Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32832
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張斐章(Fi-John Chang)
dc.contributor.authorShin-Yi Daien
dc.contributor.author戴欣怡zh_TW
dc.date.accessioned2021-06-13T04:16:40Z-
dc.date.available2007-07-27
dc.date.copyright2006-07-27
dc.date.issued2006
dc.date.submitted2006-07-24
dc.identifier.citation1. 王信凱 2000,「濕周-流量法應用於推估河川生態基流量之研究」,國立中興大學水土保持學系碩士論文。
2. 江柏寬 2002,「以進化演算法應用於德基水庫即時操作之研究」,私立中華大學土木工程學系碩士論文。
3. 吳明賢 2001,「應用遺傳演算法於群樁低價化設計」,國立中央大學土木工程學系碩士論文。
4. 吳富春、李國昇 1998,「集集共同攔河堰之環境生態基準流量評估」,水資源管理研討會論文集。
5. 吳瑞賢、溫博文、陳世偉 2004,「桃園大圳及石門大圳灌溉系統之效能評估」,桃園大圳水資源暨營運管理學術研討會,pp.8-23。
6. 李載鳴 2000,「碧海水力發電工程-南溪壩最小生態維護放水量、魚道設計標地魚種及設計條件等研究」,中興工程顧問社。
7. 周文杰 2001,「以水文流量資料估算生態基流量之探討-以中港溪為例」,水域生態工程研討會論文集,(4): P1-16。
8. 邱昱禎 2003,「模糊規劃理論與優選法於水庫操作之研究」,國立台灣大學生物環境系統工程學系碩士論文。
9. 徐錫川 2001,「利用模糊推論決定懲罰參數之結構最佳設計遺傳演算法」,國立台灣大學機械工程學系碩士論文。
10. 袁倫欽 2001,「序率動態規劃配合遺傳演算法之研究-以石門水庫供水系統為例」,國立台灣海洋大學河海工程學系碩士論文。
11. 高力山 1998,「水庫操作規線對供水及排砂影響之研究」,國立台灣大學農業工程學系碩士論文。
12. 張斐章 1984,「應用線性規劃研究水庫配合農業用水之最佳運轉策略」,國立台灣大學農業工程學系碩士論文。
13. 張斐章、張麗秋 1999,「智慧型水庫即時操作控制系統」,農業工程學報,45(4): 18-30。
14. 張斐章、黃金鐸、王文清 1995,「運用模糊序率動態規劃於水庫操作之應用」,台灣水利,43(4): 37-48。
15. 張雅婷 2006,「調適性模糊推論系統於水庫操作之研究」,國立台灣大學生物環境系統工程學系博士論文。
16. 許少瑜 2001,「水庫操作規線問題的模式與解法」,國立台灣大學農業工程學系碩士論文。
17. 郭振泰、張武訓 1984,「應用序率動態規劃於石門水庫運轉之研究」,第二屆水利工程研討會論文集,pp. 125-141。
18. 郭振泰、鄧志浩、鄭銘欽 1988,「應用序率線性動態規劃於翡翠水庫運轉之研究」,第四屆水利工程研討會論文集。
19. 陳 莉 1995,「以物件導向之遺傳演算法優選水庫運用規線之研究」,國立台灣大學農業工程學系博士論文。
20. 陳 莉、楊人傑、陳俊龍、蔡宗志 1998,「以遺傳演算法優選翡翠水庫運用規線之研究」,第九屆水利工程研討會論文集,pp. D93-D102。
21. 章盛傑 1994,「遺傳演算法之研究及其於水文化學模式之應用」,國立台灣大學農業工程學系碩士論文。
22. 彭瑞國、吳瑞賢、畢嵐杰、溫博文 2005,「保育用水觀念初探」,水資源管理研討會論文集。
23. 童慶斌 2005,第九章 遺傳演算法,國立台灣大學農業工程學系啟發式演算法與水資源管理課程教材。
24. 黃文政、袁倫欽、李啟鳴 2001,「遺傳演算法在多水庫最佳化操作之研究」,第12屆水利工程研討會論文集,pp. B1-B5。
25. 黃文政、楊富堤 1997,「水庫逕流預報與操作」,長期水資源預測研討會論文集,pp. 132-145。
26. 經濟部水利署水利規劃試驗所 2000,「河川保留基流量評估技術研究計畫(1/3)」,經濟部水利署。
27. 經濟部水利署水利規劃試驗所 2004,「生態水文於多目標水資源管理之研究與應用(1/2)」,經濟部水利署。
28. 經濟部水利署北區水資源局 2004,「枯旱期石門水庫運轉規線之檢討」,經濟部水利署。
29. 蕭政宗、張婉如 2005,「南化水庫及甲仙攔河堰考量河道放流量與供水之最佳營運策略」,農業工程學報,51(3): 58-73。
30. 謝暻椲 2002,「大漢溪中游生態基流量推估與棲地改善之研究」,國立中央大學土木工程學系碩士論文。
31. Bazarra, M., H. Sherali, H. Sherali and C. Shetty, 1993, “Nonlinear programming theory and algorithms”, Wiley, New York.
32. Chang, F. J. and L. Chen, 1998, “Real-coded genetic algorithm for rule-based flood control reservoir management”, Water Rersource Management, 12(3): 185-198.
33. Chang, F. J., S. C. Hui and Y. C. Chen, 2002, “Reservoir operation using grey fuzzy stochastic dynamic programming”, Hydrological Processes, 16(12): 2395-2408.
34. Chang F. J., J. S. Lai and L. S. Kao, 2003, “Optimization of operation rule curves and flushing schedule in a reservoir”, Hydrological Processes, 17: 1623-1640.
35. Chang, F. J., L. Chen and L. C. Chang, 2005, “Optimising the reservoir operation rule curves by genetic algorithms”, Hydrological Processes, 19: 2277–2289.
36. Chang, F. J. and Y. T. Chang, 2006, “Adaptive neuro-fuzzy inference system for prediction of water level in reseruoir”, Water Resources, 29: 1-10.
37. Chiu, Y. C., L. C. Chang and F. J. Chang, 2006, “Using hybrid GA-SA algorithem for fuzzy programming of reservoir operation”, Hydrological Processes (accepted).
38. Chung, T. T. and C. R. Wen, 2003, “Research on adjusting prnalty faction genetic algorithms for structural optimization”, Bulletin of the College of Engineering, N.T.U., No. 87.
39. Coit, D. W. and A. E. Smith, 1996, “Adaptive penalty methods for genetic optimization of constrained combinatorial problems”, INFORMS Journal on Computing, 8(2): 173-182.
40. Fahmy, H. S., J. P. King, M. W. Wentzel and J. A. Seton, 1994, “Economic optimization of river management using genetic algorithms”, No. 943034, ASCE Int. Summer Meeting, Am, Soc. Of Agricultural Engrs.
41. Gen, M., and R. Cheng, 1996, “A survey of penalty techniques in genetic algorithms”, Proceedings of the IEEE Conference on Evolutionary Computation, pp. 804-809.
42. Goldberg, D. E., 1989, “Genetic algorthms in search, optimization, and machine learing”, Addison-Wesley, Reading, Mass.
43. Gordon, N. D., T. A. McMahon, B. L. Finlayson, C. J. Gippel and R. J. Nathan, 2004, “Stream hydrology: an introduction for ecologistis ”, John Wiley and Sons, Ltd., pp. 252.
44. Hamida, S. B. and M. Schoenauer, 2000, “An adaptive algorithm for constrained optimization problems,” Proceedings of Parallel Problem Solving from Nature VI, LNCS 1917, Springer Verlag, pp. 529-538.
45. Helio, J. C. Barbosa and Afonso, C. C. Lemonge, 2003, “A new adaptive penalty scheme for genetic algorithms”, Information Sciences, 156: 15-251.
46. Holland, J. H., 1975, “Adaptation in natural and artificial systems”, 2nd ed. Mass. Inst. of Technol., Cambridge.
47. Homaifar, A., X. Q. Charlene and H. L. Steve, 1994, “Condtrained optimization via genetimulation”, 62(4): 242-254.
48. Hsu, Shiang-Kueen, 1995, “Shortage indices for water-resources planning in Taiwan”, Water Resources Planning and Management, 121(2): 119-131.
49. http://gweb.wra.gov.tw/wrweb/
50. http://wagner.zo.ntu.edu.tw/sos/sosknow/sosknow_2_1.htm
51. Joines, J. A. and C. R. Houck, 1994, “On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GAs”, Proceedings of the First IEEE International Conference on Evolutionary Computaion, IEEE Press, pp. 574-584.
52. Jowett, I. G., 1997, “Instream flow methods:A comparison of approaches”, Regulated Rivers: Research and Management, 13: 115-127.
53. Lin, C. Y. and P. Hajela, 1992, “Genetic algorithms in optimization problems with discrete and integer design variables”, Engineering Optimization, 19: 309-327.
54. Michalewicz, Z., 1992, “Gentic algorithms + data structures = evolution programs”, Springer Verlag.
55. Michalewicz, Z., and M. Schienauer, 1996, “Evolutionary algorithms for constrained parameter optimization problems”, Evolutionary Computation, 4(1): 1-32.
56. Negoita, C. V., M. Sularia, 1976, “On fuzzy programming and tolerances in Planning”, Econom. Comp. Econom. Cybernet. Stud. Res. 1: 3-15.
57. Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks, and J. C. Stromberg, 1997, ”The natural flow regime”, Bioscience, 47(11): 769-784.
58. Ptts, G. E., 1996, “Water allocation to protect river ecosystems”, Regulated River: Research and Management, 12(4-5): 353-365.
59. Reiser, B. W., T. A. Wesche and C. Estes, 1989, “Status of instream flow legislation and practices in North American”, Fisheries, 14(2): 22-29.
60. Revelle, C. S., E. Joeres and W. Kirby, 1969, “The linear decision rule in reservoir management and design 1. development of the stochastic model”, Water Resources Research, 5(4): 1-10.
61. Richardson, J. T., R. P. Mark, L. Gunar and H. Mike, 1989, “Some guidelines for gentic algorithms with penalty function”, the 3th International Conference on Genetic Algorithms and Their Applications, pp. 191-195.
62. Richter, B. D., J. V. Baumgartner, J. Powell, and D. P. Braun, 1996, “A method for assessing hydrologic alteration within ecosystems”, Conservation Biology, 10(4): 1163-1174.
63. Shiau, J. T., and F. C. Wu, 2004, “Assessment of hydrologic alterations caused by Chi-Chi diversion weir in Chou-Shui Creek, Taiwan: Opportunities for restoring natural flow conditions”, River Research and Application, 20: 401-412.
64. Smith, A. E., and D. M. Tate, 1993, “Genetic optimization using a penalty function”, the 5th Interational Conference on Genetic Algorthems and Their Application, pp. 499-505.
65. Smith, S. E., G. Buttner, F. Szilagyi, L. Horvath and J. Aufmuth, 2000, “Environmental impacts of river diversion: gabcikovo barrage system”, Water Resources Planning and Management, ASCE, 126(3): 138-145.
66. Suen, J. P. and J. W. Eheart., 2006, “Reservoir management to balance ecosystem and human needs: incorporating the paradigm of the ecological flow regime”, Water Resources Research, 42(3): W03417.
67. Tate, D. M. and A. E. Smith, 1995, “Unequal-area facility layout by genetic search,” IIE Transactions, 27(4): 465-472.
68. Tennant, D. L., 1976, “Instream flow requirements for fish, wildlife, recreation and related environmental resources”, Fisheries, 11: 6-10.
69. Wu, F. C. and C. F. Wnag, 2002, “Effect of flow-related substrate alteration on physical habitat: a case study of the endemic river loach sinogastromyzon puliensis (Cypriniformes Homalopteridae) downstream of Chi-Chi diversion weir, Chou-Shui creek, Taiwan”, River Research and Applications, 18(2): 155-169.
70. Wu, F. C. and Y. J. Chou, 2003, “Simulation of gravel-sand bed response to Flushing flows using a two-fraction entrainment approach: model development and flume experiment”, Water Resources Research, 39(8): 1211, doi: 10.1029/2003WR002184.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32832-
dc.description.abstract近年來水資源的需求日益提高,但受制於台灣自然條件因素之影響,水源供給量相對有限;雖然透過水利設施的興建與營運能改善水資源不足的問題,但對於河川水域環境卻可能造成負面的影響,加上水資源的開發過程中均以人類的用水需求為主要考量,往往可能滿足人類對水的需求,卻失去了生態環境系統的平衡。本文旨在探討考量河川下游生態流量下研議水庫對下游地區供水的最佳營運策略;研究區域以石門水庫後池堰至鳶山堰段之大漢溪河道為主;利用數理規劃模式建置水庫操作於滿足各項用水需求與環境限制之操作策略,採用懲罰機制之限制型遺傳演算法優選水庫的最佳蓄放水歷程,以滿足水庫長期供水與下游河段的生態需求,將河川水域環境受水利工程構造物之影響降至最低。研究結果顯示,過去石門水庫歷年供給下游水量,大致上能達到前人研究所提的最低生態流量(4 cms),惟乾枯水年仍有少數旬別低於生態最低需求;而本研究所研擬之數理規劃模式的最佳操作結果,不僅能適度提高河川環境生態之流量,減緩工程構造物對河川的影響,亦改善了下游地區缺水之情形;研究結果亦證實,限制型遺傳演算法架構之水庫操作模式,能有效提高優選的效率,並獲致良好的優選結果。zh_TW
dc.description.abstractIn recent decades, due to increasing on water demand by coupled with unbalanced temporal and spatial distribution of rainfall in Taiwan, water supply becomes more difficult. To overcome the problem, attention has been focused on improving water resources management and reservoir operation. Nevertheless, such actions frequently result on the degradation of river environmental condition. In an attempt to minimizing these negative impacts, environmental related aspects must be considered on the operation and management of water storage facilities, such as reservoirs.
In this study, we propose a novel optiming technique for reservoir operation to deal with multiple water users, specially emphasizing downstream ecological flow demand. The artificial intelligence techniques, such as genetic algorithm (GA), have been successfully applied for the optimization of complex hydrosystems. The GA is applied for the optimization of water resources management. To improve the capability of the GA, a penalty function is proposed, resulting in a restricted GA model. This penalty function is cooperatively considered with the reservoir operational objectives, which also includes water quantity and ecological aspects. To investigate the applicability of the proposed methodology, the downstream area of Shihmen reservoir from Hochih Weir to Yuanshan Weir in the Dahan River is used as the case study.
Based on several previous studies, the water supply of Shihmen reservoir for dowmstream could reach a base ecological flow to about 4 cms in most of time. By implemented the proposed restricted GA for optimizing the Shihmen reservoir operation in last 20 years, the results demonstrated model can provide much better the performances, in term of small GSI and large ecological flow, for most of years than the historical approach. We conclude that the restricted GA approach can improve the efficiency and effectiveness of reservoir optimization operation for mutilpe water users.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:16:40Z (GMT). No. of bitstreams: 1
ntu-95-R93622006-1.pdf: 2605935 bytes, checksum: f1de4f74df79c8ce447ed3b84abdccb3 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents摘 要 i
Abstract ii
目 錄 iv
表目錄 vi
圖目錄 vii
第一章 緒 論 1
1.1 研究動機與目的 1
1.2 研究方法與流程 2
1.3 論文架構 4
第二章 文獻回顧 6
2.1 水庫運轉操作與優選法 6
2.2 遺傳演算法 8
2.3 限制型遺傳演算法 9
2.4 環境流量 10
2.4.1 生態流量評估 12
2.5 水資源運用 16
第三章 理論概述 18
3.1 遺傳演算法簡述 18
3.2 演算流程 19
3.3 限制型遺傳演算法 25
3.3.1 內懲罰函數與外懲罰函數 26
3.3.2 靜態懲罰函數與動態懲罰函數 28
3.3.3 可適性懲罰函數 29
3.3.4 改進策略式懲罰函數 32
第四章 研究案例 34
4.1 研究區域概況 34
4.1.1 石門水庫簡介 34
4.1.2 大漢溪流域簡介 34
4.1.3 水庫操作準則 36
4.2 河川生態流量與水文環境分析 38
4.2.1 水文年判別 39
4.2.2 水庫入流量及供水分析 41
4.2.3 大漢溪魚類調查資料 48
4.2.4 生態流量需求評估 53
4.3 水庫模擬模式之建立 58
4.3.1 模糊規劃理論概述與應用 62
4.3.2 懲罰函數法概述與應用 64
4.3.3 懲罰函數設定 66
4.4 優選過程參數設定 70
第五章 結果與討論 73
5.1 評比標準 73
5.2 不同水文事件年評估 74
5.3 下游供水量探討 81
5.4 連續年操作 86
第六章 結論與建議 92
6.1 結論 92
6.2 建議 94
參考文獻 95
附錄一 Tennant法分析流量 102
附錄二 民國74~93年以限制型GA搜尋之蓄水歷程 103
附錄三 民國74~93年入流量與下游放流量歷線圖 106
dc.language.isozh-TW
dc.subject生態流量、水庫操作、限制型遺傳演算法、懲罰函數zh_TW
dc.subjectEcological flowen
dc.subject Penalty functionen
dc.subject Restricted genetic algorithmsen
dc.subject Reservoir operationen
dc.title考量生態流量之水庫最佳操作策略zh_TW
dc.titleA Study of Reservoir’s Optimal Operating Strategy with Considering Ecological Flowen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張麗秋(Li-Chiu Chang),許中立(Chung-Li Hsu),孫建平(Jian-Ping Suen)
dc.subject.keyword生態流量、水庫操作、限制型遺傳演算法、懲罰函數,zh_TW
dc.subject.keywordEcological flow, Reservoir operation, Restricted genetic algorithms, Penalty function,en
dc.relation.page102
dc.rights.note有償授權
dc.date.accepted2006-07-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
2.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved