Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32839
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊彬(Chun -Pin Lin)
dc.contributor.authorYuan-Ling Leeen
dc.contributor.author李苑玲zh_TW
dc.date.accessioned2021-06-13T04:16:51Z-
dc.date.available2008-08-04
dc.date.copyright2006-08-04
dc.date.issued2006
dc.date.submitted2006-07-25
dc.identifier.citationAeinehchi M, Eslami B, Ghanbariha M, Saffar AS (2003). Mineral trioxide aggregate (MTA) and calcium hydroxide as pulp-capping agents in human teeth: a preliminary report. International Endodontic Journal 36(3):225-231.
Alhadainy HA (1994). Root perforations. A review of literature. Oral Surgery, Oral Medicine, Oral Pathology 78(3):368-374.
Arens DE, Torabinejad M (1996). Repair of furcal perforations with mineral trioxide aggregate: two case reports. Oral Surgery Oral Medicine Oral Pathology Oral Radiology & Endodontics 82(1):84-88.
Asgary S, Parirokh M, Eghbal MJ, Brink F (2005). Chemical differences between white and gray mineral trioxide aggregate. Journal of Endodontics 31(2):101-103.
Bentur A (2002). Cementitious materials-nine millennia and a new centrury: past, present and future. Journal of materials in civil engineering 14(1):2-22.
Bonifacino JS, Wiley I (2002). Current protocols in cell biology. New York : John Wiley.
Brown PW, Hellmann JR, Klimkiewicz M (1993). Examples of evolution of microstructure in ceramics and composites. Microscopy Research & Technique.25(5-6):474-486.
Brown PW (1999). Hydration behavior of calcium phosphates is analogous to hydration behavior of calcium silicates. Cement and Concrete Research 29(8):1167-1171.
Bryan EB, Woollard G, Mitchell WC (1999). Nonsurgical repair of furcal perforations: a literature review. General Dentistry 47(3):274-278; quiz 279-280.
Bye GC (1983). Portland cement : composition, production, and properties. Oxford Oxfordshire ; New York: Pergamon Press.
Camilleri J, Montesin FE, Papaioannou S, McDonald F, Pitt Ford TR (2004). Biocompatibility of two commercial forms of mineral trioxide aggregate. International Endodontic Journal 37(10):699-704.
Camilleri J, Montesin FE, Di Silvio L, Pitt Ford TR (2005). The chemical constitution and biocompatibility of accelerated Portland cement for endodontic use. International Endodontic Journal 38(11):834-842.
Cohen S, Burns RC (2002). Pathways of the pulp edited by Stephen Cohen, Richard C. Burns St. Louis: Mosby.
Cong X, Kirkpatrick RJ (1996). 29Si MAS NMR study of the structure of calcium silicate hydrate. Advanced Cement Based Materials 3(3-4):144-156.
Cox CF, Subay RK, Ostro E, Suzuki S, Suzuki SH (1996). Tunnel defects in dentin bridges: their formation following direct pulp capping. Operative Dentistry 21(1):4-11.
Dominguez MS, Witherspoon DE, Gutmann JL, Opperman LA (2003). Histological and scanning electron microscopy assessment of various vital pulp-therapy materials. Journal of Endodontics 29(5):324-333.
Dorn SO, Gartner AH (1990). Retrograde filling materials: a retrospective success-failure study of amalgam, EBA, and IRM. Journal of Endodontics 16(8):391-393.
Ebisawa Y, Kokubo T, Ohura K, Yamamuro T (1990). Bioactivity of CaO.SiO2-based glasses: in vitro evaluation. Journal of Materials Science: Materials in Medicine 1(4):239-244.
Faraco IM, Jr., Holland R (2001). Response of the pulp of dogs to capping with mineral trioxide aggregate or a calcium hydroxide cement. Dental Traumatology 17(4):163-166.
Friedman S (1991). Retrograde approaches in endodontic therapy. Endodontics & Dental Traumatology 7(3):97-107.
Fuss Z, Trope M (1996). Root perforations: classification and treatment choices based on prognostic factors. Endodontics & Dental Traumatology 12(6):255-264.
Gartner AH, Dorn SO (1992). Advances in endodontic surgery. Dental Clinics of North America 36(2):357-378.
Gartner EM (1997). A proposed mechanism for the growth of C-S-H during the hydration of tricalcium silicate. Cement and concrete research 27(5):665-672.
Gauffinet S, Finot E, Lesniewska E, Nonat A (1998). Direct observation of the growth of calcium silicate hydrate on alite and silica surface by atomic force microscopy. Earth and Planetary Sciences 327(4):231-236.
Guerrero A, Goni S (2005). Microstructure and mechanical performance of belite cements from high calcium coal fly ash. Journal of the American Ceramic Society 88(7):1845-1853.
Hamad HA, Tordik PA, McClanahan SB (2006). Furcation perforation repair comparing gray and white MTA: a dye extraction study. Journal of Endodontics 32(4):337-340.
Hargreaves KM, Goodis HE, Seltzer S (2002). Seltzer and Bender's dental pulp Chicago : Quintessence Pub. Co.
Häu
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32839-
dc.description.abstract逆向充填、根管穿孔修補以及活髓治療都是臨床牙髓病治療常見的術式;其成功治療的關鍵除了有賴於完全的根管清創外,理想的修補材料扮演舉足輕重的角色。而鈣矽生醫陶瓷材料與市售材料MTA為相同成分系統,具備良好生物相容性與封閉性質,與水調拌後黏稠度適中易於臨床操作,硬化時呈現高pH值且具有一定強度,使用上不需特殊儀器,並且可藉由調整添加成分比例來改變材料的化學與物理性質,在牙髓病修補治療應用上深具潛力。因此本研究以CaO-SiO2成分系統為基礎,研發適合用於牙髓病修補治療的鈣矽生醫陶瓷(CSCs)材料,並從材料水合行為、表面活性層形成機轉、生物相容性三個層面,詳細探討鈣矽生醫陶瓷在牙髓病修補治療應用的潛力。第一章以鈣矽生醫陶瓷之研發與水合行為探討為核心。從SEM顯微結構、XRD晶相分析與FT/IR吸收光譜分析結果證實,鈣矽生醫陶瓷材料M811與市售兩種MTA的水合行為十分相似,由C3S主導其水合反應行為,而C3A與C4AF則可能藉由快速的溶解與再結晶作用形成水合產物,以提供CSH形成之材料結構骨架與成核中心的方式,而有助於CSCs整體的水合反應進行。第二章則著重鈣矽生醫陶瓷表面活性鈣磷化合物形成機轉的研究。SEM觀察到M811表面反應結晶類似HAP的顯微結構,經SEM-EDS鑑定為Ca/P 1.57之Ca-P rich的活性反應層,而XRD分析發現低結晶性HAP的繞射峰出現,FT-IR顯示CO3-for-PO4 Apatite的吸收光譜,同時ICP-OES檢測到環境磷離子大量被消耗,綜合這些研究結果證實「M811鈣矽生醫陶瓷於模擬體液環境,於材料表面形成鈣磷化合物的生物活性層」的假說,顯示本研究所研發之M811具備生物活性材料的性質。第三章則建立活髓材料之生物相容性測試模型,以研究鈣矽生醫陶瓷之生物相容性表現為主軸。細胞貼附行為觀察與細胞存活率分析結果一致,證實鈣矽生醫陶瓷具有良好的生物相容性。總結本研究的結果,M811與市售MTA有相似的水合行為,暗示可能與MTA同樣具有良好之封閉能力;同時於SBF環境中具有形成表面活性HCA的能力,且生物相容性良好,為一具有潛力應用於牙髓病修補治療之材料。zh_TW
dc.description.abstractRetrograde filling, perforation repair and vital pulp therapy are the common treatment strategies used in endodontics. The success of treatments depends on the adequate debridement of the pulp chamber and root canal system as well as the hermetic sealing obtained by an ideal restorative material. Calcium silicate bioceramics (CSCs), similar to the commercialized MTA in compositions, are potential materials for endodontic restorative treatments. It solidifies into a hard structure with high pH upon hydration. Recrystallization of CSCs may seal the pathways of communication between the canal system and its outer surface. CSCs also have the advantage of good handling properties. In this study, we developed a novel CSC for endodontic restorative treatments based on the CaO-SiOB2 Bsystem. We further investigated various material properties, including hydration behavior, surface bioactivity and perspectives for biocompatibility. Chapter 1 is dedicated to the development of a novel CSC and the investigations of its hydration mechanism. Utilizing SEM, XRD and FT/IR, we found the novel CSC, M811, and commercialized MTA shared the same hydration mechanism, in which CB3BS is the main contributor to the hydrated structure, catalyzing the production of the hydrates of CB3BA and CB4BAF, which in turn act as nucleation sites for CSH. Chapter 2 focused on the mechanism involved in the formation of bioactive apatite-like surfaces on CSCs in SBF. The apatite-like microstructure with Ca/P ratio of 1.57 was observed using SEM-EDS and the pattern of COB3B-for-POB4 Bapatite was identified by XRD and FT/IR. ICP-OES detected the loss of phosphorus in SBF. Based on these findings, the hypothesis that M811 may form the bioactive apatite-like layer on its surface in SBF was proved. Chapter 3 is to evaluate the biocompatibility for CSCs using MRPC-1 odontoblast-like cells. The results revealed that M811 demonstrated favorite cell adhesion and high cell viability as well as commercialized MTA. We also found that the C3S played the crucial role for the biocompatibility of CSCs. Notably, M811 revealed the similar hydration behavior to commercialized MTA which implies similar and comparable sealing capabilities in M811. Combine with the ability to form bioactive apatite-like layer on its surface in SBF, and its high biocompatibility, M811 is a potential material for restorative endodontic uses.en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:16:51Z (GMT). No. of bitstreams: 1
ntu-95-D90422003-1.pdf: 23443300 bytes, checksum: f71ab8db176fd93b3530644c27e5778a (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents謝誌 ------------------------------------------------ I
中文摘要 -------------------------------------------- II
英文摘要 -------------------------------------------- IV
目錄 ------------------------------------------------ V
圖次 ------------------------------------------------ VI
表次 ------------------------------------------------ IX
英文縮寫 -------------------------------------------- X
前言 ------------------------------------------------ 1
1.理想逆向充填及牙根穿孔修補材料的必要性和重要性 ---- 1
2.活髓治療於牙髓疾病治療的重要性 ------------------- 2
3.理想之牙髓疾病修補材料 ------------------------ 3
4.生醫陶瓷在生物醫學之應用 -------------------------- 5
5.鈣矽生醫陶瓷在牙髓疾病修補材料治療應用的潛力 ------ 6
6.研究動機與目的 ------------------------------------ 8
7.假說 ---------------------------------------------- 9
8.論文架構 ------------------------------------------ 9
第一章 鈣矽生醫陶瓷之研發與水合行為之探討 ----------- 10
1.1 研究背景與動機 ----------------------------- 10
1.2 研究材料與方法 ----------------------------- 13
1.3 結果 --------------------------------------- 16
1.4 討論 --------------------------------------- 21
1.5 結論 --------------------------------------- 29
第二章 鈣矽生醫陶瓷表面活性鈣磷化合物形成機轉 ------- 55
2.1 研究背景與動機 ----------------------------- 55
2.2 研究材料與方法 ----------------------------- 57
2.3 結果 --------------------------------------- 61
2.4 討論 --------------------------------------- 64
2.5 結論 --------------------------------------- 70
第三章 鈣矽生醫陶瓷之生物相容性 ------------------- 90
3.1 研究背景與動機 ----------------------------- 90
3.2 研究材料與方法 ----------------------------- 93
3.3 結果 --------------------------------------- 97
3.4 討論 --------------------------------------- 101
3.5 結論 --------------------------------------- 105
參考文獻 -------------------------------------------- 124
附錄 ------------------------------------------------ 130
A. 自述 ------------------------------------------- 131
B. 參考圖表 --------------------------------------- 132
C. 已發表之論文 ----------------------------------- 134
dc.language.isozh-TW
dc.title鈣矽生醫陶瓷在牙髓病治療之研發與應用zh_TW
dc.titleDevelopment and Application of Calcium Silicate Bioceramics in Endodontic Therapyen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree博士
dc.contributor.oralexamcommittee藍萬烘(Wan-Hon Lan),林峰輝(Feng-Huei Lin),牟中原(Chung-Yuan Mou),周綠蘋(Lu-Ping Chow)
dc.subject.keyword鈣矽生醫陶瓷,MTA,水合機轉,生物活性材料,生物相容性,zh_TW
dc.subject.keywordCalcium Silicate Bioceramics,MTA,Hydration mechanism,Bioactive materials,Biocompatibility,en
dc.relation.page150
dc.rights.note有償授權
dc.date.accepted2006-07-25
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
22.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved