Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32782
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林金福
dc.contributor.authorChi-Wei Tuen
dc.contributor.author杜其瑋zh_TW
dc.date.accessioned2021-06-13T04:15:28Z-
dc.date.available2008-07-27
dc.date.copyright2006-07-27
dc.date.issued2006
dc.date.submitted2006-07-24
dc.identifier.citation[1] B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, 353, 737 (1991).
[2] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of Light to Electricity by cis-X2Bis- (2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline TiO2 Electrodes,” J. Am. Chem. Soc., 115, 6382 (1993).
[3] M. Grätzel, “Photoelectrochemical Cells,” Nature, 414, 338 (2001).
[4] M.A.Green, K. Emery, D. L. King, S. Igari, and W. Warta, “Solar
Cells Efficiency Tables,” Progress in Photovoltaics, 2005,13, 49 (2005)
[5] J.-S. Hsieh, Solar Energy Engineering, p.366-372, Prentice-Hall, New Jersey (1986).
[6] A. J. Bard, Integrated Chemical Systems, chap. 6, John Wiley & Sons, Inc., New York (1994).
[7] C. W. Tang, “Two-Layer Organic Photovoltaic Cell,” Applied physics Letters, 48, 183 (1986).
[8] R. N. Marks, J. J. M. Halls, D. D. C. Bradley, R. H. Friend and A. B. Holmes, “The Photovoltaic Response in Poly(p-phenylene vinylene) Thin-film Devices,” Journal of Physics: Condensed Matter, 6, 1379 (1994)
[9] P. Peumans, A. Yakimov and S. R. Forrest, “Small Molecular Weight Organic Thin-film Photodetectors and Solar Cells,” Journal of Applied Physics, 93, 3693 (2003)
[10] G. Yu and A. J. Heeger, “Charge Separation and Photovoltaic Conversion in Polymer Composites with Internal Donor/Acceptor Heterojunctions,” Journal of Applied Physics, 78, 4510 (1995)
[11] J.J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, “Efficient photodiodes from interpenetrating polymer networks,” Nature, 376, 498 (1995)
[12] M. Granstrom, K. Petritsch, “Laminated fabrication of polymeric photovoltaic diodes,” Nature, 395, 257 (1998)
[13] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, “2.5% efficient organic plastic solar cells,” Applied Physics Letters, 78, 841 (2001)
[14] J. K. J. Van Duren, X. Yang, J. Loos, C. W. T. Bulle-Lieuwma, A. B. Sieval, J. C. Hummelen, and R. A. J. Janssen, “Relating the Morphology of Poly(p-phenylene vinylene)/Methanofullerene Blends to Solar-Cell Performance,” Advanced Functional Materials, 14, 425 (2004)
[15] W. Geens, S. E. Shaheen, B. Wessling, C. J. Brabec, J. Poortmans, S. N. Serdar, “Dependence of field-effect hole mobility of PPV-based polymer films on the spin-casting solvent,” Organic Electronics, 3, 105 (2002)
[16] F. Padinger, R.S. Rittberger, N.S. Sariciftci, “Effects of Post- production Treatment on Plastic Solar Cells,” Advanced Functional Materials, 13, 85 (2003)
[17] J. Nelson, “Diffusion-limited recombination in polymer-fullerene blends and its influence on photocurrent collection,” Physical Review B, 67, 155209 (2003)
[18] W. U. Huynh, J. J. Dittmer, N. Teclemariam, D. J. Milliron, and A. P. Alivisatos, “Charge transport in hybrid nanorod-polymer composite photovoltaic cells,” Physical Review B, 67, 115326 (2003)
[19] B. Q. Sun, E. Marx, and N. C. Greenham, “Photovoltaic Devices Using Blends of Branched CdSe Nanoparticles and Conjugated Polymers,” Nano Letters, 3, 961 (2003)
[20] A. C. Arango, and S. A. Carter, “Charger Transfer in Photovoltaic Consisting of Interpenetrating Networks of Conjugated Polymer and TiO2 Nanoparticles,” Applied Physics Letters, 74, 1698 (1999)
[21] A. J. Breeze, Z. Schlesinger, S. A. Carter, and P. J. Brock, “Charge transport in TiO2/MEH-PPV polymer photovoltaics,” Physical Review B, 64, 125205 (2001)
[22] P. Ravirajan, S. A. Haque, J. R. Durrant, D. Poplavskyy, D. D. C. Bradley, J. Nelson, “Hybrid nanocrystalline TiO[sub 2] solar cells with a fluorene–thiophene copolymer as a sensitizer and hole conductor,” Journal of Applied Physics, 95, 1473 (2004)
[23] E. W. McFarland, and J. Tang, “A photovoltaic device structure based on internal electron emission,” Nature, 421, 616 (2003)
[24] M. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grätzel, “Inverstigation of Sensitized Adsorption and the Influence of Protons on Current and Voltage of a Dye-sensitized Nanocrystalline TiO2 Solar Cells,” The Journal of Physical Chemistry B, 107, 8981 (2003).
[25] G. Schlichthörl, S. Y. Huang, J. Sprague, and A. J. Frank, “ Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy,” Journal of Physical Chemistry. B, 101, 8141 (1997)
[26] G. Redmond and D. Fitzmaurice, “Visible light sensitization by cis-bis(thiocyanato)bis(2,2’-bipyridyl-4,4’-dicarboxylato) ruthenium (II) of a transparent nanocrystalline ZnO film prepared by sol-gel techniques,” Chemistry of Materials, 6, 686 (1994)
[27] P. V. Kamat, I. Bedja, S. Hotchandani, and L. K. Patterson, “Photosensitization of nanocrystalline semiconductor films modulation of electron transfer between excited ruthenium complex and SnO2 nanocrystallites with an externally applied bias,” Journal of Physical Chemistry, 100, 4900 (1996)
[28] H.Rensmo, K. Keis, H. Lindstrom, S.Sodergren, A. Solbrand, A. Hagfeldt, and S. E. Lindquist, “High light-to-energy conversion efficiencies for solar cells based on nanostructure ZnO electrodes,” Journal of Physical Chemistry. B, 101, 2598 (1997)
[29] D. Liu, G. L. Hug, and P. V. Kamat, “Photochemistry on surfaces intermolecular energy and electron transfer processes between excited ru(bpy)32+ and h-aggregates of cresyl violet on SiO2 and SnO2 colloids,” Journal of Physical Chemistry, 99, 16768 (1995)
[30] I. Bedja, S. Hotchandani, and P. V. Kamat, “Preparation and photoelectrochemical characterization of thin SnO2 nanocrystalline semiconductor films and their sensitization with bis(2,2’-bipyridine) (2,2’-bipyridine-4,4’-dicarboxylic acid) ruthenium (II) complex,” Journal of Physical Chemistry, 98, 4133 (1994)
[31] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of light to electricity by cis-X2bis (2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes,” Journal of the American Chemical Society, 115, 6382 (1993)
[32] O. Kohle, S. Ruile, and M. Grätzel, “ruthenium (II) charge-transfer sensitizers containing 4,4’-dicarboxy-2,2’-bipyridine. Synthesis, properties, and bonding mode of coordinated thio- and seleno- cyanates,” Inorganic Chemistry, 35, 4779 (1996)
[33] V. Shklover, M. K. Nazeeruddin, S. M. Zakeeruddin, C. Barbe, A. Kay, T. Haibach, W. Steurer, R. Hermann, H.-U. Nissen, and M. Grätzel, “Structure of nanocrystalline TiO2 powders and precursor to their highly efficient photosensitizer,” Chemistry of Materials, 9, 430 (1997)
[34] R. Amadelli, R. Argazzi, C. A. Bignozzi, and F. Scandola, “Design of antenna-sensitizer polynuclear complexes. Sensitization os titanium dioxide with [Ru(bpy)2(CN)2]2Ru(bpy(COO)2)22-,” Journal of the American Chemical Society, 112, 7099 (1990)
[35] R. Argazzi and C. A. Bignozzi, “Remote interfacial electron transfer from supramolecular sensitizers,” Inorganic Chemistry, 36, 2 (1997)
[36] K. Kalyanasundaram and M. Grätzel, “Applications of functionlized transition metal complexes in photonic and optoelectronic devices,” Coordination Chemistry Reviews, 77, 347 (1998)
[37] D. M. Antonelli and J. Y. Ying, “Synthesis of hexagonally packed mesoporous TiO2 by a modified sol-gel method,” Angewandte Chemie (International ed.), 18, 2014 (1995)
[38] S. D. Burnside, V. Shklover, C. Barbe, P. Comte, F. Arendse, K. Brooks, and M. Grätzel, “Self-organization of TiO2 nanoparticles in thin films,” Chemistry of Materials, 10, 2419 (1998)
[39] J. Weidmann, T. Dittrich, E. Konstantinova, I. Lauermann, I. Uhlendorf, and F. Koch, “Influence of oxygen and water related surface defects on the dye sensitized solar cell,” Solar Energy Materials and Solar cells, 56,153 (1999)
[40] C. J. Barbé, F. Árendse., P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel, “Nanocrystalline titanium oxide electrodes for photovoltaic application,” Journal of the American Ceramic Society, 80, 3157 (1997)
[41] M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells,” Journal of Photo- chemistry and Photobiology A: Chemistry, 164, 3 (2004)
[42] A. Hagfeldt and M. Grätzel, “Molecular photovoltaics,” Accounts of
Chemical Research, 33, 269 (2000)
[43] A. Hagfeldt and M. Grätzel, “Light-induced Redox Reaction in Nanocrystalline Systems,” Chemical Reviews, 95, 49 (1995)
[44] B. O’Regan and D. T. Schwartz, “Efficient Dye-Sensitized Charge Separation in a Wide-band-gap p-n Heterojunction,” Journal of Applied Physics, 80, 4749 (1996)
[45] B. O’Regan and D. T. Schwartz, “Large Enhancement in Photo- current Efficiency Caused by UV Illumination of the Dye-sensitized Heterojunction TiO2/RuLL’NCS/CuSCN: Initiation and Potential Mechanisms,” Chemistry of Materials, 10, 1501 (1998)
[46] B. O’Regan and D. T. Schwartz, S. M. Zakeeruddin and M. Grätzel, “Electrodeposited Nanocomposite p-n Hetrojunction for Solid-state Dye-sensitized Photovoltaics,” Advanced Materials, 12, 1263 (2000)
[47] J. Hagen, W. Schaffrath, P. Otschik, R. Fink, A. Bacher, H. W. Schmidt and Dietrich Haarer, “Novel Hybrid Solar Cells Consisting of Inorganic Nanoparticles and an Organic Hole Transport Material,” Synthetic Metals, 89, 215 (1997)
[48] U. Bach, D. Lupo, J. E. Moser, F. Weissörtel, J. Salbexk, H. Spreitzer and M. Grätzel, “Solid-state Dye-sensitized Mesoporous TiO2 Solar Cells with High Photon-to-electron Conversion Efficiencies,” Nature, 395, 583 (1998)
[49] S. S. Sekhon, Deepa and S. A. Agnihotry, “Solvent Effect on Gel Electrolytes Containing Lithium Salts,” Solid State Ionics, 136-137,1189 (2000)
[50] F. Cao, G. Oskam and P. C. Searson, “A solid State, Dye Sensitized Photoelectrochemical Cell,” Journal of Physical Chemistry, 99, 17071 (1995)
[51] Y. Ren, Z. Zhang, E. Gao, S. Fang and S. Cai, “A Dye-Sensitized Nanoporous TiO2 Photoelectrochemical Cell with Novel Gel Network Polymer Electrolyte,” Journal of Applied Electrochemistry, 31, 445 (2001)
[52] E. Stathatos, P. Lianos, U. Lavrencic-Stangar and B. Orel, “A High-performance Solid-state Dye-sensitized Photoelectrochemical Cell Employing a Nanocomposite Gel Electrolyte Made by the Sol-gel Route,” Advanced Materials, 14, 354 (2002)
[53] 徐志宇, 幾丁聚醣/蒙脫石複合材料之支架備製, 國立台灣大學材料與工程學研究所, 碩士論文, 2003
[54] http://www.chemtech.com.tw/Column.php?mode=detail&id=38
[55] http://www.aero.fcu.edu.tw/media/nero-composites.htm
[56] Y. Li, B. Zhao, S. Xie, and S. Zhang, ”Synthesis and properties of poly(methyl methacrylate)/montmorillonite (PMMA/MMT) nanocomposites,“ Polymer International, 52, 892 (2003)
[57] T. Xie, G. Yang, X. Fang, and Y. Ou, ”Synthesis and characterization of poly(methyl meathacrylate)/montmorillonite nanocomposites by in situ bulk polymerization,“ Journal of Applied Polymer Science, 89, 2256 (2003)
[58] P. Li, J. P. Zheng, Y. L. Ma, and K. D. Yao, ”Gelatin/montmorillonite hybrid nanocomposite. II. Swelling behavior,“Journal of Applied Polymer Science, 88, 322 (2003)
[59] N. Salahuddin and M. Shehata, “Polymethyl methacrylate- montmorillonite composite: preparation characterization and properties,” Polymer, 42, 8379 (2001)
[60] Y. S. Choi, M. Xu, and I. J. Chung, “Synthesis of exfoliated poly- (styrene-co-acrylonitrile) copolymer/silicate nanocomposite by emulsion polymerization; monomer composition effect on mor -phology,” Polymer, 44, 6989 (2003)
[61] Y. S. Choi, M. H. Choi, K. H. Wang, S. O. Kim, Y. K. Kim, and I. J. Chung, “Synthesis of Exfoliated PMMA/Na-MMT Nanocomposite via Soap-Free Emulsion Polymerization,” Macromolecules, 34, 8978 (2001)
[61] N. G. Park, J. van de Langemaat and A. J. Frank, “Comparision Dye- sensitized Rutile- and Anatase-based TiO2 Solar Cells,” Journal of Physical Chemistry B, 104, 8989 (2000)
[62] Powder Diffraction File: Search Manual, Hanawalt Method Inorganic, compiled by the JCPDS: International Centre for Diffraction Data; in cooperation with the American Ceramic Society, Swarthmore, Pennsylvania (1991)
[63] L. Han, N. Koide, Y. Chiba, and T. Mitate, “Modeling of an equlivalent circuit for dye-sensitized solar cells,” Applied Physics Letters, 84, 2433 (2004)
[64] C. Longo and M. A. D. Paoli, “Dye-sensitized solar cells: a successful combination of materials,” Journal of the Brazilian Chemical Society, 14, 889 (2003)
[65] C. Longo, A. F. Nogueira, and M. A. D. Paoli, “Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy,” Journal of Physical Chemistry. B, 106, 5925 (2002)
[66] M. C. Bernard, H. Cachet, P. Falaras, A. H.-L. Goff, M. Kalbac, I. Lukes, N. T. Oanh, T. Stergiopoulos, and I. Arabatis, “Sensitization of TiO2 by polypyridine dyes,” Journal of the Electrochemical Society, 150, E155 (2003)
[67] J. van de Lagemaat, N. G. Park, and A. J. Fra, “Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrytalline TiO2 solar cells: a study by electrical impedance and optical modulation techniques,” Journal of Physical Chemistry. B, 104, 2044 (2000)
[68] K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, and H. Arakawa, “Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes,” Solar Energy Materials and Solar Cells, 77, 89 (2003)
[69] http://en.wikipedia.org/wiki/Glass_transition
[70] http://www.mfa.org/_cameo/frontend/material_description.asp?name =acrylic+resin&language=1
[71] http://www.che.nthu.edu.tw/nsc_polymer/nsc-polymer/image_report 2003/POLYMER/NSC%2091-2216-E-041-002.pdf
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32782-
dc.description.abstract本研究的目的主要是探討膠態電解質系統(Polymer/ACN/LiI/ I2/TBP) 對於染料敏化二氧化鈦太陽能電池效能的影響。藉由使用不同的高分子與高分子–蒙脫石複合材料之膠態電解質系統,來尋找能夠維持液態元件的高光電轉化效率,且能改善液態元件的封裝問題之最適合材料。
經由量測膠態電解質的導電度,以及對膠態系統元件作交流阻抗分析,可得知離子在電解質中的導電效果以及元件中的阻抗分布。測量的結果為PMA電解質系統 (PMA/ ACN/ LiI/ I2/ TBP) 有較高的導電度與較好的離子擴散速率,而PNIPAAm電解質系統 (PNIPAAm/ ACN/ LiI/ I2/ TBP )的導電度最差,離子擴散速率也不佳。但加了蒙脫石之後,PMA電解質系統的導電度及離子擴散速率皆下降,但PNIPAAm電解質系統卻上升了不少。而對於PVAc電解質系統 (PVAc/ ACN/ LiI/ I2/ TBP) 而言,加了蒙脫石之後導電度及離子擴散速率並無明顯的變動。
以元件的表現來看,液態乙腈電解質系統在入射光能量為100mW/cm2的光電轉換效率可達8.69%,電流值也可高達5.27mA。而膠態電解質系統中,以PMA電解質系統的表現最好,有高達7.17%的光電轉換效率。而PVAc與PNIPAAm系統則分別為5.62%與3.17%。加了蒙脫石的三個系統中,光電表現非常接近。PMA電解質系統的各項數據皆有些許的下降,但還是有5.84%的高效率。而PNIPAAm電解質系統在加了蒙脫石之後,效率大幅提升原來效率的70%。而PVAc電解質系統在加了蒙脫石之後,各項數據只有些微的下降,前後差異並不大,分別為5.62%與5.12%。
zh_TW
dc.description.abstractThe objective of the research is to study the effects of the gel-type electrolyte systems (polymer/ACN/LiI/I2/ TBP) on the performance of dye-sensitized titanium oxide solar cells. By using different polymer and polymer-MMT nanocomposite electrolyte systems, we intended to find suitable materials for high performance and good sealing properties of the solar cell devices.
The performance of electrolyte for gel-type devices could be estimated by measuring conductivity and using EIS (Electrochemical Impedance Spectroscopy). The results was that the PMA electrolyte system (PMA/ACN/ LiI/I2/TBP) had higher conductivity and ionic diffusion rate. The PNIPAAm electrolyte system (PNIPAAm/ACN/LiI/ I2/TBP) had lowest conductivity and ionic diffusion rate. Addition of the montmorillonite (MMT) to gel-type electrolyte system, the conductivity and ionic diffusion rate of the PMA electrolyte system decreased, but the PNIPAAm electrolyte system increased. For the PVAc (PVAc/ACN/LiI/ I2/TBP) electrolyte system, the conductivity and ionic diffusion rate were not siginificantly changed with the addition of the MMT to the system.
For the performance of the devices, the photon-to-electron power conversion efficiency of liquid ACN electrolyte system (ACN/LiI/I2/TBP) was 8.69% and the current was 5.27mA at an incident light intensity of 100mW/cm2. For gel-type electrolyte system, the PMA electrolyte system had best performance and its efficiency could reach as 7.17%. The efficiencies of PVAc and PNIPAAm system were 5.62% and 3.17%, respectively. For three systems with the MMT, the performances were very close. Although the data of PMA electrolyte system decreased after adding the MMT to the system, it still had high efficiency as 5.84%. The efficiency of the PNIPAAm system increased 70% after adding the MMT to the system. The PVAc and PVAc+MMT electrolyte systems with the efficiencies of 5.62% and 5.12%, respectively, were almost the same.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:15:28Z (GMT). No. of bitstreams: 1
ntu-95-R93549014-1.pdf: 4672926 bytes, checksum: afa9d31025846b479ccc4ea4f9f674de (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents中文摘要…………………………………………………………………I
英文摘要………………………………………………………………III
目錄………………………………………………………………………V
圖目錄………………………………………………………………VIII
表目錄…………………………………………………………………XVI
第一章 緒論……………………………………………………………1
1-1 前言…………………………………………………………………1
1-2 太陽能電池簡介……………………………………………………4
1-2-1 半導體簡介…………………………………………………8
1-2-2 太陽能電池的工作原理…………………………………15
1-2-3 有機太陽能電池簡介……………………………………19
1-2-3-1 施受體型太陽能電池…………………………19
1-2-3-2 染料敏化太陽能電池…………………………26
1-3 交流阻抗分析原理………………………………………………30
1-4 電導值計算原理…………………………………………………37
1-5 文獻回顧…………………………………………………………39
1-5-1 染料敏化太陽能電池……………………………………39
1-5-2 固態染料敏化太陽能電池………………………………46
1-5-2-1 膠態高分子電解質……………………………48
1-5-3 蒙脫石……………………………………………………50
1-5-3-1 高分子/蒙脫石奈米複合物…………………52
1-6 研究動機與實驗架構……………………………………………55
第二章 實驗設備與方法………………………………………………57
2-1 儀器設備…………………………………………………………57
2-1-1 高溫爐……………………………………………………57
2-1-2 濺鍍儀……………………………………………………57
2-1-3 場發射鎗掃瞄式電子顯微鏡……………………………57
2-1-4 X光繞射分析儀……………………………………………57
2-1-5 光電測試與交流阻抗分析設備…………………………58
2-1-6 高壓釜……………………………………………………58
2-1-7 凝膠滲透層析儀…………………………………………58
2-1-8 電導度計…………………………………………………59
2-1-9 恆溫水槽…………………………………………………59
2-1-10 黏度計 …………………………………………………59
2-2 薄膜電極製備……………………………………………………60
2-2-1 二氧化鈦薄膜電極之製備………………………………60
2-2-2 白金電極之製備…………………………………………62
2-3 薄膜電極性質量測………………………………………………63
2-3-1 二氧化鈦薄膜電極X光繞射分析…………………………63
2-3-2 薄膜電極SEM表面分析……………………………………63
2-4電解質之製備………………………………………………………64
2-4-1 液態電解質之製備………………………………………64
2-4-2 膠態電解質之製備………………………………………64
2-4-2-1 高分子與高分子–蒙脫石複合材料之合成方法與
分子量分析……………………………………64
2-4-2-2 膠態電解質配製………………………………67
2-5 元件組裝…………………………………………………………70
2-6 太陽能電池光電化學測試………………………………………71
2-6-1實驗裝置……………………………………………………71
2-6-2 光電流–電壓特徵曲線…………………………………71
2-6-3 電解質導電度之量測……………………………………73
2-6-4 交流阻抗分析……………………………………………73
2-6-5 入射光子–電流轉換效率之量測………………………73

第三章 結果與討論……………………………………………………74
3-1 薄膜電極分析……………………………………………………74
3-1-1 X光繞射分析………………………………………………74
3-1-2 SEM表面分析………………………………………………78
3-2膠態高分子電解質導電度與黏度量測……………………………80
3-3交流阻抗分析染料敏化太陽能電池………………………………90
3-3-1 液態乙腈電解質系統…………………………………………90
3-3-2 膠態高分子電解質系統…………………………………92
3-4太陽能電池光電轉換效率之探討……………………………105
3-4-1 液態乙腈電解質系統……………………………………105
3-4-2 膠態高分子電解質系統…………………………………107
3-5 入射光子–電流轉換效率………………………………………118
3-6 長期穩定性測試…………………………………………………128
第四章 結論…………………………………………………………143
第五章 參考資料……………………………………………………145
dc.language.isozh-TW
dc.title高分子及其蒙脫石奈米複合材料在膠態光敏型太陽能電池上的應用zh_TW
dc.titleApplication of Polymers and Their Exfoliated MMT Nanocomposites on Gel-type Dye-sensitized Solar Cellsen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何國川,王立義
dc.subject.keyword染料敏化太陽能電池,高分子–蒙托石複合材料,膠態電解質系統,PMA,PVAc,PNIPAAm,zh_TW
dc.subject.keyworddye-sensitized solar cells,polymer-MMT composite,gel-type electrolyte system,PMA,PVAc,PNIPAAm,en
dc.relation.page154
dc.rights.note有償授權
dc.date.accepted2006-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
4.56 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved