Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32785
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周綠蘋
dc.contributor.authorYing-Chu Liaoen
dc.contributor.author廖瑩竹zh_TW
dc.date.accessioned2021-06-13T04:15:32Z-
dc.date.available2016-10-05
dc.date.copyright2011-10-05
dc.date.issued2011
dc.date.submitted2011-07-27
dc.identifier.citation1. Kelley, J.R. and J.M. Duggan, Gastric cancer epidemiology and risk factors. Journal of Clinical Epidemiology, 2003. 56(1): p. 1-9.
2. Kono, S. and T. Hirohata, Nutrition and stomach cancer. Cancer Causes Control, 1996. 7(1): p. 41-55.
3. Joossens, J.V., et al., Dietary salt, nitrate and stomach cancer mortality in 24 countries. European Cancer Prevention (ECP) and the INTERSALT Cooperative Research Group. Int J Epidemiol, 1996. 25(3): p. 494-504.
4. Stalnikowicz, R. and J. Benbassat, Risk of gastric cancer after gastric surgery for benign disorders. Arch Intern Med, 1990. 150(10): p. 2022-6.
5. Hsing, A.W., et al., Pernicious anemia and subsequent cancer. A population-based cohort study. Cancer, 1993. 71(3): p. 745-50.
6. Oh, S.T., et al., Establishment and characterization of an in vivo model for Epstein-Barr virus positive gastric carcinoma. J Med Virol, 2007. 79(9): p. 1343-8.
7. Sharara, A.I., et al., Association of gastroduodenal disease phenotype with ABO blood group and Helicobacter pylori virulence-specific serotypes. Dig Liver Dis, 2006. 38(11): p. 829-33.
8. La Vecchia, C., et al., Family history and the risk of stomach and colorectal cancer. Cancer, 1992. 70(1): p. 50-5.
9. Howson, C.P., T. Hiyama, and E.L. Wynder, The decline in gastric cancer: epidemiology of an unplanned triumph. Epidemiol Rev, 1986. 8: p. 1-27.
10. Barreto-Zuniga, R., et al., Significance of Helicobacter pylori infection as a risk factor in gastric cancer: serological and histological studies. J Gastroenterol, 1997. 32(3): p. 289-94.
11. Hansson, L.E., et al., Helicobacter pylori infection: independent risk indicator of gastric adenocarcinoma. Gastroenterology, 1993. 105(4): p. 1098-103.
12. Kikuchi, S., et al., Serum anti-Helicobacter pylori antibody and gastric carcinoma among young adults. Research Group on Prevention of Gastric Carcinoma among Young Adults. Cancer, 1995. 75(12): p. 2789-93.
13. Kokkola, A., et al., Helicobacter pylori infection in young patients with gastric carcinoma. Scand J Gastroenterol, 1996. 31(7): p. 643-7.
14. Miehlke, S., et al., Histological diagnosis of Helicobacter pylori gastritis is predictive of a high risk of gastric carcinoma. Int J Cancer, 1997. 73(6): p. 837-9.
15. Sipponen, P., et al., Helicobacter pylori infection and chronic gastritis in gastric cancer. J Clin Pathol, 1992. 45(4): p. 319-23.
16. IARC working group on the evaluation of carcinogenic risks to humans: some industrial chemicals. Lyon, 15-22 February 1994. IARC Monogr Eval Carcinog Risks Hum, 1994. 60: p. 1-560.
17. Correa, P. and J. Houghton, Carcinogenesis of Helicobacter pylori. Gastroenterology, 2007. 133(2): p. 659-72.
18. Mitchell, H. and F. Megraud, Epidemiology and diagnosis of Helicobacter pylori infection. Helicobacter, 2002. 1: p. 8-16.
19. Marshall, B.J. and J.R. Warren, Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet, 1984. 1(8390): p. 1311-5.
20. Ernst, P.B. and B.D. Gold, The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu Rev Microbiol, 2000. 54: p. 615-40.
21. Everhart, J.E., Recent developments in the epidemiology of Helicobacter pylori. Gastroenterol Clin North Am, 2000. 29(3): p. 559-78.
22. Miyaji, H., et al., Helicobacter pylori infection occurs via close contact with infected individuals in early childhood. J Gastroenterol Hepatol, 2000. 15(3): p. 257-62.
23. Lauren, P., The Two Histological Main Types of Gastric Carcinoma: Diffuse and So-Called Intestinal-Type Carcinoma. An Attempt at a Histo-Clinical Classification. Acta Pathol Microbiol Scand, 1965. 64: p. 31-49.
24. Frenck, R.W., Jr. and J. Clemens, Helicobacter in the developing world. Microbes Infect, 2003. 5(8): p. 705-13.
25. Peek, R.M., Jr., IV. Helicobacter pylori strain-specific activation of signal transduction cascades related to gastric inflammation. Am J Physiol Gastrointest Liver Physiol, 2001. 280(4): p. G525-30.
26. Konturek, P.C., et al., Cancerogenesis in Helicobacter pylori infected stomach--role of growth factors, apoptosis and cyclooxygenases. Med Sci Monit, 2001. 7(5): p. 1092-107.
27. Ogura, K., et al., Virulence factors of Helicobacter pylori responsible for gastric diseases in Mongolian gerbil. J Exp Med, 2000. 192(11): p. 1601-10.
28. Amieva, M.R., et al., Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science, 2003. 300(5624): p. 1430-4.
29. Murata-Kamiya, N., et al., Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene, 2007. 26(32): p. 4617-26.
30. Andersen, L.P., Colonization and infection by Helicobacter pylori in humans. Helicobacter, 2007. 12 Suppl 2: p. 12-5.
31. Eaton, K.A., et al., Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect Immun, 1991. 59(7): p. 2470-5.
32. Montecucco, C. and R. Rappuoli, Living dangerously: how Helicobacter pylori survives in the human stomach. Nat Rev Mol Cell Biol, 2001. 2(6): p. 457-66.
33. Wang, G., et al., Novel Helicobacter pylori alpha1,2-fucosyltransferase, a key enzyme in the synthesis of Lewis antigens. Microbiology, 1999. 145 ( Pt 11)(Pt 11): p. 3245-53.
34. Censini, S., et al., cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A, 1996. 93(25): p. 14648-53.
35. Backert, S. and M. Selbach, Tyrosine-phosphorylated bacterial effector proteins: the enemies within. Trends Microbiol, 2005. 13(10): p. 476-84.
36. Blaser, M.J. and J.C. Atherton, Helicobacter pylori persistence: biology and disease. J Clin Invest, 2004. 113(3): p. 321-33.
37. Belair, C., F. Darfeuille, and C. Staedel, Helicobacter pylori and gastric cancer: possible role of miRNAs in this intimate relationship. Clinical Microbiology and Infection, 2009. 15(9): p. 806-812.
38. Ambros, V., MiRNAs and developmental timing. Curr Opin Genet Dev, 2011. 28: p. 28.
39. Esquela-Kerscher, A. and F.J. Slack, Oncomirs - miRNAs with a role in cancer. Nat Rev Cancer, 2006. 6(4): p. 259-69.
40. Yi, R. and E. Fuchs, MiRNAs and their roles in mammalian stem cells. J Cell Sci, 2011. 124(Pt 11): p. 1775-83.
41. Lee, Y., et al., MiRNAs genes are transcribed by RNA polymerase II. Embo J, 2004. 23(20): p. 4051-60.
42. Cai, X., C.H. Hagedorn, and B.R. Cullen, Human miRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. Rna, 2004. 10(12): p. 1957-66.
43. Denli, A.M., et al., Processing of primary miRNAs by the Microprocessor complex. Nature, 2004. 432(7014): p. 231-5.
44. Gregory, R.I., et al., The Microprocessor complex mediates the genesis of miRNAs. Nature, 2004. 432(7014): p. 235-40.
45. Bohnsack, M.T., K. Czaplinski, and D. Gorlich, Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. Rna, 2004. 10(2): p. 185-91.
46. Hutvagner, G., et al., A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 2001. 293(5531): p. 834-8.
47. Gregory, R.I., et al., Human RISC couples miRNAs biogenesis and posttranscriptional gene silencing. Cell, 2005. 123(4): p. 631-40.
48. Wang, F., et al., Identification of miRNAs-target interaction in APRIL-knockdown colorectal cancer cells. Cancer Gene Ther, 2011. 18(7): p. 500-509.
49. Cimmino, A., et al., miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A, 2005. 102(39): p. 13944-9.
50. Bartel, D.P., MiRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97.
51. Volinia, S., et al., A miRNAs expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A, 2006. 103(7): p. 2257-61.
52. Hwang, H.W. and J.T. Mendell, MiRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer, 2006. 94(6): p. 776-80.
53. Zhang, B., et al., miRNAs as oncogenes and tumor suppressors. Dev Biol, 2007. 302(1): p. 1-12.
54. Lewis, B.P., C.B. Burge, and D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are miRNAs targets: Cell. 2005 Jan 14;120(1):15-20.
55. Medina, P.P., M. Nolde, and F.J. Slack, OncomiR addiction in an in vivo model of miR-21-induced pre-B-cell lymphoma. Nature, 2010. 467(7311): p. 86-90.
56. Zhang, Z., et al., miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab Invest, 2008. 88(12): p. 1358-66.
57. Pan, X., Z.X. Wang, and R. Wang, MiR-21: a novel therapeutic target in human cancer. Cancer Biol Ther, 2011. 10(12): p. 1224-32.
58. Gabriely, G., et al., MiRNAs 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol, 2008. 28(17): p. 5369-80.
59. Chan, C.H., et al., Subcellular and functional proteomic analysis of the cellular responses induced by Helicobacter pylori. Mol Cell Proteomics, 2006. 5(4): p. 702-13.
60. Zhu, Y., et al., MiR-21 is involved in ionizing radiation-promoted liver carcinogenesis. Int J Clin Exp Med, 2010. 3(3): p. 211-22.
61. Neer, E.J., et al., The ancient regulatory-protein family of WD-repeat proteins. Nature, 1994. 371(6495): p. 297-300.
62. van der Voorn, L. and H.L. Ploegh, The WD-40 repeat. FEBS Lett, 1992. 307(2): p. 131-4.
63. Zhao, J., et al., A novel WD-40 repeat protein WDR26 suppresses H2O2-induced cell death in neural cells. Neurosci Lett, 2009. 460(1): p. 66-71.
64. Qiao, X., et al., APC/C-Cdh1: from cell cycle to cellular differentiation and genomic integrity. Cell Cycle, 2010. 9(19): p. 3904-12.
65. Benedict, M.A., et al., Expression and functional analysis of Apaf-1 isoforms. Extra Wd-40 repeat is required for cytochrome c binding and regulated activation of procaspase-9. J Biol Chem, 2000. 275(12): p. 8461-8.
66. Goll, D.E., et al., The calpain system. Physiol Rev, 2003. 83(3): p. 731-801.
67. Squier, M.K., et al., Calpain activation in apoptosis. J Cell Physiol, 1994. 159(2): p. 229-37.
68. Bertoli, C., et al., Calpain small-1 modulates Akt/FoxO3A signaling and apoptosis through PP2A. Oncogene, 2009. 28(5): p. 721-33.
69. Lankat-Buttgereit, B. and R. Goke, The tumour suppressor Pdcd4: recent advances in the elucidation of function and regulation. Biol Cell, 2009. 101(6): p. 309-17.
70. Allgayer, H., Pdcd4, a colon cancer prognostic that is regulated by a miRNAs. Crit Rev Oncol Hematol, 2010. 73(3): p. 185-91.
71. Hwang, S.K., et al., Decreased level of PDCD4 (programmed cell death 4) protein activated cell proliferation in the lung of A/J mouse. J Aerosol Med Pulm Drug Deliv, 2010. 23(5): p. 285-93.
72. Bohm, M., et al., The transformation suppressor protein Pdcd4 shuttles between nucleus and cytoplasm and binds RNA. Oncogene, 2003. 22(31): p. 4905-10.
73. Zhang, T., et al., PCBP-1 regulates alternative splicing of the CD44 gene and inhibits invasion in human hepatoma cell line HepG2 cells. Mol Cancer, 2010. 9: p. 72.
74. Wang, H., et al., PCBP1 Suppresses the Translation of Metastasis-Associated PRL-3 Phosphatase. Cancer cell, 2010. 18(1): p. 52-62.
75. Posokhova, E., et al., Disruption of the chaperonin containing TCP-1 function affects protein networks essential for rod outer segment morphogenesis and survival. Mol Cell Proteomics, 2011. 10(1): p. 17.
76. Munoz, I.G., et al., Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin. Nat Struct Mol Biol, 2011. 18(1): p. 14-9.
77. Qian-Lin, Z., et al., Inhibition of cytosolic chaperonin CCTzeta-1 expression depletes proliferation of colorectal carcinoma in vitro. J Surg Oncol, 2010. 102(5): p. 419-23.
78. Chang, K.H., et al., MiR-21 and PDCD4 expression in colorectal cancer. Eur J Surg Oncol, 2011. 37(7): p. 597-603.
79. Sheedy, F.J., et al., Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the miRNAs miR-21. Nat Immunol, 2010. 11(2): p. 141-7.
80. Healy, S., D.H. Khan, and J.R. Davie, Gene expression regulation through 14-3-3 interactions with histones and HDACs. Discov Med, 2011. 11(59): p. 349-58.
81. Tzivion, G., M. Dobson, and G. Ramakrishnan, FoxO transcription factors; Regulation by AKT and 14-3-3 proteins. Biochim Biophys Acta, 2011. 17: p. 17.
82. Aitken, A., 14-3-3 proteins: a historic overview. Semin Cancer Biol, 2006. 16(3): p. 162-72.
83. Filipenko, N.R., et al., Annexin A2 is a novel RNA-binding protein. J Biol Chem, 2004. 279(10): p. 8723-31.
84. Cockrell, E., R.G. Espinola, and K.R. McCrae, Annexin A2: biology and relevance to the antiphospholipid syndrome. Lupus, 2008. 17(10): p. 943-51.
85. Vasudevan, S., Y. Tong, and J.A. Steitz, Switching from repression to activation: miRNAs can up-regulate translation. Science, 2007. 318(5858): p. 1931-4.
86. Place, R.F., et al., MiRNAs-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A, 2008. 105(5): p. 1608-13.
87. Orom, U.A., F.C. Nielsen, and A.H. Lund, MiRNAs-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell, 2008. 30(4): p. 460-71.
88. Buscaglia, L.E. and Y. Li, Apoptosis and the target genes of miR-21. Chin J Cancer, 2011. 30(6): p. 371-80.
89. Goke, R., et al., Programmed cell death protein 4 (PDCD4) acts as a tumor suppressor in neuroendocrine tumor cells. Ann N Y Acad Sci, 2004: p. 220-1.
90. Belair, C., F. Darfeuille, and C. Staedel, Helicobacter pylori and gastric cancer: possible role of miRNAs in this intimate relationship. Clin Microbiol Infect, 2009. 15(9): p. 806-12.
91. Zhou, J., et al., MiR-21 targets peroxisome proliferators-activated receptor-{alpha} in an autoregulatory loop to modulate flow-induced endothelial inflammation. Proc Natl Acad Sci U S A, 2011. 108(25): p. 10355-60.
92. Fujita, S., et al., miR-21 Gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol, 2008. 378(3): p. 492-504.
93. Loffler, D., et al., Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of miR-21 through a highly conserved enhancer. Blood, 2007. 110(4): p. 1330-3.
94. Sugimoto, M., et al., Helicobacter pylori outer membrane proteins on gastric mucosal interleukin 6 and 11 expression in Mongolian gerbils. J Gastroenterol Hepatol, 2011. 16(10): p. 1440-1746.
95. Young, M.R., et al., Have tumor suppressor PDCD4 and its counteragent oncogenic miR-21 gone rogue? Mol Interv, 2010. 10(2): p. 76-9.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32785-
dc.description.abstractGastric cancer is the most common malignancy of the gastrointestinal tract in East Asian populations. Although the pathogenic factors involved in gastric carcinogenesis are thought to be multifactorial, infection with Helicobacter pylori (H.pylori) seems to be a main risk factor for the development of gastric cancer nowadays. The significant role of H. pylori on gastrointestinal tract diseases has been proposed, but the detailed mechanism/molecular pathway remains unclear, especially the correlations to miRNAs. MiRNAs are endogenous, small noncoding RNAs, which function by base pairing with the 3’- untranslated region (3’UTR) of target messenger RNAs, thereby regulating as high as 30% of all protein-coding genes expression. One of miRNAs, miR-21, is overexpressed in most tumor types, and acts as an “oncomiR” by targeting many tumor suppressor genes related to numerous cancer-related phenotypes.
To reveal the correlation between H.pylori infection and miR-21, we first verified that miR-21 is overexpressed aberrantly in AGS cells caused by H. pylori infection using qRT-PCR. Following we developed a miR-21 stable cell line which constantly expresses higher level of miR-21 than the mock one. Furthermore, we searched the potential targets of miR-21 using 2-Dimentional Electrophoresis (2DE) to compare the differences proteome between miR-21 stable cell line and mock, following identified the potential target proteins by LC-MS/MS. Continuing analyzed these identified and predicted proteins with IPA (Ingenuity Pathway Analysis) bioinformatics approach, we observed that these potential targets, such as tumor suppressor PDCD4 (programmed cell death 4), may involve in proliferation and apoptosis pathways. We further verified the potential target PDCD4 and its relevant pathway by luciferase reporter assay combined mutagenesis assay, finding that PDCD4 indeed down-regulated directly by miR-21 overexpression as well as H.pylori infection in AGS cells. According to MTT assay, cell proliferation rate is decreased by PDCD4 overexpression which correlates to its tumor suppressor role. Therefore, we concluded that PDCD4 is down-regulated by miR-21 overexpression and may lead to increased cell proliferation triggered by H.pylori infection in AGS cells.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:15:32Z (GMT). No. of bitstreams: 1
ntu-100-R98442024-1.pdf: 4222481 bytes, checksum: c0185c5d221424ee95f58fe151b92c5f (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目次
謝誌 I
摘要 II
ABSTRACT IV
縮寫 VI
第一章 導論 - 1 -
第一節胃癌與幽門螺旋桿菌 - 1 -
1.1胃癌的發生與幽門螺旋桿菌之關係 - 1 -
1.2幽門螺旋桿菌之形態與特徵及流行病學調查 - 2 -
1.3幽門螺旋桿菌的致病因子及宿主反應 - 3 -
第二節 微核醣核酸 (MIRNAS) - 5 -
2.1 miRNAs之生合成路徑及其功能 - 5 -
2.2 微核醣核酸與癌症之關係 - 7 -
2.3 微核醣核酸21 (miR-21) 所扮演的致癌角色 - 8 -
第三節 研究動機 - 9 -
第二章 材料 - 10 -
第一節 幽門螺旋桿菌菌株 - 10 -
第二節 胃腺癌細胞及載體 - 10 -
2.1胃腺癌上皮細胞 - 10 -
2.2 穩定表現miR-21 及只帶有載體 (mock) 之AGS 穩定細胞株 - 10 -
2.3 大量表現miR-21之重組質體 (pSilencer 4.1-CMV-miR-21) - 10 -
第三節 儀器及裝置 - 10 -
第四節 大腸桿菌及質體 - 12 -
第五節 酵素 - 12 -
第六節 抗體 - 12 -
第七節 試劑組與藥品 - 13 -
第八節 軟體與資料庫 - 14 -
第三章 實驗方法 - 15 -
第一節 幽門螺旋桿菌的培養 - 15 -
第二節 胃腺癌細胞的培養 - 15 -
2.1 培養基 (medium) 的配置 - 15 -
2.2 細胞的培養 - 15 -
2.3 細胞的計數 - 16 -
第三節 幽門螺旋桿菌感染胃腺癌細胞 - 16 -
3.1 細胞的準備 (plating) - 16 -
3.2 幽門螺旋桿菌感染胃腺癌細胞 - 16 -
3.3 幽門螺旋桿菌的收取 - 16 -
第四節 定量反轉錄聚合酶連鎖反應 (QRT-PCR) - 17 -
4.1 細胞RNA萃取 - 17 -
4.2 miRNAs反轉錄反應 (reverse transcription, RT) - 17 -
4.3 定量聚合酶鏈鎖反應 (real-time polymerase chain reaction, Q-PCR) - 18 -
第五節 蛋白質分析法 - 19 -
5.1 蛋白質濃度測定 (BCA protein assay) - 19 -
5.2 十二烷基磺酸鈉-聚丙烯醯胺膠體電泳分析 (SDS-PAGE) - 19 -
5.3 西方墨點法 (Western blotting) - 21 -
第六節 質體轉染 (TRANSFECTION) - 22 -
第七節 二維電泳分析 - 23 -
7.1 樣本處理 - 23 -
7.2第一維膠片 (IPG strip) 重新水合化 - 23 -
7.3 第一維等電點展開 (isoelectric focusing, IEF) - 24 -
7.4 第二維電泳分析 (SDS-PAGE) - 24 -
7.5 染色與退染 - 25 -
第八節 膠體原位酵素切割及蛋白質鑑定 - 25 -
第九節 報導基因表現分析 (LUCIFERASE REPORT ASSAY) - 25 -
9.1細胞準備及轉染 - 25 -
9.2 Luciferase reagent buffer配置 - 26 -
9.3 Luciferase活性偵測 - 26 -
第十節 重組蛋白之建立 - 26 -
第十一節 細胞生存能力試驗 (MTT ASSAY) - 28 -
11.1 MTT reagent 配置 - 28 -
11.2 細胞準備 - 28 -
11.3 MTT 活性偵測 - 29 -
第四章 結果 - 30 -
第一節 幽門螺旋桿菌感染影響宿主細胞MIR-21表現量 - 30 -
第二節 MIR-21之目標基因及相關致癌路徑 - 31 -
2.1 miR-21 Stable cell line之確立 - 31 -
2.2 二維電泳分析鑑定 miR-21所影響之差異表現蛋白 - 31 -
2.3 軟體預測分析miR-21之標的基因 - 32 -
2.4 miR-21目標基因所影響路徑之資料庫分析 - 35 -
第三節 確認MIR-21目標基因PROGRAMMED CELL DEATH 4 - 36 -
3.1 利用Luciferase assay確認PDCD4為miR-21之目標基因 - 36 -
3.2 幽門螺旋桿菌感染促進miR-21表現而抑制PDCD4報導基因表現 - 37 -
第四節 MIR-21及PDCD4之功能性分析 - 37 -
4.1 大量表現miR-21促進細胞生長;大量表現PDCD4抑制細胞生長 - 38 -
4.2同時表現PDCD4 3’UTR-wild type及miR-21 回復其生長情形 - 39 -
第五節 幽門螺旋桿菌與PDCD4之關係 - 39 -
第五章 討論 - 41 -
第一節 實驗方法學討論 - 41 -
1.1二維電泳分析法的優點與限制 - 41 -
1.2軟體預測之優點與限制 - 41 -
1.3用蛋白體學分析miRNAs的優缺點 - 41 -
第二節 幽門螺旋桿菌與其他MIRNAS之關連性 - 42 -
第三節 MIR-21大量表現所影響其他差異性表現蛋白 - 42 -
3.1 miR-21大量表現後,表現量上升的蛋白質 - 43 -
3.2 miRNAs新功能,促進基因表現 - 43 -
第四節 MIR-21與PDCD4其他致癌機轉 - 44 -
4.1 PDCD4其他抑癌功能 - 44 -
4.2 PDCD4如何抑制細胞增生? - 44 -
第五節 幽門螺旋桿菌與MIR-21之關連性討論 - 45 -
第六節 幽門螺旋桿菌與PDCD4之關連性討論 - 45 -
第七節 MIR-21其他可能目標基因與幽門螺旋桿菌之關係 - 46 -
7.1 幽門螺旋桿菌感染與PDCD4、RECK mRNA表現量之關係 - 46 -
7.2 幽門螺旋桿菌感染與可能miR-21目標基因蛋白表現量之關係 - 46 -
第八節 結語與未來展望 - 47 -
8.1 幽門螺旋桿菌致癌機轉 - 47 -
8.2 未來工作與願景 - 48 -
第六章 參考文獻 - 49 -
圖表 - 56 -
附錄 - 76 -
dc.language.isozh-TW
dc.subjectPDCD4zh_TW
dc.subject胃癌zh_TW
dc.subject幽門螺旋桿菌zh_TW
dc.subject微核醣核酸zh_TW
dc.subject微核醣核酸21zh_TW
dc.subjectmiRNAsen
dc.subjectPDCD4en
dc.subjectmiR-21en
dc.subjectGastric canceren
dc.subjectHelicobacter pylorien
dc.title利用蛋白體學技術鑑定受幽門螺旋桿菌感染之人類胃腺癌上皮細胞中微核醣核酸21之標的zh_TW
dc.titleProteomics Approach to Identify miR-21 Targets in Helicobacter pylori-infected AGS Cellsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee俞松良,詹世鵬,蕭朱杏
dc.subject.keyword胃癌,幽門螺旋桿菌,微核醣核酸,微核醣核酸21,PDCD4,zh_TW
dc.subject.keywordGastric cancer,Helicobacter pylori,miRNAs,miR-21,PDCD4,en
dc.relation.page102
dc.rights.note有償授權
dc.date.accepted2011-07-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
4.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved