Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32873
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭景暉(Jiiang-Huei Jeng)
dc.contributor.authorTseng-Fang Taien
dc.contributor.author戴岑芳zh_TW
dc.date.accessioned2021-06-13T04:17:48Z-
dc.date.available2006-08-03
dc.date.copyright2006-08-03
dc.date.issued2006
dc.date.submitted2006-07-24
dc.identifier.citationAhn NG, Tolwinski NS, and Hughes H. U0126: An Inhibitor of MKK/ERK Signal Transduction in Mammalian Cells. Promega Notes 1999; 71: 04.
Aubin JE, Liu F, Malaval L, and Gupta AK. Osteoblast and chondroblast differentiation. Bone 1995;17(2, Suppl):77S-83S.
Bao LY, Niu ZY, Wang P. The roles of Smad 2/3 in transforming growth factor-beta 1 signaling in human dental pulp cells. Zhonghua Kuo Qiang Yi Xue Za Zhi 2003;38:39-42.
Bellone G, Carbone A, Mauri TF, Ferrero I, Smirne C, Suman F, Rivetti C, Migliaretti G, Camandona M, Palestro G,. Emanuelli G, Rodeck U. Differential expression of transforming growth factors- ß 1, - ß 2 and - ß 3 in human colon carcinoma. European Journal of Cancer 2001; 37: 224-233.
Burstone M S. Histochemical comparison of naphthol AS-phosphates for the demonstration of phosphatases. J of National Cancer Institute 1958;20(3):601-615.
Caroline Hill. Signal transduction pathway and cancer, the role of the TGF-ß super family. Cancer Research UK Scientific Yearbook 2002-03.
Cassidy N, Fahey M, Prime SS, and Smith AJ. Comparative analysis of transforming growth factor –ß isoforms 1-3 in human and rabbit dentin matrices. Archs Oral Biol 1997;42(3):219-223.
Chan CP, Lan WH, Chang MC, Chen YJ, Lan WC, Chang HH, Jeng JH. Effects of TGF-betas on the growth, collagen synthesis and collagen lattice contraction of human dental pulp fibroblasts in vitro. Arch Oral Biol 2005;50(5): 469-79.
Chang MC, Lan WH, Chan CP, Lin CP, Hsieh CC, Jeng JH. Serine protease activity is essential for thrombin-induced protein synthesis in cultured human dental pulp cells: modulation roles of prostaglandin E2. J. of Oral Pathology & Medicine 1998; 27(1):23-9.
Chang TC, Wang JK, Hung MW, Chiao CH, Tsai LC and Chang GG. Regulation of the expression of alkaline phosphatase in a human breastcancer cell line. Biochem. J. 1994; 303: 199-205.
Chen J, Niu Z, Yao L, Ziao M, Fan J. cDNA cloning and sequencing of MH2 domain of Smad2 from human dental pulp cells. Chin J Dent Res 1999;2:14-18.
Cohen S & Hargreaves KM. Pathway of the pulp. 9th edition, 2006.
DenBesten PK, Machule D, Gallagher R, Marshall GW Jr, Mathews C, Filvaroff E. The effect of TGF-beta 2 on dentin apposition and hardness in transgenic mice. Adv Dent Res. 2001 ;15:39-41.
Farley JR & Magnusson P. Effects of Tunicamycin, Mannosamine, and other inhibitors of glycoprotein processing on skeletal alkaline phosphatase in human osteoblast-like cells. Calcif Tissue Int 2005:76; 63-74.
Frankel SN: Pulp therapy in pedodontics, Oral surg 1972;34: 293.
Goldberg M, Smith AJ. Cells and extracellular metrices of dentin and pulp: A biological basis for repair and tissue engineering. Crit Rev Oral Biol Med 2004;15(1):13-27.
Guicheux J, Lemonnier J, Ghayor C, Suzuki A, Palmer G, and Caverzasio J. Activation of p38 Mitogen-Activated Protein Kinase and c-Jun-NH2 -Terminal Kinase by BMP-2 and Their Implication in the Stimulation of Osteoblastic Cell Differentiation. J Bone Miner Res 2003;18:2060–2068.
Hasegawa T., Nakao A., Sumiyoshi K., Tsuchihashi H., Ogawa H.. SB-431542 inhibits TGF-beta-induced contraction of collagen gel by normal and keloid fibroblasts. J Dermatol Sci 2005;39(1): 33-8.
He WX, Niu ZY, Zhao SL, Jin WL, Gao J, Smith AJ. TGF-ß activated Smad signalling leads to a Smad3-mediated down-regulation of DSPP in an odontoblast cell line. Arch Oral Biol 2004 ;49(11):911-8.
Heikinheimo K, Happonen RP, Miettinen PI, Ritvos O. Transforming growth factor beta 2 in epithelial differentiation of developing teeth and odontogenic tumors. J Clin Invest 1993;91:1019-1027.
Heldin CH, Miyazono K, Dijke P. TGF- ß signaling from cell membrane to nucleus through smad proteins. Nature 1997;390(4):465-471.
Helena H. Ritchie, Jun Liu, S. Kasugai, Peter Moller. A mineralizing rat dental pulp cell subline expressing collagen type I and dentin sialoprotein-phosphophoryn transcripts. In Vitro Cell Dev Biol 2002;38:25-29.
Henthorn PS, Raducha M, Edwardso YH, Weiss MJ, Slaughters C, Lafferty MA, and Harris H. Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: Close homology to placental alkaline phosphatase. Proc. Nati. Acad. Sci. USA 1987;82:1234-1238.
Hu CC, Zhang C, Qian Q, Tatum NB. Reparative dentin formation in rat molars after direct pulp capping with growth factors. J Endod. 1998 ;24(11):744-51.
Jeng JH, Ho YS, Chan CP, Wang YJ, Hahn LJ, Lei D, Hsu CC, Chang MC. Areca nut rextract up-regulates prostaglandin production, cyclooxygenase-2 mRNA and protein expression of human oral keratinocytes. Carcinogenesis 2000;21(7):1365-70.
Jose Luis Mill. Molecular Cloning and SequenceA nalysis of Human Placental Alkaline Phosphatase. The J of Biological Chemistry. 1986;261 (7):3112-3115.
Kam W., Clauser E., Kim Y.S., Kanf Y.W., and Rutter W.J.. Cloning, sequencing, and chromosomal localization of human term placental alkaline phosphatase cDNA. Proc. Natl. Acad. Sci. USA 1985;82:8715-8719.
Kasugai S., Adachi M.and Ogura H.. Establishment and characterization of a clonal cell line (RPC-2A) from dental pulp of the rat incisor. Arch Oral Biol 1988;33(12):887-891.
Kolodziejczyk SM & Hall BK. Signal transduction and TGF- ß superfamily receptors. Review. Biochem Cell Biol 1996;74:299-314.
Kramer B and Clem P. Regulation of the proportion of insulin cells in embryonic chick pancreas: effect of a growth factor-reduced extracellular matrix in combination with retinoic acid. In Vitro Cell Dev Biol Anim 2003;39(5-6):196-8.
Kuo PL, Hsu YL, Chang CH, and Chang JK. Osthole-Mediated Cell Differentiation through BoneMorphogenetic Protein-2/p38 and Extracellular Signal-Regulated Kinase 1/2 Pathway in Human Osteoblast Cells.The Journal of Pharmacology and Experimental Therapeutics 2005; 314(3): 1290-1299.
Lebrin F, Deckers M, Bertolino P, ten Dijke P. TGF- ß receptor function in the endothelium. Review. Cardiovascular Research 2005;65: 599-608.
Liang RF, Nishimura S, Maruyama S, Hanazawa S, Kitano S, Sato S. Effects of transforming growth factor- ß1 1nd epidermal growth factor on clonal rat pulp cells. Arch Oral Biol 1990;35:7-11.
Lodish, Berk, Matsudaira, Kaiser, Krieger, Scott, Zipursky,Darnell. Molecular Cell Biology. 5th edition 2004.
Lucchini M, Romeas A, Couble ML, Bleicher F, Magloire H, Farges JC. TGF beta 1 signaling and stimulation of osteoadherin in human odontoblasts in vitro. Connect Tissue Res 2002; 43:345-353.
Magloire H., Romeas A., Melin M. , Couble M.-L., Bleicher F., Farges J.-C.. Molecular Regulation of Odontoblast Activity under Dentin Injury. Adv Dent Res 2001;15:46-5.
Marcin B, Eva H, Le Z, Slawomir P, Gerard A, Jacqueline R, Joanna B, Joanna B-P, Rene B. The roles of annexins and alkaline phosphatase in mineralization process. Review. Acta Biochimica Polonica 2003; 50(4):1019-1038.
Marcus Kretzschmar. Transforming growth factor- ß/SMAD signaling defects and cancer. Review. Breast cancer research 2000;2(2):107- 115
Masae Goseki-Sone, Asako Yamada, Ryoko Hamatani, Lena Mizoi, Tadahiro Iimura, and Ikuko Ezawa. Phosphate depletion enhances bone morphogenetic protein-4 gene expression in a cultured mouse marrow stromal cell line ST2. Biochemical and Biophysical Research Communications 2002;299: 395–399.
Meinhard Schiller, Delphine Javelaud, Alain Mauviel .TGF-β-induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. Review. Journal of Dermatological Science 2004;35: 83-92.
Millan JL, Manes T. Seminoma-derived Nagao isozyme is encoded by germ-cell alkaline phosphatase gene. Proc Natl Acad Sci USA 1988; 85:3024-8.
Mulder KM. Role of Ras and Mapks in TGF ß signaling. Cytokine & Growth Factor Reviews 2000;11:23-35.
Nakashima M, Toyono T, Murakami T, Akamine A. Transforming growth factor-beta superfamily members expressed in rat incisor pulp. Arch Oral Biol 1998;43:745-751.
Narayanan K, Srinivas R, Ramachandran A, Hao J, Quinn B, George A. Differentiation of embryonic mesenchymal cells to odontoblast-like cells by overexpression of dentin matrix protein 1. Proc Natl Acad USA 2001;98(8):4516-21.
Pavasant P, Yongchaitrakul T, Pattamapun K, Arksornnukit M. The synergistic effect of TGF-beta and 1,25-dihydroxyvitamin D3 on SPARC synthesis and alkaline phosphatase aactivity in human pulp fibroblasts. Arch Oral Biol 2003;48:717-722.
Piattelli A, Rubini C, Fioroni M, Tripodi D & Strocchi R. Transforming growth factor-beta1 (TGF-beta1) expression in normal healthy pulps and in those with irreversible pulpitis. IEJ 2004;37:114-119.
Rengarajan K, Cristol SM, Mehta M, Nickerson JM. Quantifying DNA concentrations using fluorometry: A comparison of fluorophores. Molecular Vision 2002;8:416-21.
Ritchie HH, Liu J, Kasugai, Moller P. A mineralizing rat dental pulp cells subcline expressing collagen type I and dentin sialoprotein- phosphoryn transcripts. In Vitro Cell Dev Biol Anim 2002;38:25-29.
Rutherford R.B., TrailSmith M.D., Ryan M.E. and Charette M.F.. Synergistic effects of dexamethasone on platelet-derived growth factor mitogenesis in vitro. Arch Oral Biol 1992;37(2):139-45.
Schröder U. Effects of calcium hydroxide-containing pulp-capping agents on pulp cell migration, proliferation, and differentiation. J Dent Res 1985;64(Spec Iss):541-548.
Shiba H, Fujita T, Doi N, Nakamura S, Nakanishi K, Takemoto T, Hino T, Noshiro M, Kawamoto T, Kurihara H, Kato Y. Differential effects of various growth factors and cytokines on the synthesis of DNA, type I collagen, laminin, fibronectin, osteonectin/secreted protein, acidic and rich in cysteine (SPARC) and alkaline phosphatase by human pulp cells in culture. J Cell Physiol 1998; 174:194-205.
Shiba H, Uchida Y, Kamihagi K, Sakata M, Fujita T, Nakamura S, Takemoto T, Kato Y, and Kurihara. Transforming growth factor- ß1 and basic fibroblast growth factor modulate osteocalcin and osteonectin/SPARC syntheses in vitamin-D-activated pulp cells. J Dent Res 2001;80(7):1653-1659.
Shirakawa M, Shiba H, Nakanishi K, Ogawa T, Okamoto H, Nakashima K, Noshiro M, Kato Y. Transforming growth factor-beta-1 reduces alkaline phosphatase mRNA and activity and stimulates cell proliferation in cultures of human pulp cells. J Dent Res 1994:73(9); 1509-1514.
Sloan AJ, Couble ML, Bleicher F, Magloire H, Smith AJ, Farges JC. Expression of TGF-beta receptors I and II in the human dental pulp by in situ hybridization. Adv Dent Res. 2001;15:63-7.
Sloan AJ, Perry H, Matthews JB, Smith AJ. Transforming growth factor-ß isoform expression in mature human healthy and carious molar teeth. The Histochem J 2000;32: 247-252.
Sloan AJ., Smith AJ. Stimulation of the dentin-pulp complex of rat incisor teeth by transforming growth factor-beta isoforms 1-3 in vitro. Arch Oral Biol 1999;44:149-156.
Smith AJ, Matthews JB and Hall RC. Transforming growth factor- ß1 (TGF- ß1) in dentin matrix – ligand activation and receptor expression. Eur J Oral Sci 1998;106(Suppl 1):179-84.
Smith AJ. Dentin formation and repair. Dental Pulp, 2002.
Smith AJ. Pulp responses to caries and dental repair. Review. Caries Res 2002;36:223-232.
Smith AJ. Vitality of the dentin-pulp complex in health and disease: growth factors as key mediators. J of dental education 2003;67(6):678-689.
Sonia B. Jakowlew, Terry W. Moody, Jennifer M. Mariano. Transforming growth factor-beta receptors in human cancer cell lines: analysis of transcript, protein and proliferation. Anticancer Research 1997:17;1849-1860.
Sowa H, Kaji H, Yamaguchi T, Sugimoto T, and Chihara K. Activations of ERK1/2 and JNK by transforming growth factor –ß negatively regulate Smad3-induced alkaline phosphatase activity and mineralization in mouse osteoblastic cells. The Journal of Biological Chemistry 2002:277(39);36024-36031.
Spinella-Jaegle S., Roman-Roman S., Faucheu C., Dunn F.-W., Kawai S., S. Galle´ A, V. Stiot, Blanchet A. M., Courtois B., BARON R. , and RAWADI G. Opposite Effects of Bone Morphogenetic Protein-2 and Transforming Growth Factor- ß 1 on Osteoblast Differentiation. Bone 2001;29(4):323–330.
Stein GS, Lian JB and Owen TA. Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. FASEB J. 1990;4:3111-3123.
Sun Z, Jin P, Tian T, Gu Y, Chen YG, Meng A. Activation and roles of ALK4/ALK7-mediated maternal TGF ß signals in zebrafish embryo. Biochemical and Biophysical Research Communications 2006;345:694-703.
Tatsuru Ota, Makiko Fujii, Takashi Sugizaki, Masami Ishii, Keiji Miyazawa, Hiroyuki Aburatani, and Kohei Miyazono. Targets of Transcriptional Regulation by Two Distinct Type I Receptors for Transforming Growth Factor-ß in Human Umbilical Vein Endothelial Cells. J OF Cell Physiol 2002;193:299–318.
Togari A, Arai M, Mizutani S, Koshihara Y, Nagatsu T. Expression of mRNAs for neuropeptide receptors and ß-adrenergic receptors in human osteoblasts and human osteogenic sarcoma cells. Neuroscience Letters 1997;233:125-128.
Toyono T, Nakashima M, Kuhara S, and Akamine A. Expression of TGF -ß Superfamily receptors in dental pulp. J Dent Res 1997:76(9): 1555-1560 .
Tziafas D, Alvanou A, Papadimitrious S, Gasic J, Komnenou A. Effects of recombinant basic fibroblast growth factor, insulin-like growth-II and transforming growth factor- ß 1 on dog dental pulp cells in vivo. Arch Oral Biol 1998;43:431-44.
Tziafas D, Belibasakis G, Veis A, Papadimitriou S. Dentin regeneration in vital pulp therapy: design priciples. Adv Dent Res 2001;15:96-100.
Verschueren K, Huylebroeck D. Remarkable versatility of smad proteins in the nucleus of transforming growth factor- ß activated cells. Cytokine & Growth Factor Reviews 1999;10:187-99.
Vinals F, Pouyssegur J. Transforming growth factor ß 1 (TGF- ß1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-α signaling. Mol Cell Biol 2001; 21:7218-30.
Wrana JL. Regulation of Smad activity. Cell 2000;100:189-192.
李冠瑢.「電磁場與超音波刺激對骨母細胞生長影響之比較」. 中原大學醫學工程學系博士學位論文,2003年。
李柏勳. 「檳榔素誘導人類口腔上皮癌細胞 ( KB ) 細胞週期停滯之分子機制」. 台北醫學院生物醫學技術研究所碩士論文, 2001年。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32873-
dc.description.abstract轉型生長因子(TGF-&szlig;s)可能會調節人類牙髓細胞的生長、分化與功能。我們早期的研究發現TGF-&szlig;會抑制牙髓細胞的生長及刺激膠原蛋白的合成。實驗目的:在本實驗中,我們測試了不同TGF-&szlig;2的訊息傳導途徑對人類牙髓細胞分化所造成的影響。實驗方法:我們使用西方點墨法、免疫螢光染色、反轉錄鏈聚合酶反應(RT-PCR)、MTT測定、鹼性磷酸酶(ALP)染色與鹼性磷酸酶定量分析來觀察我們的發現。實驗結果:我們觀察到人類牙髓細胞主要表現TGF-&szlig;1的 mRNA, TGF-&szlig;2次之,與少量的TGF-&szlig;3之 mRNA。而西方點墨法的結果則是發現加入TGF-&szlig;2 (10 ng/ml)於牙髓細胞中會誘導 smad2/3,smad1/5/8與 ERK這些不同訊息傳導分子的活化;我們可用免疫螢光染色法觀察到smad3與smad1的表現從細胞質移位進入細胞核內。人類牙髓細胞經長滿五天後會表現強的鹼性磷酸酶活性,而TGF-&szlig;2 (≧5 ng/ml)會減低牙髓細胞鹼性磷酸酶的活性(P < 0.05) 與mRNA的表現。若先將牙髓細胞以 SB431542 (TGF-&szlig;之ALK-4, ALK-5 and ALK-7受體之抑制劑) 前處理,則結果會降低TGF-&szlig;2 (5 ng/ml) 於細胞存活率、鹼性磷酸酶染色與鹼性磷酸酶 mRNA表現所造成的抑制作用; 此種現象在經 U0126前處理的牙髓細胞中則較不明顯。結論:從以上的實驗結果推論- TGF-&szlig;2可能會藉著自體內泌與旁泌的作用來影響人類牙髓細胞活化不同的訊息傳導途徑。而這些不同途徑活化的結果可能會對牙髓的修復與牙本質的再生產生決定性的影響。zh_TW
dc.description.abstractTGF-&szlig;s (Transforming Growth Factor-&szlig;s) may regulate the growth, differentiation and function of human dental pulp cells. Our prior study has found that TGF-&szlig; inhibited pulp cells growth and stimulated collagen synthesis. Objectives: In this study, we tested the differential effects of TGF-&szlig;2 signaling on differentiation of cultured human dental pulp cells. Methods: We used western blotting, immunofluorescent observation, RT-PCR, MTT assay, alkaline phosphatase (ALP) staining, alkaline phosphatase quantitative assay to test our findings. Result: We found that human dental pulp cells expressed mainly TGF-&szlig;1, less TGF-&szlig;2 and trace amount of TGF-&szlig;3 mRNA. Exposure of pulp cells to TGF-&szlig;2 (10 ng/ml) induced the phosphorylation of smad2/3, smad1/5/8 and ERK signaling pathways as analyzed by western blotting; TGF-&szlig;2 also stimulated the nuclear translocation of smad3 and smad1 as observed by immunofluorescent microscope. Pulp cells expressed strong ALK-P activities in confluent culture for 5 days. Exposure to TGF-&szlig;2 (≧ 5 ng/ml) decreased the ALP activity ( P < 0.05 ) and mRNA expression. Pretreatment of pulp cells with SB431542 (an inhibitor of TGF-&szlig; ALK-4, ALK-5 and ALK-7 receptors) and to a lesser extent the U0126 (MEK1 inhibitor) prevented the inhibitory effect of TGF-&szlig;2 (5 ng/ml) on viable cell number, ALP staining, as well as the ALP mRNA expression in dental pulp cells. Conclusion: These results suggest that TGF-&szlig;2 may affect the biological activities of dental pulp cells via autocrine and paracrine fashion by activation the differential signal transduction pathways. These events can be crucial in pulpal repair and regeneration.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:17:48Z (GMT). No. of bitstreams: 1
ntu-95-R92422008-1.pdf: 12535106 bytes, checksum: 38dbaa79076f6ebcfe60ca981cc718fe (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要--------------------------------------------------------------------1
英文摘要--------------------------------------------------------------------3
第一章、文獻回顧----------------------------------------------------------------5
I. 牙髓細胞的修復-----------------------------------------------------5
II. 轉型生長因子-&szlig; ---------------------------------------------------------7
III. TGF-&szlig;之受體 ----------------------------------------------------------10
IV. TGF-&szlig; 於不同細胞之訊息傳導--------------------------------------11
V. 鹼性磷酸酶-----------------------------------------------------12
VI. 鹼性磷酸酶之基因調控----------------------------------------------14
第二章、動機與目的------------------------------------------------------------17
第三章、材料與方法--------------------------------------------------------19
1.人類牙髓細胞的培養-------------------------------------------------19
2.人類牙髓細胞中TGF-&szlig;的表現--------------------------------------19
2.1 RNA的分離方法----------------------------------------------------19
2.2 RNA定量-------------------------------------------------------------20
2.3 RNA反轉錄-----------------------------------------------------------21
2.4聚合酶鏈鎖反應----------------------------------------------------21
3. TGF-&szlig; 在人類牙髓細胞的訊息傳導------------------------------22
3.1西方點墨法 --------------------------------------------------------22
3.2 玻片上的免疫螢光染色法 --------------------------------------24
4.牙髓細胞的生長評估-MTT assay -------------------------------25
4.1 配製MTT dye -------------------------------------------------------25
4.2 MTT assay ---------------------------------------------------------26
5.在人類牙髓細胞中鹼性磷酸酶的表現 ----------------------------26
5.1鹼性磷酸酶染色 ---------------------------------------------------26
5.2使用RT-PCR來測定鹼性磷酸酶的表現-------------------------28
5.3定量鹼性磷酸酶的活性 ------------------------------------------28
5.3.1抽取cell lysate ------------------------------------------------28
5.3.2定量DNA -----------------------------------------------------------29
5.3.3鹼性磷酸酶的活性-----------------------------------------------29
6.統計分析 ------------------------------------------------------------------30
第四章、實驗結果--------------------------------------------------------------32
1.人類牙髓細胞中TGF-&szlig;s的表現---------------------------------------32
2. TGF-&szlig;2在人類牙髓細胞中的訊息傳導-------------------------------32
2.1以西方點墨法分析 TGF-&szlig;2在人類牙髓細胞的訊息傳導---32
2.2以免疫螢光染色法法分析 TGF-&szlig;2在人類牙髓細胞的訊息傳
導---------------------------------------------------------------------------33
3.牙髓細胞的生長評估-MTT assay--------------------------------------34
4. TGF-&szlig;2、U0126與SB431542對鹼性磷酸酶所造成的影響--------35
第五章、討論-------------------------------------------------------------39
第六章、結論-----------------------------------------------------------47
參考文獻-------------------------------------------------------------------48
表次-------------------------------------------------------------------58
表1. SDS-PAGE電泳片的配方---------------------------------------58
表2. 牙髓細胞的存活率(MTT assay)-----------------------------------59
表2~1. TGF-&szlig;2 & U0126---------------------------------------59
表2~2. TGF-&szlig;2 & SB431542-----------------------------------59
表2~3. 統計分析- MTT assay of U0126 & TGF-&szlig;2----------60
表2~4. 統計分析- MTT assay of SB431542 & TGF-&szlig;2--------61
表3. 鹼性磷酸酶定量分析- TGF-&szlig;2------------------------------------62
表3~1. 鹼性磷酸酶定量分析----------------------------------------62
表3~2. Kruskal-Wallis Test ----------------------------------63
表3~3. Mann-Whitney Test - ALP production -------------63
表4. 鹼性磷酸酶定量分析- TGF-&szlig;2 & U0126----------------------64
表4~1. 鹼性磷酸酶定量分析------------------------------------64

表4~2. Kruskal-Wallis Test -------------------------------65
表5. 鹼性磷酸酶定量分析- TGF-&szlig;2 & SB431542-------66
表5~1. 鹼性磷酸酶定量分析------------------------------------66
表5~2. Kruskal-Wallis Test ----------------------------------67
表5~3. Mann-Whitney Test ----------------------------------------68
圖次-------------------------------------------------------------------69
圖1. 原生、繼生與第三代牙本質的圖示---------------------------------69
圖2. 第三代牙本質的分類-------------------------------------------------69
圖3. TGF-&szlig; 第一型與第二型受體的結構簡圖--------------------------69
圖4. TGF-&szlig; 之訊息傳導途徑-----------------------------------------------70
圖5. TNAP對HA 的影響-----------------------------------------------------71
圖6. 鹼性磷酸酶定量分析實驗步驟流程-------------------------------72
圖7. 人類牙髓細胞中TGF-&szlig;s的表現-------------------------------73
圖8~1. TGF-&szlig;2的訊息傳導途徑(不同時間點)-------------------------74
圖8~2. TGF-&szlig;2的訊息傳導途徑(不同劑量)-------------------------75
圖8~3. 免疫螢光染色法-SMAD1-------------------------------------------76
圖8~4. 免疫螢光染色法-SMAD3-------------------------------------------77
圖9~1. MTT assay評估- TGF-&szlig;2 & U0126---------------------------78
圖9~2. MTT assay評估- TGF-&szlig;2 & SB431542----------------79
圖10~1. 不同劑量 TGF-&szlig;2 之鹼性磷酸酶染色------------------------80
圖10~2. TGF-&szlig;2 之鹼性磷酸酶產物作用之量--------------------------80
圖10~3. TGF-&szlig;2 之DNA濃度-----------------------------------------------81
圖10~4. TGF-&szlig;2 之鹼性磷酸酶活性--------------------------------------81
圖11~1. TGF-&szlig;2與U0126 之鹼性磷酸酶染色--------------------------82
圖11~2. TGF-&szlig;2與SB431542之鹼性磷酸酶染色----------------------82
圖11~3. 鹼性磷酸酶於RT-PCR的表現----------------------------------83
圖11~4. 顯微鏡下觀察鹼性磷酸酶染色結果TGF-&szlig;2與U0126 -----83
圖11~5. 顯微鏡下觀察鹼性磷酸酶染色結果TGF-&szlig;2與SB431542 -84
圖11~6. TGF-&szlig;2與U0126之鹼性磷酸酶定量結果 -------------------85
圖11~7. TGF-&szlig;2與SB431542之鹼性磷酸酶定量結果 ---------------86
dc.language.isozh-TW
dc.subject轉型生長因子zh_TW
dc.subject鹼性磷酸&#37238zh_TW
dc.subject細胞存活率zh_TW
dc.subject牙髓zh_TW
dc.subject訊息傳導zh_TW
dc.subjectsignal transductionen
dc.subjectalkaline phosphataseen
dc.subjectcellular survival rateen
dc.subjectTGF-βen
dc.subjectPulpen
dc.titleTGF- &szlig; 2對人類牙髓細胞的影響及其訊息傳導機制zh_TW
dc.titleEffects of TGF-β2 on human dental pulp cells and its signalingen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.coadvisor藍萬烘(Wan-Hong Lan)
dc.contributor.oralexamcommittee王東堯(Tung-Yiu Wong),張美姬
dc.subject.keyword牙髓,轉型生長因子,細胞存活率,訊息傳導,鹼性磷酸&#37238,zh_TW
dc.subject.keywordPulp,TGF-β,cellular survival rate,signal transduction,alkaline phosphatase,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2006-07-25
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
12.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved