請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32891
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳紀聖 | |
dc.contributor.author | Tzu-Hua Wu | en |
dc.contributor.author | 吳姿樺 | zh_TW |
dc.date.accessioned | 2021-06-13T04:18:17Z | - |
dc.date.available | 2007-07-25 | |
dc.date.copyright | 2006-07-25 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-24 | |
dc.identifier.citation | 1.藍啟仁,二氧化碳的利用與相關化學處理技術發展的現況,台電工程月刊572期 (1996),第42-55頁。
2.陳誠亮,化學品與化工製程之安全、衛生、環保。 3.N. Getoff, G. Scholes, and J. Weiss, Reduction of carbon dioxide in aqueous solutions under the influence of radiation, Tetrahedron Letters,1 (1960) 17-23. 4.B. Åkermark, U. Eklund-westlin, P. Baeckstrom., and R. Lof, Photochemical, metal-promoted reduction of carbon dioxide and formaldehyde in aqueous solution, Acta Chemica Scandinavica B: Organic Chemistry and Biochemistry, 34 (1980) 27-34. 5.P. G. Russel, N. Kovac, S. Sirinivasan, M. Steinberg, The electrochemical reduction of carbon dioxide, formic acid, and formaldehyde, Journal of the Electrochemical Society, 124 (1977) 1329-1340. 6.R. Hinogami, Y. Nakamura, S. Yae, Y. Nakato, An approach to ideal semiconductor electrodes for efficient photoelectrochemical reduction of carbon dioxide by modification with small metal particles, Journal of Physical Chemistry, 102 (1998) 974-980. 7.T. Sakata, T. Kawai, Photosynthesis and photocatalysis with semiconductor powders, edited by M. Gratzel, Energy Resources through Photochemistry and Catalysis, 1st ed., Academic press, New York, 331 (1983). 8.V. Balzani, F. Scandola, Light-Induced and Thermal Electron- Transfer Reactions, edited by M. Gratzel, Energy Resources through Photochemistry and Catalysis, 1st ed., Academic press, New York, 2 (1983). 9.M. Halmann, Photochemical Fixation of Carbon Dioxide, edited by M. Gratzel, Energy Resources through Photochemistry and Catalysis”, 1st ed., Academic press, New York, 507 (1983). 10.B. G. Kyle, Chemical and Process Thermodynamics, 3rd ed., Prentice-Hall (1999). 11.T. Sumita, T. Yamaki, S. Yamamoto, A. Miyashita, Photo-induced surface charge separation of highly oriented TiO2 anatase and rutile thin films, Applied Surface Science, 200 (2002) 21-26. 12.H. Yoneyama, Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution, Catalysis Today, 39 (1997) 169-175. 13.A. L. Linsebigler, G. Lu, J. T. Yates, Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results, Chemical Reviews, 95 (1995) 735-758. 14.T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, Nature, 277 (1979) 637-638. 15.K. Adachi, K.Ohta, T. Mizuno, Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide, Solar Energy 53, 2 (1994) 187-190. 16.S. Kaneco, H. Kurimoto, K. Ohta, T. Mizuno, A. Saji, Photocatalytic reduction of CO2 using TiO2 powders in liquid CO2 medium, Journal of Photochemistry and Photobiology A: Chemistry, 109 (1997) 59-63. 17.T. Mizuno, K. Adachi, K. Ohta, A. Saji, Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions, Journal of Photochemistry and Photobiology A: Chemistry, 98 (1996) 87-90. 18.A. Henglein, M. Gutierez, C. Fisher, Berichte der Bunsen-Gesellschaft fur physikalische Chemie, 88 (1984) 1704. 19.S. Ichikawa, Chemical conversion of carbon dioxide by catalytic hydrogenation and room temperature photoelectrocatalysis, Energy Conversion and Management, 36 (1995) 613-621. 20.T. F. Xie, D. J. Wang, L. J. Zhu, T. J. Li, Y. J. Xu, Application of surface photovoltage technique in photocatalysis studies on modified TiO2 photo-catalysts for photo-reduction of CO2, Materials Chemistry and Physics, 70 (2001) 103-106. 21.Y. Kohno, H. Hayashi, S. Takenaka, T. Tanaka, T. Funabiki, S. Yoshida, Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2, Journal of Photochemistry and Photobiology A: Chemistry, 126 (1999) 117-123. 22.J. Zhang, T. Ayusawa, M. Minagawa, K. Kingawa, H. Yamashita, M. Matsuoka, M. Anpo, Investigations of TiO2 Photocatalysts for the Decomposition of NO in the Flow System, Journal of Catalysis, 198 (2001) 1-8. 23.高濂,鄭珊,張青紅著,奈米光觸媒,五南圖書出版社 (2004),第35-46頁。 24.E. M. Levin, C. R. Robbins, H. F. McMurdie, M. K. Reser, Phase diagrams for ceramists, The American Ceramic Society, inc. 76 (1975) 4150-4999. 25.M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chemical Reviews, 95 (1995) 69-96. 26.A. Fujishima, T. N. Rao, D. A. Tryk, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1 (2000) 1-21. 27.H. Yamashita, H. Nishiguchi, N. Kamada, M. Anpo, Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts, Research on Chemical Intermediates, 20, 8 (1994) 815-823. 28.S. A. Bilmes, P. Mandelbaum, Surface and electronic structure of titanium dioxide photocatalysts, Journal of Physical Chemistry B, 104 (2000) 9851-9858. 29.L. Brus, Electronic wave function in semiconductor clusters: experiment and theory, Journal of Physical Chemistry, 90 (1986) 2555-2560. 30.L. Brus, Electron–electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state, Journal of Physical Chemistry, 80 (1984) 4403-4409. 31.R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Light-induced amphiphilic surfaces, Nature, 388 (1997) 431-432. 32.T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, K. Hashimoto, Photocatalystic activity and photoinduced hydrophilicity of titanium dioxide coated glass, Thin Solid Films, 351 (1999) 260-263. 33.Z. Zhang, C-C Wang, R. Zakaria, J. Y. Ying, Role of particle size in nanocrystalline TiO2-based photocatalysts, Journal of Physical Chemistry B, 102 (1998) 10871-10884. 34.曾怡享,奈米金屬氧化鈦觸媒光催化還原二氧化碳,國立台灣大學博士論文,2003,第217-219頁。 35.R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293, 5528 (2001) 269-271. 36.Y. Sakata, T. yamamoto, T. Okazaki, H. Imamura, S. Tsuchiya, Generation of visible light response on the photocatalyst of a copper ion containing TiO2, Chemistry Letters, 1998 (1998) 1253-1254. 37.A. Di Paola, E. García-López, S. Ikeda, G. Marcì, B. Ohtani, L. Palmisano, Photocatalytic degration of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2, Catalysis Today, 75 (2002) 87-93. 38.S. Ikeda, N. Sugiyama, B. Pal, G. Marci, L. Palmisano, H. Noguchi, K. Uosaki, B. Ohtani, Photocatalytic activity of transition-metal-loaded titanium (IV) oxide powders suspended in aqueous solutions: Correlation with electron-hole recombination kinetics, Physical Chemistry Chemical Physics, 3 (2001) 267-273. 39.H. Y. Chen, S. P. Lau, L. Chen, J. Lin, C. H. A. Huan, K. L. Tan, J. S. Pan, Synergism between Cu and Zn sites in Cu/Zn catalysts for methanol synthesis, Applied Surface Science, 152 (1999) 193-199. 40.I. H. Tseng, W. C. Chang, J. C. S. Wu, Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental, 37 (2002) 37-48. 41.G. C. Chinchen, K. C. Waugh, D. A. Whan, The activity and state of the copper surface in methanol synthesis catalysts, Applied catalysis, 25 (1986) 101-107. 42.Q. Sun, C. W. Liu, W. Pan, Q. M. Zhu, J. F. Deng, In situ IR studies on the mechanism of methanol synthesis over an ultrafine Cu/ZnO/Al2O3 catalyst, Applied Catalysis A: General, 171 (1998) 301-308. 43.S. Sugawa, K. Sayama, K. Okabe, H. Arakawa, Methanol synthesis from CO2 and H2 over silver catalyst, Energy Conversion and Management, 36 (1995) 665-673. 44.G. Guan, T. Kida, A. Yoshida, Reduction fo carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst, Applied Catalysis B: Environmental, 41 (2003) 387-396. 45.T. Inui, T. Yamamoto, M. Inoue, H. Hara, T. Takeguchi, J. B. Kim, Highly effective synthesis of ethanol by CO2-hydrogenation on well balanced multi-functional FT-type composite catalysts, Applied Catalysis A: General, 186 (1999) 395-406. 46.Y. Ku, C. M. Ma, Y. S. Shen, Decomposition of gaseous trichloroethylene in a photoreactor with TiO2-coated nonwoven fiber textile, Applied Catalysis B: Environmental, 34 (2001) 181-190. 47.V. Keller, P. Bernhardt, F. Garin, Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts, Journal of Catalysis, 215 (2003) 129-138. 48.A. J. Maira, K. L. Yeung, J. Soria, J. M. Coronado, C. Belver, C. Y. Lee, V. Augugliaro, Gas-phase photo-oxidation of toluene using nanometer-size TiO2 catalysts, Applied Catalysis B: Environmental, 29 (2001) 327-336. 49.W. Wang, Y. Ku, The light transmission and distribution in an optical fiber coated with TiO2 particles, Chemosphere, 50 (2003) 999-1006. 50.吳曜東編著,光纖原理與應用,全華科技圖書股份有限公司 (2001), 第1-1- 4-25頁。 51.K. Hofstadler, R. Bauer, New reactor design for photocatalytic wastewater treatment with TiO2 immobilized on Fused-Silica glass fibers: photomineralization of 4-Chlorophenol, Environmental Science and Technology, 28 (1994) 670-674. 52.N. J. Peill, M. R. Hoffmann, Chemical and physical characterization of a TiO2-coated fiber optical cable reactor, Environmental Science and Technology, 30 (1996) 2806-2812. 53.N. J. Peill, M. R. Hoffmann, Development and optimization of a TiO2-coated fiber-optic cable reactor: photocatalytic degradation of 4-chlorophenol, Environmental Science and Technology, 29 (1995) 2974-2981. 54.N. J. Peill, M. R. Hoffmann, Solar-powered photocatalytic fiber-optic cable reactor for waste stream remediation, Journal of Solar Energy Engineering, 199 (1997) 229-236. 55.R. D. Sun, A. Nakajima, I. Watanabe, T. Watanabe, K. Hashimoto, TiO2-coated optical fiber bundles used as a photocatalytic filter for decomposition of gaseous organic compounds, Journal of Photochemistry and Photobiology A: Chemistry, 136 (2000) 111-116. 56.W. Choi, J. Y. Ko, H. Park, J. S. Chung, Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone. Applied Catalysis B: Environmental, 31 (2001) 209-220. 57.W. Wang, Y. Ku, Photocatalytic degradation of gaseous benzene in air streams by using an optical fiber photoreactor. Journal of Photochemistry and Photobiology A: Chemistry, 159 (2003) 47-59. 58.U. Selvaraj, A. V. Prasadarao, S. Komarneni, R. Roy, Sol-gel fabrication of epitaxial and oriented TiO2 thin-films, Journal of the American Ceramic Society, 75 (1992) 1167-1170. 59.K. Haas-Santno, M. Fichtner, K. Schubert, Preparation of microstructure compatible porous supports by sol-gel synthesis for catalyst coatings, Applied Catalysis A: General, 220 (2001) 79-92. 60.K. Kato, A.Tsuzuki, Y. Torll, H. Taoda, T. Kato, Y. Butsugan, Morphology of thin anatase coatings prepared from alkoxide solutions containing organic polymer affecting the photocatalytic decomposition of aqueous acetic acid, Journal of Materials Science, 30 (1995) 837-841. 61.S. Bu, Z. Jin, X. Liu, L. Yang, Z. Cheng, Fabrication of TiO2 porous thin films using peg templates and chemistry of the process, Materials Chemistry and Physics, 88 (2004) 273-279. 62.R.S. Sonawane, B.B. Kale, M.K. Dongare, Preparation and photo-catalytic activity of Fe-TiO2 thin films prepared by sol-gel dip coating, Materials Chemistry and Physics, 85 (2004) 52-57. 63.K. Kato, K. I. Niihra, Roles of polyethylene glycol in evolution of nanostructure in TiO2 coatings, Thin Solid Films, 298 (1997) 76-82. 64.J. Yu, X. Zhao, Q. Zhao, Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method, Thin Solid Films, 379 (2000) 7-14. 65.C. J. Barbe, F.Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gratzel, Nanocrystalline titanium oxide electrodes for photovoltaic applications, Journal of the American Ceramic Society 80, 12 (1997) 3157-3171. 66.H. Haapala, The use of SEM/EDX for studying the distribution of air pollutants in the surroundings of the emission source, Environmental Pollution, 99 (1998) 361-363. 67.D. Bao, X. Yao, N. Wakiya, K. Shinozaki, N. Mizutani, Band gap energies of sol-gel-derived SrTiO3 thin films, Applied Physics Letters 79, 23 (2001) 3767-3769. 68.葉君棣,陳志堅合譯,X射線光電子分光儀應用手冊,黎明書店 (1992),第2-33頁。 69.W. D. Callister, Jr., Materials Science and Engineering, 6th Edition, John Wiley & Sons, Inc. 1994, p.w-1. 70.Powder Diffraction File, Card No.21-1272, JCPDS--International Centre for Diffraction Data, Swarthmore (1997). 71.Powder Diffraction File, Card No.21-1276, JCPDS--International Centre for Diffraction Data, Swarthmore (1997). 72.SISC層析儀積分數據處理系統操作手冊(上),訊華股份有限公司(2005),第1-31-1-32頁,第2-2-2-3頁,第2-20-2-38頁。 73.V. Brezova, A. Blazkova, L. Karpinky, J. Groskova, B. Havlinoca, V. Jorik, M. Ceppan, Phenol decomposition using Mn+/TiO2 photocatalysts supported by the sol-gel technique on glass fibers, Journal of Photochemistry and Photobiology A: Chemistry, 109 (1997) 177-183. 74.W. Gao, J. Chen, X. Guan, R. Jin, F. Zhang, N. Guan, Catalytic reduction of nitrite ions in drinking water over Pd-Cu/TiO2 bimetallic catalyst, Catalysis Today, 93-95 (2004) 333-339. 75.I. H. Tseng, J. C. S. Wu, H.Y. Chou, Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction, Journal of Catalysis, 221 (2004) 432-440. 76.I. M. Arabatzis, T. Stergiopoulos, M. C. Bernard, D. Labou, S. G. Neophytides, P. Falaras, Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange, Applied Catalysis B: Environmental, 42 (2003) 187-201. 77.Suchitra Sena, S. Mahantya, S. Roya, O. Heintzb, S. Bourgeoisb, D. Chaumont, Investigation on sol-gel synthesized Ag-doped TiO2 cermet thin films, Thin Solid Films, 474 (2005) 245-249. 78.J. Silvestre-Albero, A. Sepúlveda-Escribano, F. Rodríguez-Reinoso, and J.A. Anderson, Influence of Zn on the characteristics and catalytic behavior of TiO2-supported Pt catalysts, Journal of Catalysis, 223 (2004) 179-190. 79.Z. Liua, B. Guoa, L. Honga, H. Jiang, Physicochemical and photocatalytic characterizations of TiO2/Pt nanocomposites, Journal of Photochemistry and Photobiology A: Chemistry, 172 (2005) 81-88. 80.J.C. Yang, Y.C. Kim, Y.G. Shul, C.H. Shin, T.K. Lee, Characterization of photoreduced Pt/TiO2 and decomposition of dichloroacetic acid over photoreduced Pt/TiO2 catalysts, Applied Surface Science, 121/122 (1997) 525-529. 81.M. Anpo, H. Yamashita, Y. Ichihashi, S. Ehara, Photocatalystic reduction of CO2 with H2O on various titanium oxide catalysts, Journal of Electroanalytical Chemistry, 396 (1995) 21-26. 82.M. Epifani, C. Giannini, L. Tapfer, L. Vasanelli, Sol-gel synthesis and characterization of Ag and Au nanoparticles in SiO2, TiO2, and ZrO2 thin films, Journal of the American Ceramic Society 83,10 (2000) 2385-2393. 83.S. B. Kim, S. C. Hong, Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyhst, Applied Catalysis B: Environmental, 35 (2002) 305-315. 84.周欣穎,奈米Ag/TiO2觸媒進行二氧化碳光催化還原反應,國立台灣大學碩士論文,2002,第56-60頁。 85.林宏明,以光纖反應器進行二氧化碳光催化還原,國立台灣大學碩士論文,2004,第80-85頁。 86.J. C. S. Wu, H. M. Lin, C. L. Lai, Photo reduction of CO2 to methanol using optical-fiber photoreactor, Applied Catalysis A: General, 296 (2005) 194-200. 87.H.G. Huang, T.C. Chu, J. C. S. Wu, and D.P. Tsai, Optical Effect of Fibers with TiO2 Nano Thin Film for Photocatalyst Recator, 中華民國物理年會,Taipei, Taiwan (2005). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32891 | - |
dc.description.abstract | 為了解決二氧化碳溫室氣體和能源問題,本研究於容納216根光纖之光反應器內,以100W高壓汞燈、波長365nm、光反應器溫度348K、流動式穩定狀態氣相系統中進行二氧化碳光催化還原反應。利用改良式熱水解法製備一系列TiO2、Cu/TiO2、Ag/TiO2、Pt/TiO2覆膜液,藉由浸漬覆膜法於直徑為0.1mm之光纖表面。由SEM之觀測,光纖表面的觸媒顆粒略呈圓形,粒徑約為10-20nm,觸媒層厚約26-33nm,並具有許多奈米級孔隙。經XRD繞射圖譜分析觸媒皆為anatase晶相,且紫外-可見光吸收波長約在350nm處。由XPS表面分析結果顯示,負載於二氧化鈦的Cu、Ag及Pt等金屬,分別以Cu+、Ag0及Pt2+或Pt4+存在於二氧化鈦表面。實驗結果發現,當光強度增強時,觸媒活性也隨之增加。以GC-FID測得主要產物為甲醇,及其他微量產物甲酸、甲酸甲酯等,銅、銀、鉑等過渡金屬的添加皆有效地提高甲醇的產率。 | zh_TW |
dc.description.abstract | In order to remedy the greenhouse gas CO2 and energy shortage, the photoreduction of CO2 is studied in a UV-illuminating steady-state gas photo-reactor with 216 optical fibers by a 100W high-pressure Hg lamp with wavelength 365nm at 348K. M(Cu, Ag, Pt)/TiO2 solutions were prepared by an improved thermal hydrolysis method. The optical fibers with the diameter of 0.1mm were coated by the dip-coating method. From the SEM micrographs, the catalyst layer had thickness about 30nm comprising fine spherical particles, which had diameter of 10-20nm and nano cavities between the crystallites. The XRD spectra showed all M(Cu, Ag, Pt)/TiO2 had anatase phase. From the UV-Vis spectra, the wavelength of absorption edge was near 350nm. The results of the XPS spectra revealed that Cu, Ag and Pt in the forms of Cu+, Ag0, Pt2+ or Pt4+ existed on TiO2 surface, respectively. The methanol yield increased with increasing UV irradiative intensity. The main product was methanol and other few products were formic acid and methyl formate. The loaded transition-metals (Cu, Ag, Pt) efficiently enhanced the methanol yield. | en |
dc.description.provenance | Made available in DSpace on 2021-06-13T04:18:17Z (GMT). No. of bitstreams: 1 ntu-95-R93524019-1.pdf: 1739773 bytes, checksum: a2780de4915de000512071468e6b1255 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 致謝
中文摘要 I 英文摘要 II 目錄 III 圖目錄 VI 表目錄 VIII 第一章 緒論 1 第二章 文獻回顧 3 2-1 二氧化碳的簡介 3 2-2 二氧化碳的固定 4 2-3 二氧化碳的光催化還原 7 2-4 二氧化鈦簡介 11 2-4-1 二氧化鈦結構 11 2-4-2 二氧化鈦光催化原理 15 2-4-3 二氧化鈦量子效應 17 2-4-4 二氧化鈦親水性質 18 2-5 添加金屬改質二氧化鈦 20 2-6 光纖反應器 22 2-6-1 光纖簡介 23 2-6-2 各式光纖反應器及其應用 26 2-7 增黏劑的影響 32 第三章 實驗方法 35 3-1實驗藥品與儀器設備 35 3-1-1 藥品 35 3-1-2 器材 36 3-2 觸媒覆膜液的製備 37 3-2-1 熱水解法 37 3-2-2 基材清洗 38 3-2-3 浸漬覆膜法 41 3-3 觸媒特性分析原理與方法 44 3-3-1 儀器型號與規格 44 3-3-2 紫外光-可見光光譜儀 45 3-3-3 場發射掃描式電子顯微鏡 46 3-3-4 能量散佈分析儀 48 3-3-5 X光光電子能譜儀 48 3-3-6 X光繞射儀 50 3-4 光催化活性檢測 53 3-4-1 光纖反應器改良 54 3-4-2 二氧化碳光催化還原 59 3-4-3 SISC色層分析數據處理系統 64 第四章 實驗結果 66 4-1 二氧化鈦覆膜液 66 4-2 觸媒檢測及特性分析 67 4-2-1 XRD 68 4-2-2 BET及孔徑分佈 70 4-2-3 UV-VIS 71 4-2-4 SEM 72 4-2-5 EDS 74 4-2-6 XPS 75 4-3觸媒光催化活性檢測 84 4-3-1 空白實驗 84 4-3-2 二氧化碳光催化還原 85 4-3-3 量子效率 91 第五章 結果討論 94 5-1 金屬改質效應 94 5-1-1 銅在Cu/TiO2之價態與特性 94 5-1-2 銀在Ag/TiO2之價態與特性 95 5-1-3 鉑在Pt/TiO2之價態與特性 95 5-2 影響二氧化碳光催化還原之因素 97 5-2-1 紫外光強度效應 97 5-2-2 滯留時間效應 98 5-3 活性比較 99 第六章 結論 103 第七章 參考文獻 104 附錄 111 個人小傳 124 | |
dc.language.iso | zh-TW | |
dc.title | M(Cu, Ag, Pt)/TiO2覆膜光纖進行二氧化碳光催化還原 | zh_TW |
dc.title | CO2 Photo Reduction Using Optical-fiber Coated with M(Cu, Ag, Pt)/TiO2 Catalysts | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳乃立,顧洋 | |
dc.subject.keyword | 光催化還原,光纖反應器,二氧化碳,二氧化鈦, | zh_TW |
dc.subject.keyword | Photocatalytic reduction,Optical-fiber reactor,CO2,TiO2, | en |
dc.relation.page | 123 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-25 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 1.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。