Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32885
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊榮輝
dc.contributor.authorShin-Yu Linen
dc.contributor.author林歆祐zh_TW
dc.date.accessioned2021-06-13T04:18:08Z-
dc.date.available2011-08-01
dc.date.copyright2011-08-01
dc.date.issued2011
dc.date.submitted2011-07-27
dc.identifier.citation參考文獻
王信傑 (2009) 植物螯合素合成酶催化機制研究. 博士論文. 國立台灣大學微生物與生化學研究所, 台北
黃迺茵 (2010) 阿拉伯芥金屬螯合素合成酶轉殖株之分子鑑定及 Thr 49 突變株之活性分析. 碩士論文. 國立台灣大學生化科技系碩士班, 台北
Beck A, Lendzian K, Oven M, Christmann A, Grill E (2003) Phytochelatin synthase catalyzes key step in turnover of glutathione conjugates. Phytochemistry 62: 423-431
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254
Cazale AC, Clemens S (2001) Arabidopsis thaliana expresses a second functional phytochelatin synthase. FEBS letters 507: 215-219
Clemens S (2006) Evolution and function of phytochelatin synthases. Journal of plant physiology 163: 319-332
Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. The EMBO journal 18: 3325-3333
Cobbett CS (1999) A family of phytochelatin synthase genes from plant, fungal and animal species. Trends Plant Sci 4: 335-337
Cruz BH, Diaz-Cruz JM, Sestáková I, Velek J, Ariño C, Esteban M (2002) Differential pulse voltammetric study of the complexation of Cd(II) by the phytochelatin ([gamma]-Glu---Cys)2Gly assisted by multivariate curve resolution. Journal of Electroanalytical Chemistry 520: 111-118
Dougherty DA (1996) Cation-pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 271: 163-168
Dougherty DA (2007) Cation-pi interactions involving aromatic amino acids. The Journal of nutrition 137: 1504S-1508S; discussion 1516S-1517S
Eapen S, D'Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23: 97-114
Ellis RJ (1979) The most abundant protein in the world. Trends in Biochemical Sciences 4: 241-244
Feller U, Anders I, Mae T (2008) Rubiscolytics: fate of Rubisco after its enzymatic function in a cell is terminated. Journal of experimental botany 59: 1615-1624
Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proceedings of the National Academy of Sciences of the United States of America 86: 6838-6842
Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230: 674-676
Grill E, Winnacker EL, Zenk MH (1987) Phytochelatins, a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proceedings of the National Academy of Sciences of the United States of America 84: 439-443
Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O'Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. The Plant cell 11: 1153-1164
Harada E, von Roepenack-Lahaye E, Clemens S (2004) A cyanobacterial protein with similarity to phytochelatin synthases catalyzes the conversion of glutathione to gamma-glutamylcysteine and lacks phytochelatin synthase activity. Phytochemistry 65: 3179-3185
Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette ML, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88: 1751-1765
Hirata K, Tsuji N, Miyamoto K (2005) Biosynthetic regulation of phytochelatins, heavy metal-binding peptides. Journal of bioscience and bioengineering 100: 593-599
Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium-sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant physiology 107: 1059-1066
Kobayashi R, Yoshimura E (2006) Differences in the binding modes of phytochelatin to cadmium(II) and zinc(II) ions. Biological trace element research 114: 313-318
Kondo N, Imai K, Isobe M, Goto T, Murasugi A, Wada-Nakagawa C, Hayashi Y (1984) Cadystin a and b, major unit peptides comprising cadmium binding peptides induced in a fission yeast ----- separation, revision of structures and synthesis. Tetrahedron Letters 25: 3869-3872
Krishnan HB, Natarajan SS (2009) A rapid method for depletion of Rubisco from soybean (Glycine max) leaf for proteomic analysis of lower abundance proteins. Phytochemistry 70: 1958-1964
Le Faucheur S, Behra R, Sigg L (2005) Phytochelatin induction, cadmium accumulation, and algal sensitivity to free cadmium ion in Scenedesmus vacuolatus. Environmental toxicology and chemistry / SETAC 24: 1731-1737
Lee S, Korban SS (2002) Transcriptional regulation of Arabidopsis thaliana phytochelatin synthase (AtPCS1) by cadmium during early stages of plant development. Planta 215: 689-693
Long X, Yang X, Ni W (2002) [Current situation and prospect on the remediation of soils contaminated by heavy metals]. Ying Yong Sheng Tai Xue Bao 13: 757-762
Maier T, Yu C, Kullertz G, Clemens S (2003) Localization and functional characterization of metal-binding sites in phytochelatin synthases. Planta 218: 300-308
Maitani T, Kubota H, Sato K, Yamada T (1996) The Composition of Metals Bound to Class III Metallothionein (Phytochelatin and Its Desglycyl Peptide) Induced by Various Metals in Root Cultures of Rubia tinctorum. Plant physiology 110: 1145-1150
Meister A (1995) Glutathione metabolism. Methods in enzymology 251: 3-7
Pal R, Rai JP (2010) Phytochelatins: peptides involved in heavy metal detoxification. Applied biochemistry and biotechnology 160: 945-963
Rauser WE (1999) Structure and function of metal chelators produced by plants: the case for organic acids, amino acids, phytin, and metallothioneins. Cell Biochem Biophys 31: 19-48
Rea PA, Vatamaniuk OK, Rigden DJ (2004) Weeds, worms, and more. Papain's long-lost cousin, phytochelatin synthase. Plant physiology 136: 2463-2474
Romanyuk ND, Rigden DJ, Vatamaniuk OK, Lang A, Cahoon RE, Jez JM, Rea PA (2006) Mutagenic definition of a papain-like catalytic triad, sufficiency of the N-terminal domain for single-site core catalytic enzyme acylation, and C-terminal domain for augmentative metal activation of a eukaryotic phytochelatin synthase. Plant physiology 141: 858-869
Sanità di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environmental and Experimental Botany 41: 105-130
Schmoger ME, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant physiology 122: 793-801
Vatamaniuk OK, Mari S, Lang A, Chalasani S, Demkiv LO, Rea PA (2004) Phytochelatin synthase, a dipeptidyltransferase that undergoes multisite acylation with gamma-glutamylcysteine during catalysis: stoichiometric and site-directed mutagenic analysis of arabidopsis thaliana PCS1-catalyzed phytochelatin synthesis. The Journal of biological chemistry 279: 22449-22460
Vatamaniuk OK, Mari S, Lu YP, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proceedings of the National Academy of Sciences of the United States of America 96: 7110-7115
Vatamaniuk OK, Mari S, Lu YP, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase: blocked thiols are sufficient for PC synthase-catalyzed transpeptidation of glutathione and related thiol peptides. The Journal of biological chemistry 275: 31451-31459
Vestergaard M, Matsumoto S, Nishikori S, Shiraki K, Hirata K, Takagi M (2008) Chelation of cadmium ions by phytochelatin synthase: role of the cysteine-rich C-terminal. Analytical sciences : the international journal of the Japan Society for Analytical Chemistry 24: 277-281
Vivares D, Arnoux P, Pignol D (2005) A papain-like enzyme at work: Native and acyl–enzyme intermediate structures in phytochelatin synthesis. Proceedings of the National Academy of Sciences of the United States of America 102: 18848-18853
Wang H-C, Wu J-S, Chia J-C, Yang C-C, Wu Y-J, Juang R-H (2009) Phytochelatin Synthase Is Regulated by Protein Phosphorylation at a Threonine Residue Near Its Catalytic Site. Journal of Agricultural and Food Chemistry 57: 7348-7355
Whitney SM, Andrews TJ (2001) Plastome-encoded bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) supports photosynthesis and growth in tobacco. Proceedings of the National Academy of Sciences of the United States of America 98: 14738-14743
Yang X, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18: 339-353
Zhang H, Xu W, Guo J, He Z, Ma M (2005) Coordinated responses of phytochelatins and metallothioneins to heavy metals in garlic seedlings. Plant Science 169: 1059-1065
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32885-
dc.description.abstract阿拉伯芥 (Arabidopsis thaliana) 中含有植物螯合素合成酶 (phytochelatin synthase, PCS, EC 2.3.2.15),會利用 glutathione (GSH) 為基質來合成植物螯合素 (phytochelatin, PC) 以結合入侵的重金屬,降低對植物的傷害。由於本實驗室以前表現出的PCS重組蛋白質N端帶有容易與金屬螫合的His-Tag,因此本論文試著將重組蛋白質上的Tag以thrombin去除。結果顯示不論是否帶有His-Tag,PCS的活性均無明顯改變。這可能是我們給予的鎘離子濃度和基質GSH超過活性催化所需,所以His-Tag的有無對PCS重組蛋白質來說沒有太大的差異。利用點突變技術將PCS的 N端保守性區域的Tyr 55進行點突變之後,測定不同突變株之表現蛋白質活性,發現同為芳香族的Y55F和Y55W突變株的活性和野生種比起來,僅稍微下降一些,而Y55H和Y55A突變株的活性則劇烈下降。進一步利用酵素動力學計算各突變株的Km和kcat,發現當側基失去芳香基團,酵素的整體催化能力也隨之下降50% 左右。由以上結果我們推測Tyr 55的苯環可以經由cation-pi 作用力,與帶著鎘的GSH複合物結合,以此將第二個基質GSH帶進催化區合成PC。另一方面,本論文以二次元電泳分析在植物體中PCS是否有磷酸化現象,發現未經過鎘逆境處理的阿拉伯芥樣本中,若加入phosphatase會使PCS蛋白質色點位移至pI較大之處,這可能是PCS被去除磷酸化所造成的結果。分別以不同濃度的鎘逆境處理後的阿拉伯芥樣本則無色點位移現象,但是各色點的比例有些不同。推測阿拉伯芥受到鎘逆境時PCS的磷酸化程度會隨之改變,所以二維電泳圖譜上才會呈現出色點比例的差異。分析阿拉伯芥粗抽取液的PCS活性,發現加以phosphatase inhibitor處理會提升PCS的活性,顯示磷酸化的確會對PCS的活性造成影響。本論文也使用免疫沉澱法來純化內生性PCS,將利用質譜儀 (LC-MS/MS) 來分析抗體辨認到的蛋白質身分,以及有無磷酸化修飾的現象。zh_TW
dc.description.abstractPhytochelatin synthase (PCS, EC 2.3.2.15) in Arabidopsis thaliana uses glutathione (GSH) as its substrate for the synthesis of phytochelatins (PCs) which could bind to heavy metals to reduce damages to cells. We have expressed AtPCS1 with His-Tag on its N-terminal sequence using E. coli expression system. In this study, His-Tag on AtPCS1 construct was removed by thrombin and the activity was then analyzed. There is no change on PCS catalytic activities whether the recombinant proteins contained His-Tag or not. This might be caused by using high concentration of GSH and Cd in the activity assay solution. To explore possible functions of the putative second substrate binding site, we tested several mutants at Tyr 55. Results showed that the activities of the mutants Y55F and Y55W were slightly lower than that of the wild-type. However, activities of Y55H and Y55A were dramatically decreased. Furthermore, changes on enzyme kinetic parameters of Tyr 55 mutants indicated that the aromatic group on Tyr 55 was important to PCS catalytic activity. These results suggested that Tyr 55 might bind GSH through cation-pi interaction. On the other hand, the two-dimensional electrophoresis (2-DE) analysis revealed that the native PCS in Arabidopsis showed several spots with different pI values. Samples treated with calf intestinal alkaline phosphatase (CIP) showed shifts of PCS spots on 2-DE, which might resulted from dephosphorylation of PCS. Samples treated with various Cd stress were also tested; the pI values of PCS spots were not affected by CIP, but the propotion of spots were slightly changed. These results suggested that phosphorylation of PCS might be enhanced in plants under Cd stress. In addition, PCS activity in Arabidopsis was decreased when sample was treated with CIP, and the activity could be recovered by adding phosphatase inhibitors. The above observations showed that the PCS activity might be regulated by phosphorylation. We also purified the endogenous PCS from Arabidopsis plants by immunoprecipitation and will identify the protein spots and its phosphorylation by LC-MS/MS.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:18:08Z (GMT). No. of bitstreams: 1
ntu-100-R98b47214-1.pdf: 3932877 bytes, checksum: 8398303b6b11e24ebb1f55331c19a8ef (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要 I
Abstract II
縮寫表 III
第一章 緒論 1
1.1 環境中重金屬的衝擊 1
1.1.1 重金屬於現今社會的現況 1
1.1.2 重金屬的定義 1
1.1.3 重金屬對於生物體的危害 1
1.1.4 如何清除重金屬汙染 2
1.2 植物體遇到重金屬逆境該如何自處 3
1.2.1 植物體抵抗重金屬逆境的機制 3
1.2.2 植物螯合素之結構與在重金屬累積時所扮演的角色 3
1.2.3 植物螯合素之特性與其和金屬之間的關係 4
1.3 植物螯合素經由植物螯合素合成酶 (phytochelatin synthase, PCS) 催化產生 5
1.3.1 植物螯合素合成酶之特性與純化 5
1.3.2 植物螯合素合成酶之基因研究 5
1.3.3 植物螯合素合成酶基因於自然界之分布 7
1.3.4 植物螯合素合成酶之催化機制 8
1.3.5 植物螯合素合成酶在生理上之功能 10
1.4 植物螯合素合成酶催化機制研究 10
1.4.1 植物螯合素合成酶可能受到蛋白質磷酸化的調控 11
1.4.2 植物螯合素合成酶上重要胺基酸Tyr 55的角色 12
1.5 研究動機 12
第二章 材料與方法 14
2.1 實驗材料 14
2.1.1 植物材料 14
2.1.2 表現載體 (vectors) 14
2.1.3 大腸桿菌 (Escherichia coli) 菌株 14
2.2 阿拉伯芥植物螯合素合成酶重組蛋白質製備 14
2.2.1 質體之轉形 (Transformation) 14
2.2.2 AtPCS1重組蛋白質之表現及純化 15
2.3 阿拉伯芥植物螯合素合成酶重組蛋白質之催化機制探討 16
2.3.1 決定最適基質和酵素反應時間 16
2.3.2 阿拉伯芥植物螯合素合成酶重組蛋白質之活性分析 16
2.3.3 阿拉伯芥植物螯合素合成酶重組蛋白質之酵素動力學 16
2.4 阿拉伯芥粗抽取液中AtPCS1有無磷酸化之電泳圖譜和活性分析差異 17
2.4.1 種植阿拉伯芥植株 17
2.4.2 阿拉伯芥植株以鎘處理之方法 17
2.4.3 添加磷酸酶抑制劑與蛋白質去磷酸化分析 17
2.4.4 蛋白質樣本萃取方法 17
2.4.5 蛋白質二維電泳 (2-dimensional electrophoresis) 18
2.4.6 阿拉伯芥粗抽取液中AtPCS1活性分析 18
2.5 以Ca2+/phytate分劃阿拉伯芥總蛋白質 19
2.6 免疫沉澱法 (immunoprecipitation, IP) 19
2.6.1 Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) 多株抗體之製備 19
2.6.2 免疫沉澱法 20
2.7 阿拉伯芥白化苗處理 21
2.7.1 無菌播種 21
2.7.2 阿拉伯芥白化苗以鎘處理之方法 21
2.7.3 蛋白質分析方法 21
第三章 結果與討論 22
3.1 PCS表現蛋白質反應條件測試 22
3.2 點突變型AtPCS1之活性分析和酵素動力學 24
3.2.1 His-Tag對於重組蛋白質AtPCS1之影響 24
3.2.2 Tyr 55點突變型AtPCS1之活性分析及酵素動力學 25
3.3 觀察植物內生性PCS是否有磷酸化現象 34
3.3.1 以二維電泳圖譜觀察阿拉伯芥內生性PCS是否有磷酸化現象 34
3.3.2 磷酸化可能會影響阿拉伯芥PCS活性 35
3.3.3 利用抗體檢測阿拉伯芥內生性PCS是否有磷酸化 37
3.4 去除阿拉伯芥中的Rubisco以利於分析含量較低的內生性PCS 42
3.4.1 去除Rubisco來進行電泳分析低量蛋白質 42
3.4.2 利用阿拉伯芥白化苗去除Rubisco 43
3.4.3 使用anti-Rubisco多株抗體以免疫沉澱法去除Rubisco 43
3.5 純化阿拉伯芥內生性PCS 49
3.5.1 鎘誘導阿拉伯芥內生性PCS表現量增加 49
3.5.2 以免疫沉澱法純化阿拉伯芥內生性PCS 49
第四章 未來研究方向 55
參考文獻 56
附錄 60
附錄一. 實驗藥品 60
1.1.1 一般化學試劑 60
1.1.2 酵素 60
1.1.3 培養基 60
附錄二. 儀器設備 61
問答錄 63
dc.language.isozh-TW
dc.subject阿拉伯芥植物螯合素合成&#37238zh_TW
dc.subject磷酸化zh_TW
dc.subjectTyr 55突變zh_TW
dc.subjectTyr 55 mutationen
dc.subjectphytochelatin synthaseen
dc.subjectphosphorylationen
dc.title磷酸化及Tyr 55突變對阿拉伯芥植物螯合素合成酶之催化活性影響zh_TW
dc.titleThe effect of phosphorylation and Tyr 55 mutation on the catalytic activity of phytochelatin synthase from Arabidopsis thalianaen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張世宗,楊健志,常怡雍,陳翰民
dc.subject.keyword磷酸化,Tyr 55突變,阿拉伯芥植物螯合素合成&#37238,zh_TW
dc.subject.keywordphosphorylation,Tyr 55 mutation,phytochelatin synthase,en
dc.relation.page64
dc.rights.note有償授權
dc.date.accepted2011-07-28
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
3.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved