請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32853完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林榮耀 | |
| dc.contributor.author | Bo-Wen Zhan | en |
| dc.contributor.author | 詹博文 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:17:13Z | - |
| dc.date.available | 2006-08-04 | |
| dc.date.copyright | 2006-08-04 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-25 | |
| dc.identifier.citation | 1. D. Maxwell Parkin, F.B.J.F.P.P., Estimating the world cancer burden: Globocan 2000. International Journal of Cancer, 2001. 94(2): p. 153-156.
2. Suriawinata, A.M.D. and R.M.D. Xu, An Update on the Molecular Genetics of Hepatocellular Carcinoma. Seminars in Liver Disease, 2004(1): p. 77-88. 3. Tsai, C.C., et al., Gene expression analysis of human hepatocellular carcinoma by using full-length cDNA library. J Biomed Sci, 2006. 13(2): p. 241-9. 4. Tsai, C.C., et al., Large-scale sequencing analysis of the full-length cDNA library of human hepatocellular carcinoma. J Biomed Sci, 2003. 10(6 Pt 1): p. 636-43. 5. Brown, W.M. and K.M. Dziegielewska, Friends and relations of the cystatin superfamily--new members and their evolution. Protein Sci, 1997. 6(1): p. 5-12. 6. Elzanowski, A., et al., Cystatin domains in alpha-2-HS-glycoprotein and fetuin. FEBS Letters, 1988. 227(2): p. 167-170. 7. Olivier, E., et al., Fetuin-B, a second member of the fetuin family in mammals. Biochem J, 2000. 350 Pt 2: p. 589-97. 8. Nawratil, P., et al., Limited proteolysis of human alpha2-HS glycoprotein/fetuin. Evidence that a chymotryptic activity can release the connecting peptide. J Biol Chem, 1996. 271(49): p. 31735-41. 9. Jahnen-Dechent, W., et al., Posttranslational processing of human alpha 2-HS glycoprotein (human fetuin). Evidence for the production of a phosphorylated single-chain form by hepatoma cells. Eur J Biochem, 1994. 226(1): p. 59-69. 10. Auberger, P., et al., Characterization of a natural inhibitor of the insulin receptor tyrosine kinase: cDNA cloning, purification, and anti-mitogenic activity. Cell, 1989. 58(4): p. 631-40. 11. Srinivas, P.R., et al., Serum alpha 2-HS-glycoprotein is an inhibitor of the human insulin receptor at the tyrosine kinase level. Mol Endocrinol, 1993. 7(11): p. 1445-55. 12. Chen, H., et al., Alpha2-Heremans Schmid glycoprotein inhibits insulin-stimulated Elk-1 phosphorylation, but not glucose transport, in rat adipose cells. Endocrinology, 1998. 139(10): p. 4147-54. 13. Wang, H., et al., Fetuin (alpha2-HS-glycoprotein) opsonizes cationic macrophagedeactivating molecules. Proc Natl Acad Sci U S A, 1998. 95(24): p. 14429-34. 14. Jahnen-Dechent, W., et al., Cloning and targeted deletion of the mouse fetuin gene. J Biol Chem, 1997. 272(50): p. 31496-503. 15. Schinke, T., et al., The serum protein alpha2-HS glycoprotein/fetuin inhibits apatite formation in vitro and in mineralizing calvaria cells. A possible role in mineralization and calcium homeostasis. J Biol Chem, 1996. 271(34): p. 20789-96. 16. Heiss, A., et al., Structural Basis of Calcification Inhibition by alpha 2-HS Glycoprotein/Fetuin-A. FORMATION OF COLLOIDAL CALCIPROTEIN PARTICLES. J. Biol. Chem., 2003. 278(15): p. 13333-13341. 17. Price, P.A. and J.E. Lim, The Inhibition of Calcium Phosphate Precipitation by Fetuin Is Accompanied by the Formation of a Fetuin-Mineral Complex. J. Biol. Chem., 2003. 278(24): p. 22144-22152. 18. Gangneux, C., et al., The inflammation-induced down-regulation of plasma Fetuin-A (alpha2HS-Glycoprotein) in liver results from the loss of interaction between long C/EBP isoforms at two neighbouring binding sites. Nucleic Acids Res, 2003. 31(20): p. 5957-70. 19. Kalabay, L., et al., Human fetuin/alpha2HS-glycoprotein level as a novel indicator of liver cell function and short-term mortality in patients with liver cirrhosis and liver cancer. Eur J Gastroenterol Hepatol, 2002. 14(4): p. 389-94. 20. Ohnishi, T., et al., Effect of phosphorylated rat fetuin on the growth of hepatocytes in primary culture in the presence of human hepatocyte-growth factor. Evidence that phosphorylated fetuin is a natural modulator of hepatocyte-growth factor. Eur J Biochem, 1997. 243(3): p. 753-61. 21. Szweras, M., et al., alpha 2-HS glycoprotein/fetuin, a transforming growth factor-beta/bone morphogenetic protein antagonist, regulates postnatal bone growth and remodeling. J Biol Chem, 2002. 277(22): p. 19991-7. 22. Demetriou, M., et al., Fetuin/alpha2-HS glycoprotein is a transforming growth factor-beta type II receptor mimic and cytokine antagonist. J Biol Chem, 1996. 271(22): p. 12755-61. 23. Keppler, D., Towards novel anti-cancer strategies based on cystatin function. Cancer Lett, 2006. 235(2): p. 159-76. 24. Dixelius, J., et al., Minimal active domain and mechanism of action of the angiogenesis inhibitor histidine-rich glycoprotein. Cancer Res, 2006. 66(4): p. 2089-97. 25. Olsson, A.K., et al., A fragment of histidine-rich glycoprotein is a potent inhibitor of tumor vascularization. Cancer Res, 2004. 64(2): p. 599-605. 26. McCrae, K.R., et al., Inhibition of angiogenesis by cleaved high molecular weight kininogen (HKa) and HKa domain 5. Curr Cancer Drug Targets, 2005. 5(7): p. 519-28. 27. Cao, D.J., Y.L. Guo, and R.W. Colman, Urokinase-type plasminogen activator receptor is involved in mediating the apoptotic effect of cleaved high molecular weight kininogen in human endothelial cells. Circ Res, 2004. 94(9): p. 1227-34. 28. Shridhar, R., et al., Cystatin M suppresses the malignant phenotype of human MDA-MB-435S cells. Oncogene, 2004. 23(12): p. 2206-15. 29. Ochieng, J., P. Warfield, and B. Green, Interactions of gelatinases with soluble and immobilized fetuin and asialofetuin. Arch Biochem Biophys, 1995. 322(1): p. 250-5. 30. Ray, S., P. Lukyanov, and J. Ochieng, Members of the cystatin superfamily interact with MMP-9 and protect it from autolytic degradation without affecting its gelatinolytic activities. Biochim Biophys Acta, 2003. 1652(2): p. 91-102. 31. Tajirian, T., J.W. Dennis, and C.J. Swallow, Regulation of human monocyte proMMP-9 production by fetuin, an endogenous TGF-beta antagonist. J Cell Physiol, 2000. 185(2): p. 174-83. 32. Kundranda, M.N., et al., The serum glycoprotein fetuin-A promotes Lewis lung carcinoma tumorigenesis via adhesive-dependent and adhesive-independent mechanisms. Cancer Res, 2005. 65(2): p. 499-506. 33. Leite-Browning, M.L., et al., Alpha 2-HS glycoprotein (fetuin-A) modulates murine skin tumorigenesis. Int J Oncol, 2004. 25(2): p. 319-24. 34. Yu, C.L. and M.H. Tsai, Fetal fetuin selectively induces apoptosis in cancer cell lines and shows anti-cancer activity in tumor animal models. Cancer Lett, 2001. 166(2): p. 173-84. 35. Hsu, S.J., H. Nagase, and A. Balmain, Identification of Fetuin-B as a member of a cystatin-like gene family on mouse chromosome 16 with tumor suppressor activity. Genome, 2004. 47(5): p. 931-46. 36. Swallow, C.J., et al., alpha2HS-glycoprotein, an antagonist of transforming growth factor beta in vivo, inhibits intestinal tumor progression. Cancer Res, 2004. 64(18): p. 6402-9. 37. Wildi, S., et al., Critical evaluation of the different staging systems for hepatocellular carcinoma. Br J Surg, 2004. 91(4): p. 400-8. 38. Denecke, B., et al., Tissue distribution and activity testing suggest a similar but not identical function of fetuin-B and fetuin-A. Biochem J, 2003. 376(Pt 1): p. 135-45. 39. Yang, C., et al., Integrin alpha1beta1 and alpha2beta1 are the key regulators of hepatocarcinoma cell invasion across the fibrotic matrix microenvironment. Cancer Res, 2003. 63(23): p. 8312-7. 40. Mareel, M. and A. Leroy, Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev, 2003. 83(2): p. 337-76. 41. Okegawa, T., et al., The role of cell adhesion molecule in cancer progression and its application in cancer therapy. Acta Biochim Pol, 2004. 51(2): p. 445-57. 42. Ward, K.R., et al., Expression of activated M-Ras in a murine mammary epithelial cell line induces epithelial-mesenchymal transition and tumorigenesis. Oncogene, 2004. 23(6): p. 1187-96. 43. Lan, M., et al., Oncogenic Raf-1 regulates epithelial to mesenchymal transition via distinct signal transduction pathways in an immortalized mouse hepatic cell line. Carcinogenesis, 2004. 25(12): p. 2385-95. 44. Lambrechts, A., M. Van Troys, and C. Ampe, The actin cytoskeleton in normal and pathological cell motility. Int J Biochem Cell Biol, 2004. 36(10): p. 1890-909. 45. Kundranda, M.N., et al., Annexins expressed on the cell surface serve as receptors for adhesion to immobilized fetuin-A. Biochim Biophys Acta, 2004. 1693(2): p. 111-23. 46. Gruys, E., et al., Acute phase reaction and acute phase proteins. J Zhejiang Univ Sci B, 2005. 6(11): p. 1045-56. 47. Baumann, H. and J. Gauldie, The acute phase response. Immunol Today, 1994. 15(2): p. 74-80. 48. Ombrellino, M., et al., Fetuin, a negative acute phase protein, attenuates TNF synthesis and the innate inflammatory response to carrageenan. Shock, 2001. 15(3): p. 181-5. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32853 | - |
| dc.description.abstract | 由於肝細胞癌(HCC)是一種發生率高的惡性腫瘤疾病,因此找尋其相關的診斷與治療基因標的是非常重要與迫切的課題。由本實驗室蔡家櫸先生之前建構的肝細胞癌全長cDNA資料庫中發現,有一群演化同源自cystatin的基因群,包含histidine-rich glycoprotein (HRGP)、fetuin-A (a2-HS-glycoprotein)、fetuin-B及kininogen,其基因轉錄有降低表現的狀況。
Cystatin目前認為是一種生理性的溶體(lysosome)半胱氨酸蛋白脢抑制劑,屬於cystatin superfamily的蛋白皆具有數個結構相似於cystatin的多肰序列。fetuin(胎球蛋白)即屬於其中一員。fetuin是一種negative acute phase proteins,特徵為其血清濃度會在外傷、感染及發炎反應時大幅降低。此外,fetuin對細胞生理仍具有許多功能,包括抑制insulin receptor的酪氨酸磷酸脢活性、可作為巨噬細胞去活性分子的調理素(opsonization)、調節骨骼發展及抑制血液中磷灰石的形成以避免不正常的鈣化現象。 在本研究中,我們利用即時定量聚合脢鏈鎖反應及免疫組織染色的技術,確認了在許多臨床的配對採集樣本中,fetuin-A及B的mRNA及蛋白表現在HCC組織中有表現下降的現象。針對fetuin-A的功能性研究上,過度表現fetuin-A會抑制其MMP-2的mRNA表現,這表示細胞內的fetuin-A可能會抑制HCC癌細胞的侵犯能力。 然而當我們利用西方點墨法進一步分析fetuin-A蛋白在HCC組織中的表現量時,卻發現可能由於癌化區域具有較多血管及血液輸送的關係,fetuin-A蛋白在癌化組織的累積量相較於正常組織要多。因此我們給予HCC細胞純化的fetuin-A蛋白刺激後發現,fetuin-A蛋白會增強細胞生長、抑制E-cadherin的mRNA表現、及藉由活化PI3K的訊息傳遞來增強高度侵犯性癌細胞的移動性。 因此我們認為隨著HCC癌症的發展,需較大量血液供給而使癌組織區累積較多fetuin-A蛋白,且伴隨癌細胞fetuin-A接受器表現增加,皆使得後期的HCC癌細胞易因fetuin-A的刺激而變得更具侵略性。 | zh_TW |
| dc.description.abstract | Hepatocellular carcinoma (HCC) is one of the most frequent neoplasms worldwide. Therefore, finding new markers or associated genes is very important in its diagnosis and treatment. In previous study, using full-length cDNA library of HCC constructed by Dr. C.C. Tsai in our laboratory, we found several cystatin-derived genes, such as histidine-rich glycoprotein (HRGP), fetuin-A (a2-HS-glycoprotein), Fetuin-B, and kininogen, showed remarkable down-regulation in tumor tissues compared to their adjacent normal tissues.
Cystatins are considered physiological inhibitors of lysosomal cysteine proteases. The cystatin “superfamily” encompasses proteins that contain multiple cystatin-like sequences. Fetuins are members of cystatin superfamily and are negative acute phase proteins in that their serum concentration drops after trauma, infection, and inflammation. Fetuins have been proposed to have several cellular functions including inhibition of tyrosine kinase activity of the insulin receptor, opsonization of macrophage-deactivating molecules, regulation of osteogenesis, inhibition of apatite formation and undesirable calcification. In the present study, we demonstrated that the mRNA and protein levels of fetuin-A and -B were remarkable down-regulated in HCC tissue pairs by quantitative real-time PCR and immunohistochemical staining. Over-expression of fetuin-A in SK-Hep-1 cell line caused down-regulation of MMP-2 at mRNA level without affecting cell proliferation. However, when we further analyze the fetuin protein patterns presented in HCC tissue pairs by Western blotting analysis, we surprisingly found that the level of fetuin protein in HCC tissues was higher than that of adjacent normal tissues. This phenomenon could be caused by more blood vessels in HCC tissues than normal tissues. By treating HCC cells with fetuin-A protein, it caused the increase of cell proliferation, and down-regulation of E-cadherin, whereas it activated PI3K signal pathway to enhance the cell motility of highly invasive HCC cells. It suggested that the late-stage HCC tumor tissues possessing more receptors of fetuin-A and higher amount of fetuin-A from blood vessels, and thus they are more sensitive to fetuin-A stimulation even if the fetuin-A synthesis was down-regulated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:17:13Z (GMT). No. of bitstreams: 1 ntu-95-R93442022-1.pdf: 4244606 bytes, checksum: 43aa60a5f5fec95259bba81c4b1e5d11 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Abbreviations 3
摘要: 5 Abstract: 7 Introduction 9 Materials and Methods 14 1. Materials 14 2. Quantitative Real-time RT PCR (Q-PCR) 15 3. Immunohistochemistry 16 4. Western blotting 17 5. Construction of a fetuin-A or -B expression plasmid 22 6. Cell culture, transfection, and selection of gene stably expressed cell pools 27 7. MTT assay 28 8. RNAs extraction and reverse transcription 29 9. Semi-quantitative RT-PCR 31 10. Gelatinase zymography 31 11. Alamar blue viability assay 33 12. Transwell cell motility assay 34 13. Wound healing assay 35 Results 36 1. Fetuins and kininogens in 45 HCC tissue pairs were significantly Down-regulated in the late stage than early stage at mRNA level. 36 2. Protein expression patterns of fetuins and kininogens in HCC tissues pairs. 37 3. Protein and mRNA expressions of fetuins in HCC cell lines. 37 4. Over-expression of fetuins could not affect the growth of SK-Hep-1 cell line. 38 5. Over-expression of fetuin-A down-regulated MMP2 at mRNA level. 39 6. The amount of fetuin-A protein in HCC tissue pairs was actually higher in the tumor parts than in the normal parts. 40 7. The cell growth of SK-Hep-1 or HepG2 cells treated with purified fetuin-A protein was increased. 41 8. Treatment of fetuin-A protein dramatically increased the motility of SK-Hep-1but not HepG2 cells. 41 9. The mRNA expression of E-cadherin in HepG2 was down-regulated by treatment with fetuin-A protein. 42 Discussion 44 Acknowledgments 49 Legends 50 Figures 58 References 73 | |
| dc.language.iso | en | |
| dc.subject | 肝細胞癌 | zh_TW |
| dc.subject | 胎球蛋白 | zh_TW |
| dc.subject | ahsg | en |
| dc.subject | fetuin | en |
| dc.subject | HCC | en |
| dc.title | 肝細胞癌相關基因Fetuin-A及Fetuin-B之功能性研究 | zh_TW |
| dc.title | Studies on the function of HCC- associated genes, Fetuin-A and Fetuin-B | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳華林,錢宗良,周玉山 | |
| dc.subject.keyword | 胎球蛋白,肝細胞癌, | zh_TW |
| dc.subject.keyword | HCC,fetuin,ahsg, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-25 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 4.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
