Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32767
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃孝平(Hsiao-Ping Huang)
dc.contributor.authorCheng-Hsun Janen
dc.contributor.author詹政訓zh_TW
dc.date.accessioned2021-06-13T04:15:07Z-
dc.date.available2006-07-28
dc.date.copyright2006-07-28
dc.date.issued2006
dc.date.submitted2006-07-25
dc.identifier.citation[1] 黃士哲,「丙酸丁酯的反應蒸餾系統」,國立台灣科技大學化學工程學研究所碩士論文(2002).
[2] 劉文宗,「酯化反應蒸餾合成丙酸正丁酯研究」,國立清華大學化學工程學研究所博士論文(2002).
[3] 林谷囿,「反應蒸餾系統設計與控制-丙酸丁酯」,國立台灣大學化學工程學研究所碩士論文(2004).
[4] 洪婉仁,「利用反應性蒸餾系統進行稀醋酸之酯化反應:化學路徑、程序設計與控制」,國立台灣大學化學工程學研究所碩士論文(2005).
[5] Agreda, V. H.; Partin, L. R.; Heise, W. H., “High Purity Methyl Acetate via Reactive Distillation,” Chem. Eng. Prog., 86(2) ,40 (1990).
[6] Al-Arfaj M.; Luyben, W. L., “Comparison of Alternative Control Structures for an Ideal Two-Product Reactive Distillation Column,” Ind. Eng. Chem. Res., 39,3298 (2000).
[7] Al-Arfaj M.; Luyben, W. L.,”Comparative Control Study of Ideal and Methyl Acetate Reactive Distillation”, Chem. Eng. Sci., 57, 5039 (2002a).
[8] Barbosa, D.; Doherty, M. F., “ The Simple Distillation of Homogeneous Reactive Mixtures,” Chem. Eng. Sci., 43, 541 (1988).
[9] Chang, J. W.; Yu, C. C., “The Relative Gain for Non-Square Multivariable System,” Chem. Eng. Sci., 45, 1309-1323 (1990).
[10] Chen, F. R; Huss, R. S.; Malone, M. F.; Doherty, M.F., “Simulation of Kinetic Effects in Reactive Distillation,” Comput. Chem. Eng.,24,2457 (2000).
[11] Cheng, Y. C.; Yu, C. C., ”Effects of Feed Tray Locations to t he Design of Reactive Distillation and its Implication to Control,” Chemical Engineering Science, 60(17), 4661-4677 (2005)
[12] Chiang, C. H., “Design PID controllers for Multiloop system”, Master thesis., Department of Chemical Engineering, National Taiwan University (2001).
[13] Chiang, S. F.; Kuo, C. L.; Yu, C. C.; Wong, D. S. H., “Design Alternatives for the Amyl Acetate Process : Coupled Reactor/Column and Reactive Distillation,” Ind. Eng. Chem. Res., 41, 3233 (2002).
[14] Doherty, M. F. ; Malone, M. F. Conceptual Design of Distillation System, McGraw-Hill: New York (2001).
[15] Doherty, M. F.; Buzad, G., “Reactive Distillation by Design,” Trans Inst. Chem. Eng., Part A, 70, 448-458 (1992).
[16] Doherty, M. F.; Caldarola, G. A., “Design and Synthesis of Homogeneous Azeotropic Distillations. 3. The Sequencing of Columns for Azeotropic and extractive Distillations,” Ind. Eng. Chem. Fundam., 24, 474 (1985).
[17] Douglas, J. M. Conceptual Process Design, McGraw-Hill: New York (1988).
[18] Eduardo González; Juan Ortega; Densities and Isobaric Vapor-Liquid Equlibria for the Mixtures Formed by Four Butyl Esters and 1-Butanol, J. Chem Eng.2 Data, 41, 53-58 (1996).
[19] Gmehling, J.; Onken, U.; “VaporLiquid Equilibrium Data Collection”, DECHEMA, Chemistry Data Series 1-8, Frankfurt (1977-1979).
[20] Güttinger, T. E.; Morari, M., “Predicting Multiple Steady State in Equilibrium Reactive Distillation. 1. Analysis of Nonhybrid Systems”, Ind. Eng. Chem. Res., 38, 1633(1999a).
[21] Güttinger, T. E.; Morari, M., “Predicting Multiple Steady State in Equilibrium Reactive Distillation. 2. Analysis of hybrid Systems”, Ind. Eng. Chem. Res., 38, 1649(1999b).
[22] Hayden, J. G.; O’Connell, J. P., “A Generalied Method for Predicting Second Virial Coefficients,” Ind. Eng. Chem. Proces Des., 14, 209 (1975).
[23] Horsley, L. H., Azeotropic data - III, Advances in Chemistry Series No. 116, American Chemical Society, Washington, D.C. (1973).
[24] Huang, H. P.; Jeng, J. C.; Chiang, C. H.; Pan, W., “A direct method for multi-loop PI/PID controller design”, J. Process Control (2003).
[25] Huang, H. P.; Lee, M. W.; Chen, C. L. “Inversed-Based Design for A Modefied PID controllers” J.Chin. Inst.Chem. Engrs., 31, 3, 255 (2000).
[26] Huang, S. G.; Kuo, C. L.;Chen, Y. W.; Yu, C. C.; Temperature Control of Heterogeneous Reactive Distillation: Butyl Propionate and Butyl Acetate Esterification.. AIChE J., (2003).
[27] Jacob, R.; Krishna, R., “Multiple Solutions in Reactive Distillation for Methyl tert-Butyl Ether Synthesis”, Ind. Eng.Chem. Res., 32, 1706(1993).
[28] Kai Sundmacher and Achim Kinle; Reactive Distillation, Wiley-VCH (2002).
[29] Kumar, A.; Daoutidis, P., “Modeling, Analysis and Control of Ethylene Glycol Reactive Distillation Column,” AIChE J., 45, 51 (1999).
[30] Lee, M. J.; Chen, S. L.; Kang, C. H.; Lin, H. M., “Simultaneous Chemical and Phase Equilibria for Mixture of Acetic Acid, Amyl Alcohol, Amyl Acetate, and Water,” Ind. Eng. Chem. Res., 39, 4383 (2000).
[31] Lee, M. J.; Chiu, J. Y.; Lin, H. M., “Kinetics of Catalytic Esterification of Propionic Acid and n-Butanol over Amberlyst 35,” Ind. Eng. Chem. Res., 41, 2882 (2002).
[32] Lee, M. J.; Wu, H. T.; Kang, C. H.; Lin, H. M., “Kinetic Behavior of Amyl Acetate Synthesis Catalyzed by Acidic Cation Exchang Resin,” J. Chin. Inst. Chem. Engrs., 30, 2 (1999).
[33] Liu, W. T.; Tan, C. S., “Liquid-Phase Estrification of Propionic Acid with n-Butanol,” Ind. Eng. Chem. Res., 40, 3281 (2001).
[34] Luyben, W. L. ; Plantwide Dynamic Simulators in Chemical Processing and Control, Marcel Dekker (2002).
[35] Luyben, W. L. ; Tyréus, B. D. ; Luyben, M. L. ; Plantwide Process Control, McGraw-Hill: New York (1999).
[36] Luyben, W. L., “Economic and Dynamic Impact of the Use of Excess Reactant in Reactive Distillation System,” Ind. Eng. Chem. Res., 39, 2935 (2000).
[37] Luyben, W. L.; Practical Distillation Control. Van Nostrand Reinhold : New York (1992).
[38] Malone, M. F.; Doherty, M. F., “Reactive Distillation,” Ind. Eng. Chem. Res., 39, 3953 (2000).
[39] Nijhuis, S. A.; Kerkhof, F. P. J. M.; Mak, A. N. S., “Multiple Steady States during Reactive Distillation of Methyl tert-Butyl Ether,” Ind. Eng. Chem. Res., 32, 2767 (1993).
[40] Okasinski, M.J.; Doherty, M.F. “Prediction of heterogeneous reactive azeotropes in esterification systems”, Chem. Eng. Sci., 55(22), 5263-5271 (2000).
[41] Peterson, E. J.; Partin, L. R., “Temperature Sequences for Categorizing All Ternary Distillation Boundary Maps,” Ind. Eng. Chem. Res., 36, 1799 (1997).
[42] Pham, H. N.; Doherty, M. F., “Design and Synthesis of Heterogenous Azetropic Distillations-I. Heterogeneous Phase Diagrams,” Chem. Eng. Sci., 45, 1823 (1990).
[43] Richard Stephenson; James Stuart; Mutual Binary Solubilities: Water-Alcohols and Water-Esters, J. Chem. Eng. Data., 31, 56-70 (1986).
[44] Seider, J.; D Henley, E. J. , Separation Process Principles , Wiley : New York (1998).
[45] Sharma, O.N.; Nageshwar, G.D.; Mene, P.S. ”Esterification of butanol with propionic acid catalyzed by cation exchange resin”, Chem. Ind. Dev., Incorporating CP&E, 11, 24 (1977).
[46] Shinsky, F. G., Distillation Control, 2nd Ed., McGraw-Hill : New York (1984).
[47] Sneesby, M. G.; Tade, M. O.; Datta, R.; Smith, T. N., “ETBE Synthesis via Reactive Distillation. 1. Steady-State Simulation and Design Aspects,” Ind. Eng. Chem. Res., 36, 1855 (1997).
[48] Sneesby, M. G.; Tade, M. O.; Datta, R.; Smith, T. N., “ETBE Synthesis via Reactive Distillation. 2. Dynamic Simulation and Control Aspects,” Ind. Eng. Chem. Res., 36, 1870 (1997).
[49] Subawalla, H.; Fair, J. R., “Design Guideline for Solid-Catalyzed Reactive Distillation Systems,” Ind. Eng. Chem. Res., 38, 3696 (1999).
[50] Ung, S.; Doherty, M. F., “Necessary and Sufficient Conditions for Reactive Azeotropes in Multireaction Mixtures,” AIChE J., 41, 2383 (1995).
[51] Van Dongen, D. B.; Doherty, M. F., “Design and Synthesis of Homogeneous Azeotropic Distillations. 1. Problem Formulation for a Single Column,” Ind. Eng. Chem. Fundam., 24, 454 (1985).
[52] Venimadhavan, G.; Malone, M. F.; Doherty M. F., “A Novel Distillate Policy for Batch Reactive Distillation with application to the Production of Butyl Acetate,” Ind. Eng. Chem. Res., 38, 714 (1999).
[53] Venkateswarlu, K.; Sinha, R.; Rao, R. J. “Kinetics of esterification of n-butanol with propionic acid in a stirred tank batch reactor”, Chemicals and Petrochemicals J. (1976).
[54] Vora, N.; Daoutidis, P., “Dynamic and Control an Ethyl Acetate Reactive Distillation,” Ind. Eng. Chem. Res., 40, 833 (2001).
[55] Wu, K. L.; Yu, C. C., “Reactor Separator Processes with Recycle : 1. Candidate Control Structure for Operability,” Comp. Chem. Engng., 20, 1291 (1996).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32767-
dc.description.abstract結合反應與分離程序之反應蒸餾系統近來廣泛受到討論與研究,由於在設備成本及操作成本上較傳統製程大幅減省的優勢下,關於不同酯類的反應蒸餾系統之研究相繼於近年被提出。
本文承接林谷囿(2004)對丙酸丁酯反應蒸餾系統的設計與控制之研究,但將丙酸進料分為兩股,並由另一塔板進入蒸餾塔中。經過年總成本最適化的步驟後發現對於此系統,分支進料之後可使年總成本節省約10%,再沸器熱負載可節省約12%,且單位觸媒的效率有提高的效果。由此實驗可得一結論是將較重之反應物分成兩股並將其中較大之股流與另一較輕之反應物於同一板進料,另一股則在較高的板入料。將此結論應用到其他酯化反應蒸餾系統,如乙酸甲酯、乙酸丁酯和乙酸戊酯,卻發現乙酸甲酯和乙酸戊酯在進料分支後無法使年總成本減少,乙酸丁酯系統卻可獲得大幅的改善,年總成本節省約30%而再沸器熱負載量則可減少50%。
除靜態設計外,本文分別對此兩種不同進料狀況下之系統進行動態模擬,對於進料不分支統有兩種控制架構,而進料分支系統則討論系統中的第三個自由度之可用性。利用靈敏度分析、非方形相對矩陣(NRG)及奇異值分解(SVD)來判斷最靈敏的溫度控制板。之後便用相對增益矩陣來進行配對。ATV調諧控制器參數。對此兩種不同進料情況之系統作進料流量及進料純度擾動來測試其干擾承受及排除能力,但因此兩種系統在進料流量擾動時皆會在塔底產品產生丙酸濃度偏移的問題,所以加上前饋控制來使塔底產品濃度接近設定點也如預期可以得到不錯的表現。
zh_TW
dc.description.abstractA Reactive distillation column that combines reaction and distillation processes into one single unit is known to have significant advantages on reducing capital and operating costs of a process. Different esterification processes using RD columns have been studied and published in literature lately.
Subsequent to Lin’s previous work (2004), “design and control of reactive distillation system for n-butyl propionate”, it is the purpose of this research to study if splitting the feed inputs to the RD column can improve the economics and operation of the process. It is found that, after splitting, the TAC decreases for 10% and reboiler duty decreases for 20% in this particular case. By this splitting of the feed, the specific reaction rate is found to increase at the same time. The resulting optimal design shows that the heavier reactant feed is splitted into two portions. The bigger portion of feed goes along with the lighter reactant to the same tray, and the remaining portion is fed to some tray in above. It is found that, by applying this result to other esterification processes, significant reduction of TAC and reboiler duty may be procured. Three of esterification processes ( Metyl-acetate, butyl-acetate, amyl-acetate) were studied. It was found that the spilt of feed favors the RD processes where reaction equilibrium constant is larger. For example, for butyl-acetate process, TAC can decrease as much as to 30% and the reboiler duty to 50%.
The control strategies for optimal n-butyl propionate processes (single feed and split feed) are also studied. Two control strategies for either case that has single or split propionate acid feed are considered. For temperature control, the non-square relative gain (NRG) and singular value decomposition (SVD) together with sensitivity analysis are used to locate the right trays where temperatures are to be controlled. Relative gain array (RGA) is used to select pairing and characterize the interaction of the control loops, ATV is used to tune the controller parameters. Flow rate disturbance and feed purity disturbance are introduced to test the disturbance rejection abilities of these systems. Since offsets in product composition are found, a feed forward control strategy to keep the composition close to its set-point is also considered. It is found that the split of feed does not have essential effect on the control of such processes.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:15:07Z (GMT). No. of bitstreams: 1
ntu-95-R93524076-1.pdf: 1906493 bytes, checksum: eb57435f7474d40660f9cffb6fb0c428 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents致謝 I
摘要 III
Abstract V
目錄 VII
圖索引 X
表索引 XIV
1 緒論 1
1.1 前言 1
1.2 文獻回顧 4
1.3 研究動機與目的 6
1.4 組織章節 6
2 丙酸不分支進料之穩態設計 9
2.1 前言 9
2.2 熱力學及動力學模式 10
2.2.1 液相使用之熱力學模式 10
2.2.2 氣相使用之熱力學模式 10
2.2.3 動力學模式 12
2.3 丙酸丁酯反應蒸餾系統之程序描述 13
2.4 不分支進料程序之最適化步驟 15
3 丙酸分支進料之穩態設計 21
3.1 前言 21
3.2 進料分支系統之最適化步驟 21
3.3 丙酸進料位置之影響 27
3.4 丙酸丁酯反應蒸餾程序之最適化設計探討 33
3.4.1 溫度分佈 33
3.4.2 組成分佈 34
3.5結果與討論 36
3.5.1 反應段之影響 36
3.5.2 分支丙酸進料位置之影響 36
3.5.3 分支丙酸進料流量之影響 36
3.5.4 綜合討論 37
4 對其他酯化製程之延伸 39
4.1 前言 39
4.2 乙酸甲酯 39
4.2.1 乙酸甲酯反應蒸餾系統程序描述 39
4.2.2 乙酸甲酯進料分支模擬結果 41
4.3 乙酸丁酯 43
4.3.1 乙酸丁酯反應蒸餾系統程序描述 43
4.3.2 乙酸丁酯進料分支模擬結果 45
4.4 乙酸戊酯 48
4.4.1 乙酸戊酯反應蒸餾系統程序描述 48
4.4.2 乙酸戊酯進料分支模擬結果 50
4.5 結果與討論 50
5 動態模擬與控制 53
5.1 前言 53
5.2 控制環路設計 53
5.3 溫度控制點之決定 54
5.4 雙點溫度控制 54
5.4.1 雙點溫度靈敏度分析 55
5.4.2 奇異值分解 58
5.4.3 非方形相對增益 59
5.4.4 RGA非方形相對增益 61
5.4.5 控制器參數調諧 63
5.4.6 雙點溫度控制動態模擬結果 64
5.4.6.1 進料不分支系統 65
5.4.6.2 進料分支系統 68
5.4.6.3 對進料不分支系統之第三自由度之探討 72
5.4.7 溫度偏差 77
5.4.8 前饋控制 80
6 結論 85
參考文獻 87
Appendix A. 年總成本計算公式 93
Appendix B. 熱力學及動力學模式 95
B.1 乙酸甲酯 95
B.1.1 液相使用之熱力學模式 95
B.1.2 氣相使用之熱力學模式 96
B.1.3 動力學模式 97
B.2 乙酸丁酯 98
B.2.1 液相使用之熱力學模式 98
B.2.2 氣相使用之熱力學模式 99
B.2.3 動力學模式 99
B.3 乙酸戊酯 100
B.3.1 液相使用之熱力學模式 100
B.3.2 氣相使用之熱力學模式 100
B.3.3 動力學模式 101
dc.language.isozh-TW
dc.title分支進料對丙酸丁酯反應蒸餾系統的影響zh_TW
dc.titleDesign and Control of Reactive Distillation
for n-Butyl Propionate System with Split Feed
en
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.coadvisor錢義隆(I-Lung Chien)
dc.contributor.oralexamcommittee余政靖(Cheng-Ching Yu),王國彬(Gow-Bin Wang),黃奇(Chyi Huang)
dc.subject.keyword分支進料,丙酸丁酯,反應蒸餾,乙酸丁酯,乙酸甲酯,乙酸戊酯,zh_TW
dc.subject.keywordsplit feed,butyl propionate,reactive distillation,buty acetate,metyl acetate,amyl acetate,en
dc.relation.page105
dc.rights.note有償授權
dc.date.accepted2006-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  目前未授權公開取用
1.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved