding Series, Vol. 111, 291-294,2005. [11] Hui Liu; Darabi H.; Banerjee P.;Jing Liu, “Survey of Wireless Indoor Positioning Techniques and Systems”, Systems, Man and Cybemetics, Part C: Applications and Reviews, vol. 37 , Issue 6,1067-1080, 2007. [12] Jeffrey Hightower; Gaetano Borriello, “A Survey and Taxonomy of Location Systems for Ubiquitous Computing”, IEEE Computer, vol. 34,57-66, 2001. [13] Real-Time Systems Lab, KNU, “Indoor position detection technology” [14] Haiyong Luo; Jintao Li; Zhenmin Zhu; Fang Zhao; Yimin Lin, “Mobile Target Localization in Wireless Sensor Networks”, Wireless Communications Networking and Mobile Computing, 1-6 , 2008. [15] R. N. Aguilar; H. M. M. Kerkvliet.; G.C.M. Meijer, “High-Resolution Low-Cost Ultrasonic Tracking System for Human-Interface Systems”, Instrumentation and Measurement Technology Conference, IMTC. Proceedings of the IEEE , 878-882, 2005. [16] 張鵬, “Indoor Position Detection by CDMA-like Method on Modulated Ultrasonic Wave”, Master dissertation, 早稲田大学大学院情報生産システム研究科, 2008. [17] Andy Harter; Andy Hopper; Pere Steggles; Andy Ward; Paul Webster, “The Anatomy of a Context-Aware Application”, Wireless Networks, vol. 8, 187-197, 2001. [18] 馮若; 姚錦鐘; 關立勳, “超聲手冊”, 南京大學出版社, ISBN:7305033545 , 1999. [19] Bass,H. E.; Sutherland, L. C.; Zuckerwar, A. J., “Atmospheric absorption of sound - Update”, Acoustical Society of America Journal, vol. 88, 2019-2021, 1990. [20] 林景頎, “Analysis of the Quality of Service in Indoor Positioning Systems”, Master dissertation, 國立成功大學電機工程學系, 2006. [21] Ajay Mahajan; Maurice Walworth, “3D Position Sensing Using the Differences in the Time-of-Flights from a Wave Source to Various Receivers”, IEEE Transactions on Robotics and Automation, vol. 17, no. 1, 91-94, 2001. [22] Huawei Chen; Junwei Zhao, “On locating low altitude moving targets using a planar acoustic sensor array”, Applied Acoustics, vol. 64, Issue 11, 1087-1101, 2003. [23] T. Li; W. Ser, “Three dimensional acoustic source localization and tracking using statistically weighted hybrid particle filtering algorithm”, Signal Processing, vol. 90, Issue 5, 1700-1719, 2010. [24] Ajay Mahajan; Fernando Figueroa, “An automatic self-installation and calibration method for a 3D position sensing system using ultrasonics ”, Robotics and Autonomous System, vol. 28, Issue 4, 281-294, 1999. [25] Adrian N. Bishop; Barrs Fidan; Kutluyil Dogancay; Brian D.O. Anderson; Pubudu N. Pathirana, “Exploiting geometry for improved hybrid AOA/TDOA-based localization”, Signal Processing, vol. 88, Issue 7, 1775-1791, 2008. [26] Tao Han; Xiaochun Lu; Qi Lan, “Pattern recognition based Kalman filter for indoor localization TDOA algorithm”, Applied Mathematical Modelling, vol. 34, Issue 10, 2893-2900, 2010. [27] Stephen M. Williams; Kenneth D. Frampton; Isaac Amundson; Peter L. Schmidt, “Decentralized acoustic source localization in a distributed sensor network”, Applied Acoustics, vol. 67, Issue 10, 996-1008, 2006. [28] S. Bourennane; A. Bendjama, “Locating wide band acoustic source using higher order statisitcs”, Applied Acoustics, vol. 63, no. 3, 235-251, 2002. [29] Herbert Schweinzer; Georg Kaniak, “Ultrasonic device localizatioin and its potential for wireless sensor network security”, Control Engineering Practice, vol. 18, Issue 8, 852-862, 2010. [30] K. C. Ho; Y. Y. Chan. “Solution and performance analysis of geolocation by TDOA”, IEEE TRANCACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, vol. 29, no. 4, 1311-1322, 1993. [31] Jaegeol Yim; Chansik Park; Chansik Joo; Seunghwan Jeong, “Extended Kalman filter for wireless LAN based indoor positioning”, Decision Support Systems, vol. 45, Issue 4, 960-971, 2008. [32] Christoph Fuchs; Nils Aschenbruck; Peter Martini; Monika Wieneke, “A survey on indoor tracking for mission critical scenarios”, Pervasive and Mobile Computing, vol. 7, Issue 1, 1-15, 2011. [33] Jinsong Zhang; Malaka Walpola; David Roelant; Hao Zhu; Kang Yen, “Self-organization of unattended wireless acoustic sensor networks for ground target tracking”, Pervasive and Mobile Computing, vol. 5, Issue 2, 148-164, 2009. [34] Elliott D. Kaplan; Christopher J. Hegarty, “Understanding GPS, principles and applications”, Artech House, ISBN-10:1580538940, 2006. [35] Manolakis D. E., “Efficient solution and performance analysis of 3D position estimation by trilateration”, Aerospace and Electronic Systems, IEEE Transactions on, vol. 32, Issue 4, 1239-1248, 1996. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32896 | - |
dc.description.abstract | 在無線感測網路的領域內,室內定位系統是一個重要的研究課題,本論文建立一個三維超音波定位系統,由五個超音波接收換能器配合訊號處理所構成,其硬體架構簡單且造價便宜。並以到達時間差計算法為基礎,根據本研究所建立的系統加以改進,提出創新的定位計算公式,此計算公式是根據四個訊號接收的時間差進一步推算出未知目標的位置,比起原本的計算方程式更加的簡單,讓定位系統更加穩健。在決定訊號時間的過程,不同於傳統的最大值時間法,本研究提出新的50%~90%振幅時間法來決定訊號的時間點,比最大值時間法所得到的時間更加精確。建立的系統透過不同的接收陣列大小以及不同的訊號時間法來做性能測試,從結果可以得知上面提出的新方程式和決定訊號方法能成功的運作使用,最後分析本系統對不同方位聲源的誤差以及標準差,觀察定位系統運作的可靠區域範圍。 | zh_TW |
dc.description.abstract | This work established a 3-D ultrasonic position measurement system which is composed of five ultrasonic transducers. The signal processing method is based on acoustic time-difference-of-arrival (TDOA) and improved according to our positioning system. A new algorithm of four differences of arrival time to locate the unknown acoustic source was used. Compare to the original algorithm, our method is simpler and of higher reliability. Our method of time signal processing is different from the traditional one which fetch the time signal correspond to maximum signal amplitude. We presented a new method with higher accuracy of fetching the average time correspond to 50%~90% amplitude of signal. The experimental positioning system was established with different receiver array size and different time acquisition method. The experiment results, confirm that our system using new algorithm and new time acquisition method is well operated. Finally we analyzed the system performance by examining the error percentages and standard deviation of arbitrary source locations. The highly reliable spatial region in which the location performance is well was then identified. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T04:18:25Z (GMT). No. of bitstreams: 1 ntu-100-R98525058-1.pdf: 1538621 bytes, checksum: 9314fa13870d8629c69cbf5221358cf2 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 目錄 Ⅰ
中文摘要 Ⅲ 英文摘要 Ⅳ 圖目錄 Ⅴ 表目錄 Ⅶ 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究背景與文獻回顧 3 1.2.1 室內定位系統簡介 3 1.2.2 室內定位方法與科技 4 1.2.3 現有的室內定位系統 6 1.3 論文架構與介紹 8 第二章 理論基礎 9 2.1 超音波理論 9 2.1.1 聲波方程式 10 2.1.2 傳播速度 12 2.1.3 反射與折射 14 2.1.4 衰減 15 2.2 定位理論 17 2.2.1 基於幾何關係的定位演算法 17 2.2.1.1 距離量測之定位法 17 2.2.1.1 角度量測之定位法 21 2.2.2 基於環境特徵的定位演算法 22 2.2.3 改良到達時差法 23 2.3 訊號時間法理論 29 第三章 量測系統與實驗架構 33 3.1 超音波換能器 33 3.1.1 壓電效應概論 33 3.1.2 壓電換能器結構 37 3.1.3 換能器聲場與特徵 39 3.2 其他實驗裝置 43 3.3 實驗架構 46 3.3.1 定位系統架構 46 3.3.2 訊號處理流程 48 3.3.3 實驗流程 51 3.3.3.1 定位系統最佳化實驗 51 3.3.3.2 不同位置的定位實驗 52 第四章 實驗結果與討論 54 4.1 定位系統最佳化實驗 54 4.1.1 接收換能器陣列規模實驗 54 4.1.2 訊號時間法實驗 60 4.1.3 發射Burst訊號週期實驗 60 4.2 不同位置的定位實驗 65 第五章 結論與未來展望 75 5.1 結論 75 5.2 未來展望 76 參考文獻 77 | |
dc.language.iso | zh-TW | |
dc.title | 改良到達時差法三維超音波定位系統及誤差分析 | zh_TW |
dc.title | Improvement and Performance Analysis of 3-D Localization TDOA System | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 涂季平,羅如燕,李坤彥 | |
dc.subject.keyword | 室內定位系統,超音波,到達時差法, | zh_TW |
dc.subject.keyword | indoor localization,ultrasonic,time difference of arrival, | en |
dc.relation.page | 80 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2011-07-28 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 1.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。