請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32844完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫雅麗(Yeali S. Sun) | |
| dc.contributor.author | Hsia-Chun Chu | en |
| dc.contributor.author | 朱夏君 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:16:59Z | - |
| dc.date.available | 2007-07-26 | |
| dc.date.copyright | 2006-07-26 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-24 | |
| dc.identifier.citation | [1]. IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, 1999. P802.11.
[2]. G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function”, IEEE JSAC, Vol. 18, No. 3, March 2000 [3]. F. Cali, M. Conti, E. Gregori, “Dynamic Tuning of the IEEE 802.11 Protcol to Achieve a Theoretical Throughput Limit”, IEEE/ACM TON, December 2000 [4]. V. M. Vishnevskii, N. N. Guzakov and A. I. Lyakhov, “Maximal Throughput of Wireless Access to the Internet: Its Estimation,” Automation and Remote Control, Vol. 65, No. 9, 2004 [5]. Alhussein A. Abouzeid, Sumit Roy, and Murat Azizoglu,“Comprehensive performance analysis of a TCP session over a wireless fading link with queueing”, IEEE Transactions on Wireless Communications, Vol. 2, No. 2, March 2003 [6]. J. Padhye, V. Firoiu, D.F. Towsley, J.F. Kurose, “Modeling TCP Throughput: A Simple Model and It’s Validation”, SIGCOMM, 1998 [7]. J. Padhye, V. Firoiu, D.F. Towsley, J.F. Kurose, “Modeling TCP Throughput: A Simple Model and It’s Validation”, IEEE Transactions on Networking 2000 [8]. Y. C. Tay and K. C. Chua, “A Capacity Analysis for the IEEE 802.11 MAC Protocol”, Wireless Networks, Vol. 2, Issue 2, March/April 2001 [9]. H. Wu, Y. Peng, K. Long, S. Cheng, J. Ma, “Performance of Reliable Transport Protocol over IEEE 802.11 Wireless LAN: Analysis and Enhancement”, Proc. of INFOCOM, 2002 [10]. LIU Yu, YE Min-hua, ZHANG Hui-min, “Improve TCP Performance over Wireless Link”, in Proceedings of IEEE International Symposium on Persona1, Indoor and Mobile Radio Communication, 2003 [11]. Raffaele Bruno, Marco Conti, and Enrico Gregori, ”Analytical Modeling of TCP Clients in Wi-Fi Hot Spot Networks”, Networking 2004 [12]. Javier del Prado Pavón and Sai Shankar N, “Impact of Frame Size, Number of Stations, and Mobility on the Throughput Performance of IEEE 802.11e”, Wireless Communications and Networking Conference (WCNC), 2004 [13]. Martin Heusse, Franck Rousseau, Gilles Berger-Sabbatel, Andrzej Duda, “Performance Anomaly of 802.11b”, INFOCOM 2000 [14]. The Network Simulator─ns-2, http://www.isi.edu/nsnam/ns/ [15]. “The Eifel Detection Algorithm for TCP,” RFC 3522 [16]. “Computing TCP’s Retransmission Timer,” RFC2988 [17]. “Experimental Evaluation of TCP Performance and Fairness in an 802.11e Test-bed” [18]. Yeali S. Sun, Chi-Jen Hung, “Performance Modeling and Evaluation of the Maximum Channel Capacity for TCP Flows in Wireless LAN” [19]. Sunghyun Choi, Javier del Prado, Sai Shankar N, Stefan Mangold, ”IEEE 802.11e Contention-Based Channel Access (EDCF) Performance Evaluation”, IEEE International Conference on Communications, 2003 [20]. Javier del Prado Pavón and Sai Shankar N , “Impact of Frame Size, Number of Stations and Mobility on the Throughput Performance of IEEE 802.11e”, IEEE Wireless Communications and Networking Conference, 2004 [21]. IEEE P802.11E/D12.0 Draft Standard, November 2004 [22]. Sven Wiethölter, Christian Hoene, An IEEE 802.11e EDCA and CFB Simulation Model for ns-2, Telecommunication Networks Group(TKN) [23]. T. V. Lakshman , Upamanyu Madhow , and Bernhard Suter, “TCP/IP Performance with Random Loss and Bidirectional Congestion”, IEEE/ACM Transactions on Networking, OCTOBER 2000 [24]. “RFC 793:Transmission Control Protocol”, September 1982 [25]. W. Steven, “RFC 2001:TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms”, January 1997 [26]. M. Allman, V. Paxson, W. Steven, “RFC 2581:TCP Congestion Control”, April 1999 [27]. Hari Balakrishman , Venkat N.Padmanabhan, Srinivasan Seshan, Randy H. Katz, “A Comparison of Mechanisms for Improving TCP Perfonnance over Wireless Links”, IEEE/ACM Transactions on Networking, Vol. 5, No. 6. Dec. 1997 [28]. Ajay Bakre, B.R. Badrinath, ”I-TCP: Indirect TCP for mobile hosts”, in Proc. 15th Int. Conf. on Distributed Computing Syst. (ICDCS), May 1995. [29] A, Bakre, B. R. Badrinath, “lmplementation and Performance Evaluation of’ Indirect-TCP”, IEEE Trans. Coinp.. Vol. 46, No. 3, Mar. 1997, pp. 260-278 [30]. H. Balakrishnan. “Challenges to Reliable Data Transport over Heterogeneous Wireless Networks”, Ph.D. thesis, UCBerkelcy, Aug. 1998 [31]. “RFC 2018:Selective Acknowledgment Option” [32]. Rohit Romani, Abhay Karandikar, “Explicit Congestion Notification in TCP over Wireless Network”, IEEE International Conference on Personal Wireless Communications, 2000 [33]. Hari Balakrishnan, Randy H. Katz, “Explicit Loss Notification and wireless web performance”, in Proceedings of IEEE Globecom Internet Mini-Conference, Sydney, Australia, Nov. 1998 [34]. Chiu, Yung-Kai, Yeali S. Sun, “Design of TCP throughput Optimization in Wireless Environment”, June 2004 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32844 | - |
| dc.description.abstract | 本篇論文,根據802.11 infrastructure WLAN中downstream TCP兩項重要行為:(1)constant pps(packets per second) throughput與(2)系統內平均的active wireless station(WS)數目<=2﹝active WS的定義為mac transmission queue中有TCP_ACK要回傳給AP的wireless station﹞,因而知道此時系統的utilization很低。我們詳細的整理出限制此架構下TCP效能的causes及effects,並提出了利用802.11e中TXOP概念的一系列enhancement機制。
我們提出的改進機制有以下四種:(1)TXOP (AP-k, WS-1)、(2)TXOP (AP-k, WS-k)、(3)TXOP (AP-k, WS-∞)及(4)TXOP (AP-k, WS-∞)+ACK prioritization and at most one transmission。第一種方法在AP 端使用TXOP,希望提升active WS的數目來提升channel contention level。而結果的確能成功改進infrastructure WLAN下TCP的throughput,因為它有效地同時增加了TCP_DATA下傳及TCP_ACK上傳的速率。TXOP讓AP每次channel access能送出多個封包,因而增加了下傳速率;上傳速率的增加則是因為,AP每次丟出多個封包,而提升了active WS的數目,因此增加了與AP競爭而搶到channel的機率。只是在TXOP較大的情形裡,卻會引發Asymmetry TCP中常見的問題,即forward path speed> reverse path speed,因此我們接著提出的方法(2)、(3)、(4),都是藉著增加reverse path上ACK回傳的速率,而能更進一步的改善TCP throughput。 我們也針對infrastructure WLAN中online wireless station number為1的scenario,提出了一個analytic model,來描述這一條TCP flow的throughput,此model的確能closely evaluate TCP throughput。另外,我們也針對TXOP (AP-k, WS-1)的enhancement機制,修改Conti[11]paper中的方法,提出了可以準確預估active WS的model,並以之為基礎,來evaluate TCP的throughput。 | zh_TW |
| dc.description.abstract | In this paper we are inspired from two important downstream TCP behaviors in infrastructure WLAN:(1) constant channel pps(packets per second) throughput (2) average active wireless station(WS) number always <=2 (active WS are those who have TCP_ACKs in MAC transmission queue and tend to actively contend for channel access to reply TCP_ACK to AP), and conclude that the channel utilization is low. Therefore, we investigated causes and effects that limit TCP throughput, and propose enhancement mechanisms which adopt the concept of 802.11e TXOP(transmission opportunity) to improve TCP throughput.
We propose four measures:(1)TXOP (AP-k, WS-1), (2)TXOP (AP-k, WS-k), (3)TXOP (AP-k, WS-∞), and(4)TXOP (AP-k, WS-∞)+ACK prioritization and at most one transmission. The first method employs TXOP at AP to increase the number of active WS, and indeed improve TCP throughput in infrastructure WLAN. The reason is that the transmission efficiency of downstream and upstream is both increased. Downstream rate rises due to multiple packets transmitted by AP per channel access. Upstream rate increases because the number of active WS gets larger and the probability for WS to grab channel to reply ACK has grown. However, when TXOP value get larger, the common problem of asymmetry TCP has shown:the reverse path throughput cannot catch up with the forward path throughput. Therefore, we propose the second, third, and fourth method to improve TCP throughput by speeding up the reverse path rate. We also propose an analytic model to characterize TCP throughput in infrastructure WLAN when the number of TCP connections equals one. Validated by simulation, we show that our model can precisely evaluate TCP throughput. In addition, we also characterize TCP throughput of the first method by modifying the model of Conti[11]. We closely evaluate the number active station and based on the estimation we can characterize the TCP throughput. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:16:59Z (GMT). No. of bitstreams: 1 ntu-95-R93725001-1.pdf: 4036774 bytes, checksum: 5d2f4d7275824f00e11e6737f705d405 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 謝詞 三
論文摘要 四 THESIS ABSTRACT 五 目 錄 七 表 次 九 圖 次 一〇 第一章、序論 1 第一節、背景介紹 1 第二節、研究動機 1 1.2.1、TCP的自我回饋速率控制﹝self-ticking rate control﹞ 1 1.2.2、802.11 MAC層影響TCP傳輸層造成的議題 2 1.2.3、Downstream資料流型態 3 第三節、問題定義 4 1.3.1、Layer 2 DCF﹝basic access scheme﹞ 5 1.3.2、Layer 4 TCP﹝TCP-Reno﹞ 5 1.3.3、Throughput衡量層次 6 1.3.4、Performance Metrics 7 第四節、研究目的 7 第五節、論文架構 7 第二章、文獻探討 8 第一節、TCP Performance Issues over Wireless Links 8 2.1.1、Link Layer Protocol 8 2.1.2、Split-Connection Scheme 9 2.1.3、End-to-End (TCP Modification) 9 第二節、Models for Estimating TCP throughput 9 2.2.1、無線網路中的UDP 9 2.2.2、無線網路下以p-persistent去sample exponential backoff 10 2.2.3、無線網路中的TCP 11 2.2.4、有線網路中的TCP 12 2.2.5、無線網路存取點架構中的TCP 13 第三節、背景知識 14 2.3.1、Transmission opportunity(TXOP) in 802.11e EDCA 14 第四節、類似問題解決方法的優缺點 15 第三章、Mechanisms to Improve TCP Performance 18 第一節、Problem Description 18 第二節、Causes/Effects that Limit TCP Channel Throughput 22 第三節、Weighted Channel Access Scheme 24 3.3.1、「TXOP (AP-k, WS-1)」─AP with finite TXOP k 25 3.2.2、「TXOP (AP-k, WS-k)」─Both AP and WS with finite TXOP k 53 3.2.3、「TXOP (AP-k, WS-∞) 」─AP with finite TXOP k, and WS with infinite TXOP 60 3.2.4、TCP_ACK Prioritization 67 3.2.5、「TXOP (AP-k, WS-∞)+ACK prioritization and at most one transmission」─AP with finite TXOP k, WS with infinite TXOP + ACK Prioritization (Smaller CW, Smaller AIFS, and Reduced Retry Count of TCP_ACK) 74 3.2.6、Conclusion of the Previous Schemes 85 第四章、Model for Estimating the TCP Throughput 89 第一節、TCP Throughput in Infrastructured WLAN (N=1) 89 4.1.1、Model Definition 89 4.1.2、Markov Model Analysis 90 4.1.3、Model Validation 99 第二節、TCP Throughput for AP with Finite TXOP k in Infrastructure WLAN 100 4.2.1、Estimation of Active Stations Number for AP with TXOP 100 4.2.2、TCP Throughput for AP with Finite TXOP k 104 第五章、討論 107 第六章、總結與未來展望 118 第七章、參考資料 120 | |
| dc.language.iso | zh-TW | |
| dc.subject | 主動競爭無線站台 | zh_TW |
| dc.subject | 傳輸控制協定 | zh_TW |
| dc.subject | 802.11 | zh_TW |
| dc.subject | 802.11e | zh_TW |
| dc.subject | 中控式無線網路 | zh_TW |
| dc.subject | 正確認信號 | zh_TW |
| dc.subject | 傳輸效能 | zh_TW |
| dc.subject | 802.11 | en |
| dc.subject | active WS | en |
| dc.subject | throughput | en |
| dc.subject | ACK | en |
| dc.subject | infrastructure WLAN | en |
| dc.subject | TCP | en |
| dc.subject | 802.11e | en |
| dc.title | IEEE 802.11無線網路之TCP傳輸效能評估 | zh_TW |
| dc.title | Performance Evaluation of TCP over IEEE 802.11 Networks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡志宏(Zsehong Tsai),張時中(Shi-Chung Chang),陳孟彰(Meng-Chang Chen) | |
| dc.subject.keyword | 傳輸控制協定,802.11,802.11e,中控式無線網路,正確認信號,傳輸效能,主動競爭無線站台, | zh_TW |
| dc.subject.keyword | TCP,802.11,802.11e,infrastructure WLAN,ACK,throughput,active WS, | en |
| dc.relation.page | 122 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-25 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 3.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
