請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32889完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄧哲明(Che-Ming Teng) | |
| dc.contributor.author | Chih-Yu Liao | en |
| dc.contributor.author | 廖志裕 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:18:14Z | - |
| dc.date.available | 2006-08-02 | |
| dc.date.copyright | 2006-08-02 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-24 | |
| dc.identifier.citation | Alonso, D. F., Farias, E. F., Ladeda, V., Davel, L., Puricelli, L., and Bal de Kier, J. E. (1996). Effects of synthetic urokinase inhibitors on local invasion and metastasis in a murine mammary tumor model. Breast Cancer Res. Treat. 40, 209-23.
Andreasen, P. A., Kjoller, L., Christensen, L., and Duffy, M. J. (1997). The urokinase-type plasminogen activator system in cancer metastasis: a review. Int. J. Cancer 72, 1-22. Andreasen, P. A., Sottrup-Jensen, L., Kjoller, L., Nykjaer, A., Moestrup, S. K., Petersen, C. M., and Gliemann, J. (1994). Receptor-mediated endocytosis of plasminogen activators and activator/inhibitor complexes. FEBS Lett. 338, 239-45. Atkins, K. B., and Troen, B. R. (1995). Phorbol ester stimulated cathepsin L expression in U937 cells. Cell Growth Differ. 6, 713-8. Bajou, K., Lewalle, J. M., Martinez, C. R., Soria, C., Lu, H., Noel, A., and Foidart, J. M. (2002). Human breast adenocarcinoma cell lines promote angiogenesis by providing cells with uPA-PAI-1 and by enhancing their expression. Int. J. Cancer 100, 501-6. Bajpai, A., and Baker, J. B. (1985). Cryptic urokinase binding sites on human foreskin fibroblasts. Biochem. Biophys. Res. Commun. 133, 475-82. Berger, D. H. (2002). Plasmin/plasminogen system in colorectal cancer. World J. Surg. 26, 767-71. Bergers, G., and Benjamin, L. E. (2003). Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer 3, 401-10. Berven, L. A., and Crouch, M. F. (2000). Cellular function of p70S6K: a role in regulating cell motility. Immunol. Cell Biol. 78, 447-51. Blasi, F., Vassalli, J. D., and Dano, K. (1987). Urokinase-type plasminogen activator: proenzyme, receptor, and inhibitors. J. Cell Biol. 104, 801-4. Bowling, N., Walsh, R. A., Song, G., Estridge, T., Sandusky, G. E., Fouts, R. L., Mintze, K., Pickard, T., Roden, R., Bristow, M. R., Sabbah, H. N., Mizrahi, J. L., Gromo, G., King, G. L., and Vlahos, C. J. (1999). Increased protein kinase C activity and expression of Ca2+-sensitive isoforms in the failing human heart. Circulation 99, 384-91. Brodie, C., and Blumberg, P. M. (2003). Regulation of cell apoptosis by protein kinase c delta. Apoptosis. 8, 19-27. Cao, D., Mizukami, I. F., Garni-Wagner, B. A., Kindzelskii, A. L., Todd, R. F., III, Boxer, L. A., and Petty, H. R. (1995). Human urokinase-type plasminogen activator primes neutrophils for superoxide anion release. Possible roles of complement receptor type 3 and calcium. J. Immunol. 154, 1817-29. Chambers, A. F., Groom, A. C., and MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2, 563-72. Chambers, A. F., MacDonald, I. C., Schmidt, E. E., Morris, V. L., and Groom, A. C. (2000). Clinical targets for anti-metastasis therapy. Adv. Cancer Res. 79, 91-121. Chauhan, H., Abraham, A., Phillips, J. R., Pringle, J. H., Walker, R. A., and Jones, J. L. (2003). There is more than one kind of myofibroblast: analysis of CD34 expression in benign, in situ, and invasive breast lesions. J. Clin. Pathol. 56, 271-6. Chiaradonna, F., Fontana, L., Iavarone, C., Carriero, M. V., Scholz, G., Barone, M. V., and Stoppelli, M. P. (1999). Urokinase receptor-dependent and -independent p56/59(hck) activation state is a molecular switch between myelomonocytic cell motility and adherence. EMBO J. 18, 3013-23. Choi, S. W., Park, H. Y., Rubeiz, N. G., Sachs, D., and Gilchrest, B. A. (1998). Protein kinase C-alpha levels are inversely associated with growth rate in cultured human dermal fibroblasts. J. Dermatol. Sci. 18, 54-63. Chung, J., Grammer, T. C., Lemon, K. P., Kazlauskas, A., and Blenis, J. (1994). PDGF- and insulin-dependent pp70S6k activation mediated by phosphatidylinositol-3-OH kinase. Nature 370, 71-5. Clark, A. S., West, K. A., Blumberg, P. M., and Dennis, P. A. (2003). Altered protein kinase C (PKC) isoforms in non-small cell lung cancer cells: PKCdelta promotes cellular survival and chemotherapeutic resistance. Cancer Res. 63, 780-6. Clark, E. A., and Brugge, J. S. (1995). Integrins and signal transduction pathways: the road taken. Science 268, 233-9. Collen, D. (1980). On the regulation and control of fibrinolysis. Edward Kowalski Memorial Lecture. Thromb. Haemost. 43, 77-89. Coso, O. A., Chiariello, M., Kalinec, G., Kyriakis, J. M., Woodgett, J., and Gutkind, J. S. (1995a). Transforming G protein-coupled receptors potently activate JNK (SAPK). Evidence for a divergence from the tyrosine kinase signaling pathway. J. Biol. Chem. 270, 5620-4. Coso, O. A., Chiariello, M., Yu, J. C., Teramoto, H., Crespo, P., Xu, N., Miki, T., and Gutkind, J. S. (1995b). The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81, 1137-46. Coussens, L. M., and Werb, Z. (2002). Inflammation and cancer. Nature 420, 860-7. Dano, K., Andreasen, P. A., Grondahl-Hansen, J., Kristensen, P., Nielsen, L. S., and Skriver, L. (1985). Plasminogen activators, tissue degradation, and cancer. Adv. Cancer Res. 44, 139-266. Dano, K., Behrendt, N., Hoyer-Hansen, G., Johnsen, M., Lund, L. R., Ploug, M., and Romer, J. (2005). Plasminogen activation and cancer. Thromb. Haemost. 93, 676-81. De, P. G., Tavian, D., Copeta, A., Portolani, N., Giulini, S. M., and Barlati, S. (1998). Expression of urokinase-type plasminogen activator (u-PA), u-PA receptor, and tissue-type PA messenger RNAs in human hepatocellular carcinoma. Cancer Res. 58, 2234-9. De, W. O., and Mareel, M. (2003). Role of tissue stroma in cancer cell invasion. J. Pathol. 200, 429-47. De, W. O., Nguyen, Q. D., Van, H. L., Bracke, M., Bruyneel, E., Gespach, C., and Mareel, M. (2004). Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J. 18, 1016-8. Dean, N., McKay, R., Miraglia, L., Howard, R., Cooper, S., Giddings, J., Nicklin, P., Meister, L., Ziel, R., Geiger, T., Muller, M., and Fabbro, D. (1996). Inhibition of growth of human tumor cell lines in nude mice by an antisense of oligonucleotide inhibitor of protein kinase C-alpha expression. Cancer Res. 56, 3499-507. Deng, G., Curriden, S. A., Wang, S., Rosenberg, S., and Loskutoff, D. J. (1996). Is plasminogen activator inhibitor-1 the molecular switch that governs urokinase receptor-mediated cell adhesion and release? J. Cell Biol. 134, 1563-71. Dionne, C. A., Crumley, G., Bellot, F., Kaplow, J. M., Searfoss, G., Ruta, M., Burgess, W. H., Jaye, M., and Schlessinger, J. (1990). Cloning and expression of two distinct high-affinity receptors cross-reacting with acidic and basic fibroblast growth factors. EMBO J. 9, 2685-92. Duffy, M. J., Maguire, T. M., McDermott, E. W., and O'Higgins, N. (1999). Urokinase plasminogen activator: a prognostic marker in multiple types of cancer. J. Surg. Oncol. 71, 130-5. Dufner, A., and Thomas, G. (1999). Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res. 253, 100-9. Dumler, I., Petri, T., and Schleuning, W. D. (1993). Interaction of urokinase-type plasminogenactivator (u-PA) with its cellular receptor (u-PAR) induces phosphorylation on tyrosine of a 38 kDa protein. FEBS Lett. 322, 37-40. Dumler, I., Petri, T., and Schleuning, W. D. (1994). Induction of c-fos gene expression by urokinase-type plasminogen activator in human ovarian cancer cells. FEBS Lett. 343, 103-6. Dumler, I., Weis, A., Mayboroda, O. A., Maasch, C., Jerke, U., Haller, H., and Gulba, D. C. (1998). The Jak/Stat pathway and urokinase receptor signaling in human aortic vascular smooth muscle cells. J. Biol. Chem. 273, 315-21. Fazioli, F., and Blasi, F. (1994). Urokinase-type plasminogen activator and its receptor: new targets for anti-metastatic therapy? Trends Pharmacol. Sci. 15, 25-9. Fidler, I. J. (2003). The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat. Rev. Cancer 3, 453-8. Fidler, I. J. (2002). The organ microenvironment and cancer metastasis. Differentiation 70, 498-505. Grondahl-Hansen, J., Ralfkiaer, E., Kirkeby, L. T., Kristensen, P., Lund, L. R., and Dano, K. (1991). Localization of urokinase-type plasminogen activator in stromal cells in adenocarcinomas of the colon in humans. Am. J. Pathol. 138, 111-7. guirre Ghiso, J. A., Alonso, D. F., Farias, E. F., and Bal de Kier, J. E. (1997). Overproduction of urokinase-type plasminogen activator is regulated by phospholipase D- and protein kinase C-dependent pathways in murine mammary adenocarcinoma cells. Biochim. Biophys. Acta 1356, 171-84. guirre Ghiso, J. A., Kovalski, K., and Ossowski, L. (1999). Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. J. Cell Biol. 147, 89-104. Gum, R., Juarez, J., Allgayer, H., Mazar, A., Wang, Y., and Boyd, D. (1998). Stimulation of urokinase-type plasminogen activator receptor expression by PMA requires JNK1-dependent and -independent signaling modules. Oncogene 17, 213-25. Hah, N., and Lee, S. T. (2003). An absolute role of the PKC-dependent NF-kappaB activation for induction of MMP-9 in hepatocellular carcinoma cells. Biochem. Biophys. Res. Commun. 305, 428-33. Hanahan, D., and Weinberg, R. A. (2000). The hallmarks of cancer. Cell 100, 57-70. Hart, I. R., and Fidler, I. J. (1980). Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Res. 40, 2281-7. Iijima, Y., Laser, M., Shiraishi, H., Willey, C. D., Sundaravadivel, B., Xu, L., McDermott, P. J., and Kuppuswamy, D. (2002). c-Raf/MEK/ERK pathway controls protein kinase C-mediated p70S6K activation in adult cardiac muscle cells. J. Biol. Chem. 277, 23065-75. Ishii, H., Jirousek, M. R., Koya, D., Takagi, C., Xia, P., Clermont, A., Bursell, S. E., Kern, T. S., Ballas, L. M., Heath, W. F., Stramm, L. E., Feener, E. P., and King, G. L. (1996). Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science 272, 728-31. Keller, H. U., Hunziker, I. P., Sordat, B., Niggli, V., and Sroka, J. (2000). Protein kinase C isoforms involved in regulation of cell shape and locomotion of human fibrosarcoma HT1080 cells. Int. J. Cancer 88, 195-203. Keshamouni, V. G., Mattingly, R. R., and Reddy, K. B. (2002). Mechanism of 17-beta-estradiol-induced Erk1/2 activation in breast cancer cells. A role for HER2 AND PKC-delta. J. Biol. Chem. 277, 22558-65. Kjoller, L., and Hall, A. (2001). Rac mediates cytoskeletal rearrangements and increased cell motility induced by urokinase-type plasminogen activator receptor binding to vitronectin. J. Cell Biol. 152, 1145-57. Kolch, W., Heidecker, G., Kochs, G., Hummel, R., Vahidi, H., Mischak, H., Finkenzeller, G., Marme, D., and Rapp, U. R. (1993). Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature 364, 249-52. Kruger, J. S., and Reddy, K. B. (2003). Distinct mechanisms mediate the initial and sustained phases of cell migration in epidermal growth factor receptor-overexpressing cells. Mol. Cancer Res. 1, 801-9. Kuperwasser, C., Chavarria, T., Wu, M., Magrane, G., Gray, J. W., Carey, L., Richardson, A., and Weinberg, R. A. (2004). Reconstruction of functionally normal and malignant human breast tissues in mice. Proc. Natl. Acad. Sci. U. S. A 101, 4966-71. Legrand, C., Polette, M., Tournier, J. M., de, B. S., Huet, E., Monteau, M., and Birembaut, P. (2001). uPA/plasmin system-mediated MMP-9 activation is implicated in bronchial epithelial cell migration. Exp. Cell Res. 264, 326-36. Lengyel, E., Stepp, E., Gum, R., and Boyd, D. (1995). Involvement of a mitogen-activated protein kinase signaling pathway in the regulation of urokinase promoter activity by c-Ha-ras. J. Biol. Chem. 270, 23007-12. Lewis, M. P., Lygoe, K. A., Nystrom, M. L., Anderson, W. P., Speight, P. M., Marshall, J. F., and Thomas, G. J. (2004). Tumour-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br. J. Cancer 90, 822-32. Li, G., Satyamoorthy, K., Meier, F., Berking, C., Bogenrieder, T., and Herlyn, M. (2003). Function and regulation of melanoma-stromal fibroblast interactions: when seeds meet soil. Oncogene 22, 3162-71. Li, H., Ye, X., Mahanivong, C., Bian, D., Chun, J., and Huang, S. (2005). Signaling mechanisms responsible for lysophosphatidic acid-induced urokinase plasminogen activator expression in ovarian cancer cells. J. Biol. Chem. 280, 10564-71. Li, L., Lorenzo, P. S., Bogi, K., Blumberg, P. M., and Yuspa, S. H. (1999). Protein kinase Cdelta targets mitochondria, alters mitochondrial membrane potential, and induces apoptosis in normal and neoplastic keratinocytes when overexpressed by an adenoviral vector. Mol. Cell Biol. 19, 8547-58. Liu, J. F., Crepin, M., Liu, J. M., Barritault, D., and Ledoux, D. (2002). FGF-2 and TPA induce matrix metalloproteinase-9 secretion in MCF-7 cells through PKC activation of the Ras/ERK pathway. Biochem. Biophys. Res. Commun. 293, 1174-82. Lund, L. R., Bjorn, S. F., Sternlicht, M. D., Nielsen, B. S., Solberg, H., Usher, P. A., Osterby, R., Christensen, I. J., Stephens, R. W., Bugge, T. H., Dano, K., and Werb, Z. (2000). Lactational competence and involution of the mouse mammary gland require plasminogen. Development 127, 4481-92. Luzzi, K. J., MacDonald, I. C., Schmidt, E. E., Kerkvliet, N., Morris, V. L., Chambers, A. F., and Groom, A. C. (1998). Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am. J. Pathol. 153, 865-73. Majumder, P. K., Pandey, P., Sun, X., Cheng, K., Datta, R., Saxena, S., Kharbanda, S., and Kufe, D. (2000). Mitochondrial translocation of protein kinase C delta in phorbol ester-induced cytochrome c release and apoptosis. J. Biol. Chem. 275, 21793-6. Manabe, Y., Toda, S., Miyazaki, K., and Sugihara, H. (2003). Mature adipocytes, but not preadipocytes, promote the growth of breast carcinoma cells in collagen gel matrix culture through cancer-stromal cell interactions. J. Pathol. 201, 221-8. Mareel, M., and Leroy, A. (2003). Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev. 83, 337-76. Matrisian, L. M. (1992). The matrix-degrading metalloproteinases. Bioessays 14, 455-63. Mauro, A., Ciccarelli, C., De, C. P., Scoglio, A., Bouche, M., Molinaro, M., Aquino, A., and Zani, B. M. (2002). PKCalpha-mediated ERK, JNK and p38 activation regulates the myogenic program in human rhabdomyosarcoma cells. J. Cell Sci. 115, 3587-99. McIntosh, I., Bellus, G. A., and Jab, E. W. (2000). The pleiotropic effects of fibroblast growth factor receptors in mammalian development. Cell Struct. Funct. 25, 85-96. Mignatti, P., and Rifkin, D. B. (1993). Biology and biochemistry of proteinases in tumor invasion. Physiol Rev. 73, 161-95. Mohanam, S., Chintala, S. K., Go, Y., Bhattacharya, A., Venkaiah, B., Boyd, D., Gokaslan, Z. L., Sawaya, R., and Rao, J. S. (1997). In vitro inhibition of human glioblastoma cell line invasiveness by antisense uPA receptor. Oncogene 14, 1351-9. Montuori, N., Mattiello, A., Mancini, A., Santoli, M., Taglialatela, P., Caputi, M., Rossi, G., and Ragno, P. (2001). Urokinase-type plasminogen activator up-regulates the expression of its cellular receptor through a post-transcriptional mechanism. FEBS Lett. 508, 379-84. Mueller, M. M., and Fusenig, N. E. (2004). Friends or foes - bipolar effects of the tumour stroma in cancer. Nat. Rev. Cancer 4, 839-49. Mueller, M. M., Werbowetski, T., and Del Maestro, R. F. (2003). Soluble factors involved in glioma invasion. Acta Neurochir. (Wien. ) 145, 999-1008. Nguyen, D. H., Hussaini, I. M., and Gonias, S. L. (1998). Binding of urokinase-type plasminogen activator to its receptor in MCF-7 cells activates extracellular signal-regulated kinase 1 and 2 which is required for increased cellular motility. J. Biol. Chem. 273, 8502-7. Nielsen, B. S., Sehested, M., Duun, S., Rank, F., Timshel, S., Rygaard, J., Johnsen, M., and Dano, K. (2001). Urokinase plasminogen activator is localized in stromal cells in ductal breast cancer. Lab Invest 81, 1485-501. Nielsen, B. S., Sehested, M., Timshel, S., Pyke, C., and Dano, K. (1996). Messenger RNA for urokinase plasminogen activator is expressed in myofibroblasts adjacent to cancer cells in human breast cancer. Lab Invest 74, 168-77. Nishizuka, Y. (2001). The protein kinase C family and lipid mediators for transmembrane signaling and cell regulation. Alcohol Clin. Exp. Res. 25, 3S-7S. Okada-Ban, M., Thiery, J. P., and Jouanneau, J. (2000). Fibroblast growth factor-2. Int. J. Biochem. Cell Biol. 32, 263-7. Olumi, A. F., Grossfeld, G. D., Hayward, S. W., Carroll, P. R., Tlsty, T. D., and Cunha, G. R. (1999). Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res. 59, 5002-11. Orimo, A., Tomioka, Y., Shimizu, Y., Sato, M., Oigawa, S., Kamata, K., Nogi, Y., Inoue, S., Takahashi, M., Hata, T., and Muramatsu, M. (2001). Cancer-associated myofibroblasts possess various factors to promote endometrial tumor progression. Clin. Cancer Res. 7, 3097-105. Ossowski, L., and Reich, E. (1983). Antibodies to plasminogen activator inhibit human tumor metastasis. Cell 35, 611-9. Paget, S. (1989). The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8, 98-101. Parker, P. J., and Murray-Rust, J. (2004). PKC at a glance. J. Cell Sci. 117, 131-2. Poole, A. W., Pula, G., Hers, I., Crosby, D., and Jones, M. L. (2004). PKC-interacting proteins: from function to pharmacology. Trends Pharmacol. Sci. 25, 528-35. Poste, G., and Fidler, I. J. (1980). The pathogenesis of cancer metastasis. Nature 283, 139-46. Pullen, N., and Thomas, G. (1997). The modular phosphorylation and activation of p70s6k. FEBS Lett. 410, 78-82. Pyke, C., Kristensen, P., Ralfkiaer, E., Grondahl-Hansen, J., Eriksen, J., Blasi, F., and Dano, K. (1991). Urokinase-type plasminogen activator is expressed in stromal cells and its receptor in cancer cells at invasive foci in human colon adenocarcinomas. Am. J. Pathol. 138, 1059-67. Rabbani, S. A., Gladu, J., Mazar, A. P., Henkin, J., and Goltzman, D. (1997). Induction in human osteoblastic cells (SaOS2) of the early response genes fos, jun, and myc by the amino terminal fragment (ATF) of urokinase. J. Cell Physiol 172, 137-45. Racchi, M., Bergamaschi, S., Govoni, S., Wetsel, W. C., Bianchetti, A., Binetti, G., Battaini, F., and Trabucchi, M. (1994). Characterization and distribution of protein kinase C isoforms in human skin fibroblasts. Arch. Biochem. Biophys. 314, 107-11. Rao, J. S. (2003). Molecular mechanisms of glioma invasiveness: the role of proteases. Nat. Rev. Cancer 3, 489-501. Reifel-Miller, A. E., Conarty, D. M., Valasek, K. M., Iversen, P. W., Burns, D. J., and Birch, K. A. (1996). Protein kinase C isozymes differentially regulate promoters containing PEA-3/12-O-tetradecanoylphorbol-13-acetate response element motifs. J. Biol. Chem. 271, 21666-71. Resnati, M., Guttinger, M., Valcamonica, S., Sidenius, N., Blasi, F., and Fazioli, F. (1996). Proteolytic cleavage of the urokinase receptor substitutes for the agonist-induced chemotactic effect. EMBO J. 15, 1572-82. Roghani, M., Mohammadi, M., Schlessinger, J., and Moscatelli, D. (1996). Induction of urokinase-type plasminogen activator by fibroblast growth factor (FGF)-2 is dependent on expression of FGF receptors and does not require activation of phospholipase Cgamma1. J. Biol. Chem. 271, 31154-9. Roselli, H. T., Su, M., Washington, K., Kerins, D. M., Vaughan, D. E., and Russell, W. E. (1998). Liver regeneration is transiently impaired in urokinase-deficient mice. Am. J. Physiol 275, G1472-G1479. Satoh, A., Gukovskaya, A. S., Nieto, J. M., Cheng, J. H., Gukovsky, I., Reeve, J. R., Jr., Shimosegawa, T., and Pandol, S. J. (2004). PKC-delta and -epsilon regulate NF-kappaB activation induced by cholecystokinin and TNF-alpha in pancreatic acinar cells. Am. J. Physiol Gastrointest. Liver Physiol 287, G582-G591. Schmitt, M., Harbeck, N., Thomssen, C., Wilhelm, O., Magdolen, V., Reuning, U., Ulm, K., Hofler, H., Janicke, F., and Graeff, H. (1997). Clinical impact of the plasminogen activation system in tumor invasion and metastasis: prognostic relevance and target for therapy. Thromb. Haemost. 78, 285-96. Schwartz, G. K., Jiang, J., Kelsen, D., and Albino, A. P. (1993). Protein kinase C: a novel target for inhibiting gastric cancer cell invasion. J. Natl. Cancer Inst. 85, 402-7. Schwartz, G. K., Redwood, S. M., Ohnuma, T., Holland, J. F., Droller, M. J., and Liu, B. C. (1990). Inhibition of invasion of invasive human bladder carcinoma cells by protein kinase C inhibitor staurosporine. J. Natl. Cancer Inst. 82, 1753-6. Scott, P. H., and Lawrence, J. C., Jr. (1997). Insulin activates a PD 098059-sensitive kinase that is involved in the regulation of p70S6K and PHAS-I. FEBS Lett. 409, 171-6. Simon, C., Juarez, J., Nicolson, G. L., and Boyd, D. (1996). Effect of PD 098059, a specific inhibitor of mitogen-activated protein kinase kinase, on urokinase expression and in vitro invasion. Cancer Res. 56, 5369-74. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., and Boyd, M. R. (1990). New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl. Cancer Inst. 82, 1107-12. Skobe, M., and Fusenig, N. E. (1998). Tumorigenic conversion of immortal human keratinocytes through stromal cell activation. Proc. Natl. Acad. Sci. U. S. A 95, 1050-5. Steeg, P. S. (2003). Metastasis suppressors alter the signal transduction of cancer cells. Nat. Rev. Cancer 3, 55-63. Stefansson, S., and Lawrence, D. A. (1996). The serpin PAI-1 inhibits cell migration by blocking integrin alpha V beta 3 binding to vitronectin. Nature 383, 441-3. Stetler-Stevenson, W. G., and Yu, A. E. (2001). Proteases in invasion: matrix metalloproteinases. Semin. Cancer Biol. 11, 143-52. Stoppelli, M. P., Corti, A., Soffientini, A., Cassani, G., Blasi, F., and Assoian, R. K. (1985). Differentiation-enhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes. Proc. Natl. Acad. Sci. U. S. A 82, 4939-43. Ueda, Y., Hirai, S., Osada, S., Suzuki, A., Mizuno, K., and Ohno, S. (1996). Protein kinase C activates the MEK-ERK pathway in a manner independent of Ras and dependent on Raf. J. Biol. Chem. 271, 23512-9. Vassalli, J. D., Baccino, D., and Belin, D. (1985). A cellular binding site for the Mr 55,000 form of the human plasminogen activator, urokinase. J. Cell Biol. 100, 86-92. Wang, Y., Dang, J., Liang, X., and Doe, W. F. (1995). Amiloride modulates urokinase gene expression at both transcription and post-transcription levels in human colon cancer cells. Clin. Exp. Metastasis 13, 196-202. Wei, Y., Lukashev, M., Simon, D. I., Bodary, S. C., Rosenberg, S., Doyle, M. V., and Chapman, H. A. (1996). Regulation of integrin function by the urokinase receptor. Science 273, 1551-5. Wei, Y., Waltz, D. A., Rao, N., Drummond, R. J., Rosenberg, S., and Chapman, H. A. (1994). Identification of the urokinase receptor as an adhesion receptor for vitronectin. J. Biol. Chem. 269, 32380-8. Weng, Q. P., Andrabi, K., Klippel, A., Kozlowski, M. T., Williams, L. T., and Avruch, J. (1995). Phosphatidylinositol 3-kinase signals activation of p70 S6 kinase in situ through site-specific p70 phosphorylation. Proc. Natl. Acad. Sci. U. S. A 92, 5744-8. Weng, Q. P., Kozlowski, M., Belham, C., Zhang, A., Comb, M. J., and Avruch, J. (1998). Regulation of the p70 S6 kinase by phosphorylation in vivo. Analysis using site-specific anti-phosphopeptide antibodies. J. Biol. Chem. 273, 16621-9. Werner, S., and Grose, R. (2003). Regulation of wound healing by growth factors and cytokines. Physiol Rev. 83, 835-70. Wun, T. C., and Reich, E. (1987). An inhibitor of plasminogen activation from human placenta. Purification and characterization. J. Biol. Chem. 262, 3646-53. Xue, W., Mizukami, I., Todd, R. F., III, and Petty, H. R. (1997). Urokinase-type plasminogen activator receptors associate with beta1 and beta3 integrins of fibrosarcoma cells: dependence on extracellular matrix components. Cancer Res. 57, 1682-9. Yang, C., and Kazanietz, M. G. (2003). Divergence and complexities in DAG signaling: looking beyond PKC. Trends Pharmacol. Sci. 24, 602-8. Yu, W., Kim, J., and Ossowski, L. (1997). Reduction in surface urokinase receptor forces malignant cells into a protracted state of dormancy. J. Cell Biol. 137, 767-77. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32889 | - |
| dc.description.abstract | 由最近的研究發現,癌細胞可以釋出多種生長因子,進而促使周邊細胞(如纖維母細胞)分泌 uPA,而幫助癌細胞轉移的發生。由本實驗結果發現,使用basic fibroblast growth factor (bFGF) 刺激纖維母細胞 MRC-5,確實可以明顯地增加 uPA 的產生。進一步給予不同的抑制劑來探討其調控的訊息傳遞路徑,發現PD98059 (an ERK 1/2 inhibitor)、Ro318220 和 staurosporine (two PKC inhibitors)、SP600125 (a JNK inhibitor) 及 PDTC (a NF-κB inhibitor) 皆會有效抑制 bFGF 誘發 uPA 產生。尤其可觀察到 PKC inhibitor 具有很強的抑制作用。由於 protein kinase C (PKC) 家族含有 12 種 isoforms,為了進ㄧ步釐清何種 isoform 為主要的調控者,於是給予專一性的 PKC inhibitors來探討。我們發現 rottlerin (a PKC δ inhibitor) 會明顯減少 uPA 的產生。接著以西方點墨法觀察到 rottlerin 可以抑制ERK 1/2磷酸化,但 PD98059 卻不會影響 PKC δ 的活化。由於 ERK 1/2 的活化會影響到 P70S6K 的磷酸化而促進細胞進入轉譯 (translation) 作用,產生大量的蛋白質。在我們的實驗結果中發現給予 PD98059 及 rottlerin 都會抑制 P70S6K 在 Thr421/Ser424 及 Thr389 位置的磷酸化。综合上述的實驗我們可以推測在 MRC-5 細胞中給予 bFGF 刺激 uPA 產生的過程中,藉由 PKCδ 調控 ERK 1/2 的活化,進一步促進 uPA 產生;同時也可能會促進 P70S6K 的磷酸化而使細胞進入轉譯 (translation),增加蛋白質的生成。另一方面,由於 SP600125 及 PDTC 可以有效抑制 uPA 產生,知道 bFGF 也可能經由 JNK 及 NF-κB 的訊息傳遞路徑來促進 MRC-5 細胞產生 uPA。藉由釐清癌細胞和纖維母細胞之間的交互作用,我們發現癌細胞的侵入及轉移中,PKC δ扮演一個重要的角色,因此PKC δ可作為未來研發抗癌藥物的新標的。 | zh_TW |
| dc.description.abstract | From current studies, cancer cells generate many growth factors to induce adjacent cells, for instance fibroblasts, to secrete uPA then render the occurrence of cancer metastasis. In this study, we found that basic fibroblast growth factor (bFGF) stimulated fibroblast (MRC-5) to produce high level of uPA. Next, by using different protein kinase inhibitors to elucidate the involved signaling pathways, we observed that PD98059 (an ERK 1/2 inhibitor)、Ro318220 and staurosporine (two PKC inhibitors)、SP600125 (a JNK inhibitor) and PDTC (a NF-κB inhibitor), all reduced bFGF-induced uPA. Especially PKC inhibitors had stronger inhibition. Because protein kinase C (PKC) family comprises 12 isoforms, we utilized different specific PKC inhibitors to ascertain which isoform is the main factor. We noted that rottlerin, a PKCδ inhibitor, effectively decreased uPA production. Then, we exploited Western blotting analysis to investigate the interaction of different signaling transducers. The data showed that rottlerin could inhibit ERK 1/2 phosphorylation, but PD98059 did not affect PKCδ activation. According to previous studies, ERK 1/2 activation would cause P70S6K phosphorylation that makes cells translate mRNA to synthesize lots of proteins. We found that both PD98059 and rottlerin down-regulated the phosphorylation on Thr421/Ser424 and Thr389 of P70S6K. In this study, we could consider in the process of bFGF-induced uPA in MRC-5 cells, PKCδ caused ERK 1/2 activation and stimulated uPA production; at the same time it might influence P70S6K phosphorylation to let cells go into translation to increase protein synthesis. On the other hand, SP600125 and PDTC lowered uPA level, so in MRC-5 cells, bFGF might apply JNK and NF-κB pathways to induce uPA production. By clarifying the interaction between tumor cells and fibroblasts, we could design new drugs according to each potential target. Our data demonstrate that PKC δ plays a critical role, so we supposed PKCδ could be one of the potential targets for anticancer drug development. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:18:14Z (GMT). No. of bitstreams: 1 ntu-95-R93443003-1.pdf: 4806013 bytes, checksum: e000e695a1c744449efcff8ddd430697 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 縮寫表......................2
中文摘要.....................4 英文摘要.....................6 緒論.......................8 文獻回顧.................8 癌細胞與基質形成細微環境.........8 癌症侵入與轉移..............11 uPA and uPAR system...........13 Protein kinase C (PKC) ..........19 研究動機與目的..................30 實驗材料與方法..................31 結果.......................41 討論.......................46 結論.......................54 圖表.......................56 參考文獻.....................66 | |
| dc.language.iso | zh-TW | |
| dc.subject | PKC δ | zh_TW |
| dc.subject | urokinase-type plasminogen activator | zh_TW |
| dc.title | 探討人類纖維母細胞中PKC δ在bFGF誘導urokinase-type plasminogen activator 生成中之重要角色 | zh_TW |
| dc.title | Protein kinase C δ plays a critical role in bFGF-induced urokinase-type plasminogen activator production in human fibroblasts | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃德富(Tur-Fu Huang),顧記華(Jih-Hwa Guh),顏茂雄(Mao-Hsiung Yen),楊春茂(Chuen-Mao Yang) | |
| dc.subject.keyword | PKC δ,urokinase-type plasminogen activator, | zh_TW |
| dc.relation.page | 79 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-25 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 4.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
