請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32748
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳振中 | |
dc.contributor.author | Peng-Huan Chen | en |
dc.contributor.author | 陳鵬驩 | zh_TW |
dc.date.accessioned | 2021-06-13T04:14:43Z | - |
dc.date.available | 2011-07-28 | |
dc.date.copyright | 2006-07-28 | |
dc.date.issued | 2006 | |
dc.date.submitted | 2006-07-25 | |
dc.identifier.citation | 第一章
[1] Mann, S.: Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. 2002. [2] Hay, D.I. (1973) Isolation from Human Parotid Saliva of a Tyrosine-Rich Acidic Peptide Which Exhibits High Affinity for Hydroxyapatite Surfaces. Archives of Oral Biology 18: 1531-&. [3] Hay, D.I., Moreno, E.C., Schlesinger, D.H. (1979) Phosphoprotein-Inhibitors of Calcium-Phosphate Precipitation from Salivary Secretions. Inorganic Perspectives in Biology and Medicine 2: 271-285. [4] Xie, H., Gibbons, R.J., Hay, D.I. (1991) Adhesive Properties of Strains of Fusobacterium-Nucleatum of the Subspecies Nucleatum, Vincentii and Polymorphum. Oral Microbiology and Immunology 6: 257-263. [5] Gibbons, R.J., Hay, D.I. (1988) Human Salivary Acidic Proline-Rich Proteins and Statherin Promote the Attachment of Actinomyces-Viscosus Ly7 to Apatitic Surfaces. Infection and Immunity 56: 439-445. [6] Gibbons, R.J., Hay, D.I., Cisar, J.O., Clark, W.B. (1988) Adsorbed Salivary Proline-Rich Protein-1 and Statherin - Receptors for Type-1 Fimbriae of Actinomyces-Viscosus T14v-J1 on Apatitic Surfaces. Infection and Immunity 56: 2990-2993. [7] Oppenhei.Fg, Hay, D.I., Franzbla.C (1971) Proline-Rich Proteins from Human Parotid Saliva .1. Isolation and Partial Characterization. Biochemistry 10: 4233-&. [8] Hay, D.I., Oppenhei.Fg (1974) Isolation from Human Parotid Saliva of a Further Group of Proline-Rich Proteins. Archives of Oral Biology 19: 627-&. [9] Ramasubbu, N., Thomas, L.M., Bhandary, K.K., Levine, M.J. (1993) Structural Characteristics of Human Salivary Statherin - a Model for Boundary Lubrication at the Enamel Surface. Critical Reviews in Oral Biology & Medicine 4: 363-370. [10] Elgavish, G.A., Hay, D.I., Schlesinger, D.H. (1984) H-1 and P-31 Nuclear Magnetic-Resonance Studies of Human Salivary Statherin. International Journal of Peptide and Protein Research 23: 230-234. [11] Naganagowda, G.A., Gururaja, T.L., Levine, M.J. (1998) Delineation of conformational preferences in human salivary statherin by H-1, P-31 NMR and CD studies: Sequential assignment and structure-function correlations. Journal of Biomolecular Structure & Dynamics 16: 91-107. [12] Shaw, W.J., Long, J.R., Campbell, A.A., Stayton, P.S., Drobny, G.P. (2000) A solid state NMR study of dynamics in a hydrated salivary peptide adsorbed to hydroxyapatite. Journal of the American Chemical Society 122: 7118-7119. [13] Drobny, G.P., Long, J.R., Karlsson, T., Shaw, W., Popham, J., Oyler, N., Bower, P., Stringer, J., Gregory, D., Mehta, M., Stayton, P.S. (2003) Structural studies of biomaterials using double-quantum solid-state NMR spectroscopy. Annual Review of Physical Chemistry 54: 531-571. [14] Long, J.R., Shaw, W.J., Stayton, P.S., Drobny, G.P. (2001) Structure and dynamics of hydrated statherin on hydroxyapatite as determined by solid-state NMR. Biochemistry 40: 15451-15455. [15] Douglas, W.H., Reeh, E.S., Ramasubbu, N., Raj, P.A., Bhandary, K.K., Levine, M.J. (1991) Statherin - a Major Boundary Lubricant of Human Saliva. Biochemical and Biophysical Research Communications 180: 91-97. [16] Gururaja, T.L., Ramasubbu, N., Levine, M.J. (1996) Solid-phase synthesis of human salivary mucin-derived O-linked glycopeptides. Letters in Peptide Science 3: 79-88. [17] Raj, P.A., Johnsson, M., Levine, M.J., Nancollas, G.H. (1992) Salivary Statherin - Dependence on Sequence, Charge, Hydrogen-Bonding Potency, and Helical Conformation for Adsorption to Hydroxyapatite and Inhibition of Mineralization. Journal of Biological Chemistry 267: 5968-5976. [18] Fernandez, E., Gil, F.J., Ginebra, M.P., Driessens, F.C.M., Planell, J.A., Best, S.M. (1999) Calcium phosphate bone cements for clinical applications - Part II: Precipitate formation during setting reactions. Journal Of Materials Science-Materials In Medicine 10: 177-183. [19] Fernandez, E., Gil, F.J., Ginebra, M.P., Driessens, F.C.M., Planell, J.A., Best, S.M. (1999) Calcium phosphate bone cements for clinical applications - Part I: Solution chemistry. Journal Of Materials Science-Materials In Medicine 10: 169-176. [20] Suchanek, W., Yoshimura, M. (1998) Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal Of Materials Research 13: 94-117. [21] Long, J.R., Dindot, J.L., Zebroski, H., Kiihne, S., Clark, R.H., Campbell, A.A., Stayton, P.S., Drobny, G.P. (1998) A peptide that inhibits hydroxyapatite growth is in an extended conformation on the crystal surface. Proceedings of the National Academy of Sciences of the United States of America 95: 12083-12087. [22] Gerstein, B.C., Pembleton, R.G., Wilson, R.C., Ryan, L.M. (1977) High-Resolution Nmr In Randomly Oriented Solids With Homonuclear Dipolar Broadening - Combined Multiple Pulse Nmr And Magic Angle Spinning. Journal Of Chemical Physics 66: 361-362. [23] Santos, R.A., Wind, R.A., Bronnimann, C.E. (1994) 1H CRAMPS and 1H-31P HetCor experiments on bone, bone mineral, and model calcium phosphate phases. Journal of Magnetic Resonance, Series B 105: 183-187. [24] Lee, Y.K., Kurur, N.D., Helmle, M., Johannessen, O.G., Nielsen, N.C., Levitt, M.H. (1995) Efficient dipolar recoupling in the NMR of rotating solids. A sevenfold symmetric radiofrequency pulse sequence. Chemical Physics Letters 242: 304-309. [25] Rothwell, W.P., Waugh, J.S., Yesinowski, J.P. (1980) High-resolution variable-temperature phosphorus-31 NMR of solid calcium phosphates. Journal of the American Chemical Society 102: 2637-2643. [26] Cho, G., Wu, Y., Ackerman Jerome, L. (2003) Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Science 300: 1123-1127. [27] Tycko, R., Dabbagh, G. (1990) Measurement Of Nuclear Magnetic Dipole-Dipole Couplings In Magic Angle Spinning Nmr. Chemical Physics Letters 173: 461-465. [28] Oyler, N.A., Tycko, R. (2002) Multiple quantum C-13 NMR spectroscopy in solids under high-speed magic-angle spinning. Journal Of Physical Chemistry B 106: 8382-8389. 第二章 [1] Kaneko, K., Peretz, D., Pan, K.M., Blochberger, T.C., Wille, H., Gabizon, R., Griffith, O.H., Cohen, F.E., Baldwin, M.A., Prusiner, S.B. (1995) Prion Protein (Prp) Synthetic Peptides Induce Cellular Prp to Acquire Properties of the Scrapie Isoform. Proc. Natl. Acad. Sci. U. S. A. 92: 11160-11164. [2] Purcell, E.M., Torrey, H.C., Pound, R.V. (1946) Phys. Rev 69: 37. [3] Tycko, R. (2001): Solid-state nuclear magnetic resonance techniques for structural studies of amyloid fibrils. In Nuclear Magnetic Resonance of Biological Macromolecules, Pt B, pp. 390-413. [4] Gerstein, B.C., Pembleton, R.G., Wilson, R.C., Ryan, L.M. (1977) High-Resolution Nmr in Randomly Oriented Solids with Homonuclear Dipolar Broadening - Combined Multiple Pulse Nmr and Magic Angle Spinning. Journal of Chemical Physics 66: 361-362. [5] Baldus, M. (2002) Correlation experiments for assignment and structure elucidation of immobilized polypeptides under magic angle spinning. Prog. Nucl. Magn. Reson. Spectrosc. 41: 1-47. [6] Abragam, A.: Principles of Nuclear Magnetism. Clarendon Press, Oxford 1961. [7] Schaefer, J., Stejskal, E.O. (1976) C-13 Nuclear Magnetic-Resonance of Polymers Spinning at Magic Angle. J. Am. Chem. Soc. 98: 1031-1032. [8] Hartmann, S.R., Hahn, E.L. (1962) Nuclear Double Resonance in the Rotating Frame. Phys. Rev. 128: 2042. [9] Lee, M., Goldburg, W.I. (1965) Nuclear-Magnetic-Resonance Line Narrowing by a Rotating Rf Field. Physical Review 140: 1261-&. [10] Pines, A., Gibby, M.G., Waugh, J.S. (1973) Proton-Enhanced Nmr of Dilute Spins in Solids. J. Chem. Phys. 59: 569-590. [11] Brinkmann, A., Levitt, M.H. (2001) Symmetry principles in the nuclear magnetic resonance of spinning solids: Heteronuclear recoupling by generalized Hartmann-Hahn sequences. Journal of Chemical Physics 115: 357-384. [12] Oyler, N.A., Tycko, R. (2002) Multiple quantum C-13 NMR spectroscopy in solids under high-speed magic-angle spinning. J. Phys. Chem. B 106: 8382-8389. [13] Tseng, Y.H., Mou, Y., Mou, C.Y., Chan, J.C.C. (2005) Double-quantum NMR spectroscopy based on finite pulse RFDR. Solid State Nucl. Magn. Reson. 27: 266-270. 第三章 [1] Kates, S.A., F (2000) Solid-Phase Synthesis: A Practical Guide;Marcel Dekker. [2] Wren, J.J., Wiggall, P.H. (1965) An Improved Colorimetric Method for Determination of Proline in Presence of Other Ninhydrin-Positive Compounds. Biochemical Journal 94: 216-&. [3] Shaw, W.J., Long, J.R., Campbell, A.A., Stayton, P.S., Drobny, G.P. (2000) A solid state NMR study of dynamics in a hydrated salivary peptide adsorbed to hydroxyapatite. Journal of the American Chemical Society 122: 7118-7119. [4] Zhan, J.H., Tseng, Y.H., Chan, J.C.C., Mou, C.Y. (2005) Biomimetic formation of hydroxyapatite nanorods by a single-crystal-to-single-crystal transformation. Advanced Functional Materials 15: 2005-2010. [5] Gonzalez-McQuire, R., Chane-Ching, J.Y., Vignaud, E., Lebugle, A., Mann, S. (2004) Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods. Journal of Materials Chemistry 14: 2277-2281. [6] Metz, G., Wu, X.L., Smith, S.O. (1994) Ramped-Amplitude Cross-Polarization in Magic-Angle-Spinning Nmr. J. Magn. Reson. Ser. A 110: 219-227. [7] Tseng, Y.H., Mou, Y., Mou, C.Y., Chan, J.C.C. (2005) Double-quantum NMR spectroscopy based on finite pulse RFDR. Solid State Nucl. Magn. Reson. 27: 266-270. [8] Oyler, N.A., Tycko, R. (2002) Multiple quantum C-13 NMR spectroscopy in solids under high-speed magic-angle spinning. J. Phys. Chem. B 106: 8382-8389. [9] Gullion, T., Baker, D.B., Conradi, M.S. (1990) New, Compensated Carr-Purcell Sequences. 89: 479-484. [10] Oyler, N.A., Tycko, R. (2002) Multiple quantum C-13 NMR spectroscopy in solids under high- speed magic-angle spinning. J. Phys. Chem. B 106: 8382-8389. 第四章 [1] Gonzalez-McQuire, R., Chane-Ching, J.Y., Vignaud, E., Lebugle, A., Mann, S. (2004) Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods. Journal of Materials Chemistry 14: 2277-2281. [2] Gomez-Fernandez, J.C., Villalain, J. (1998) The use of FT-IR for quantitative studies of the apparent pK(a) of lipid carboxyl groups and the dehydration degree of the phosphate group of phospholipids. Chemistry and Physics of Lipids 96: 41-52. [3] Tamm, L.K., Tatulian, S.A. (1997) Infrared spectroscopy of proteins and peptides in lipid bilayers. Quarterly Reviews of Biophysics 30: 365-429. [4] Santos, R.A., Wind, R.A., Bronnimann, C.E. (1994) H-1 Cramps and H-1-P-31 Hetcor Experiments on Bone, Bone-Mineral, and Model Calcium-Phosphate Phases. J. Magn. Reson. Ser. B 105: 183-187. [5] Ladizhansky, V., Vega, S. (2000) Polarization transfer dynamics in Lee-Goldburg cross polarization nuclear magnetic resonance experiments on rotating solids. J. Chem. Phys. 112: 7158-7168. [6] van Rossum, B.J., de Groot, C.P., Ladizhansky, V., Vega, S., de Groot, H.J.M. (2000) A method for measuring heteronuclear (H-1-C-13) distances in high speed MAS NMR. J. Am. Chem. Soc. 122: 3465-3472. [7] Tseng, Y.H., Zhan, J.H., Lin, K.S.K., Mou, C.Y., Chan, J.C.C. (2004) High resolution P-31 NMR study of octacalcium phosphate. Solid State Nucl. Magn. Reson. 26: 99-104. [8] Wu, Y.T., Glimcher, M.J., Rey, C., Ackerman, J.L. (1994) A Unique Protonated Phosphate Croup in Bone-Mineral Not Present in Synthetic Calcium Phosphates - Identification by P-31 Solid-State Nmr-Spectroscopy. J. Mol. Biol. 244: 423-435. [9] Yesinowski, J.P., Eckert, H. (1987) Hydrogen Environments in Calcium Phosphates - H-1 Mas Nmr at High Spinning Speeds. J. Am. Chem. Soc. 109: 6274-6282. [10] Cho, G.Y., Wu, Y.T., Ackerman, J.L. (2003) Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy. Science 300: 1123-1127. [11] Lee, M., Goldburg, W.I. (1965) Nuclear-Magnetic-Resonance Line Narrowing by a Rotating Rf Field. Physical Review 140: 1261-&. [12] Tseng, Y.H., Zhan, J.H., Lin, K.S.K., Mou, C.Y., Chan, J.C.C. (2004) High resolution P-31 NMR study of octacalcium phosphate. Solid State Nuclear Magnetic Resonance 26: 99-104. [13] Tseng, Y.H., Mou, C.Y., Chan, J.C.C. (2006) Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: A mechanistic model for central dark line formation. Journal Of The American Chemical Society 128: 6909-6918. [14] Tseng, Y.H., Mou, Y., Mou, C.Y., Chan, J.C.C. (2006) Double-quantum NMR spectroscopy based on finite pulse RFDR (vol 27, pg 266, 2005). Solid State Nuclear Magnetic Resonance 30: 60-60. [15] Zhan, J.H., Tseng, Y.H., Chan, J.C.C., Mou, C.Y. (2005) Biomimetic formation of hydroxyapatite nanorods by a single-crystal-to-single-crystal transformation. Advanced Functional Materials 15: 2005-2010. 第五章 [1] Raghunathan, V., Gibson, J.M., Goobes, G., Popham, J.M., Louie, E.A., Stayton, P.S., Drobny, G.P. (2006) Homonuclear and heteronuclear NMR studies of a statherin fragment bound to hydroxyapatite crystals. Journal of Physical Chemistry B 110: 9324-9332. [2] Gibson, J.M., Raghunathan, V., Popham, J.M., Stayton, P.S., Drobny, G.P. (2005) A REDOR NMR study of a phosphorylated statherin fragment bound to hydroxyapatite crystals. Journal of the American Chemical Society 127: 9350-9351. [3] Gibson, J.M., Popham, J.M., Raghunathan, V., Stayton, P.S., Drobny, G.P. (2006) A solid-state NMR study of the dynamics and interactions of phenylalanine rings in a statherin fragment bound to hydroxyapatite crystals. Journal of the American Chemical Society 128: 5364-5370. [4] Gullion, T., Schaefer, J. (1989) Rotational-Echo Double-Resonance NMR. J. Magn. Reson. 81: 196-200. [5] Gullion, T., Pennington, C.H. (1998) theta-REDOR: an MAS NMR method to simplify multiple coupled heteronuclear spin systems. Chem. Phys. Lett. 290: 88-93. [6] McMurray, J.S., Coleman, D.R., Wang, W., Campbell, M.L. (2001) The synthesis of phosphopeptides. Biopolymers 60: 3-31. [7] Vorherr, T., Bannwarth, W. (1995) Phospho-Serine and Phospho-Threonine Building-Blocks for the Synthesis of Phosphorylated Peptides by the Fmoc Solid-Phase Strategy. Bioorganic & Medicinal Chemistry Letters 5: 2661-2664. [8] Shaw, W.J., Long, J.R., Campbell, A.A., Stayton, P.S., Drobny, G.P. (2000) A solid state NMR study of dynamics in a hydrated salivary peptide adsorbed to hydroxyapatite. Journal of the American Chemical Society 122: 7118-7119. [9] Gonzalez-McQuire, R., Chane-Ching, J.Y., Vignaud, E., Lebugle, A., Mann, S. (2004) Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods. Journal of Materials Chemistry 14: 2277-2281. [10] Tseng, Y.H., Mou, C.Y., Chan, J.C.C. (2006) Solid-state NMR study of the transformation of octacalcium phosphate to hydroxyapatite: A mechanistic model for central dark line formation. Journal Of The American Chemical Society 128: 6909-6918. [11] Bigi, A., Boanini, E., Gazzano, M., Rubini, K., Torricelli, P. (2004) Nanocrystalline hydroxyapatite-polyaspartate composites. Bio-Medical Materials and Engineering 14: 573-579. [12] Bigi, A., Bracci, B., Panzavolta, S., Iliescu, M., Plouet-Richard, M., Werckmann, J., Cam, D. (2004) Morphological and structural modifications of octacalcium phosphate induced by poly-L-aspartate. Crystal Growth & Design 4: 141-146. [13] Bigi, A., Boanini, E., Bracci, B., Falini, G., Rubini, K. (2003) Interaction of acidic poly-amino acids with octacalcium phosphate. Journal of Inorganic Biochemistry 95: 291-296. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32748 | - |
dc.description.abstract | 生物成礦(biomineralization)是人體中一種很重要的機制來產生人體所需要的硬組織,例如:牙齒、骨頭等。蛋白質在生物成礦中扮演很重要的角色,因為蛋白質可扮演促進或抑制羥基磷灰石(Hydroxyapatite,Ca10(PO4)6(OH)2,簡稱HAp)結晶的功能。人類牙齒與骨頭的主要無機成分為羥基磷灰石,已知蛋白質能夠調控這些硬組織的成長,但是蛋白質是如何準確的辨識羥基磷灰石並且進而控制其成長目前還不是很清楚。
已知Statherin存在於唾液中,並與HAp具有很強的作用力以抑制牙結石的產生。在本篇論文中,我們採用單一胺基酸(麩胺酸,Glu)及唾液蛋白(Statherin)的片段胜肽15mer(DpSpSEEKFLRRIGRFG﹐pS =phosphorylated serine)來研究蛋白質與無機鹽的相互作用。我們利用共合成的方法,成功地得到約有20%的15mer吸附在HAp其中,並利用紅外線光譜及熱重分析儀確認胜肽的含量,且以X光散射來鑑定HAp結構,再加上固態核磁共振探討蛋白質如何與HAp相互作用的機制。在技術上我們可以用不同的脈衝序列測量系統中同核與異核之空間的環境。利用了交叉極化雙共振關聯及雙量子的技術來測量,使得更了解其中作用上的蛋白的結構。與其他研究小組(Drobny, University of Seattle)相比,我們的方法能大大地增加15mer於HAp上的吸附量,亦首次能以固態核磁共振方法測量出15mer與HAp之間的相互作用。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-06-13T04:14:43Z (GMT). No. of bitstreams: 1 ntu-95-R93223038-1.pdf: 2967150 bytes, checksum: 51858a9753a505f260d6f199da24dd16 (MD5) Previous issue date: 2006 | en |
dc.description.tableofcontents | 第1章 序論 1
1.1 生物成礦(biomineralization)的簡介 1 1.2 唾液蛋白(Salivary Statherin)的簡介 2 1.3 生物材料及其功能性 3 1.3.1 磷酸鈣 4 1.4 固態核磁共振對生物成礦的探討 7 1.5 參考文獻 9 第2章 核磁共振技術 13 2.1 核磁共振(NMR)簡介 13 2.2 基本理論 14 2.2.1 核自旋 14 2.2.2 以量子力學來描述核磁共振 15 2.2.3 NMR訊號的產生 20 2.3 固態核磁共振基本原理 22 2.3.1 化學位移及各向異性的化學位移作用力 23 2.3.2 偶極-偶極交互作用 25 2.4 固態核磁共振技巧 27 2.4.1 去偶合(decoupling) 27 2.4.2 魔角旋轉(MAS) 28 2.4.3 交叉極化(Cross Polarzation) 29 2.4.4 Lee-Goldburg照射 30 2.4.5 雙量子相干(Double quantum coherence) 31 2.5 參考文獻 32 第3章 合成與鑑定方法 34 3.1 化學藥品 34 3.2 胜肽合成、純化和鑑定 35 3.2.1 固態胜肽合成(SPPS) 35 3.2.2 胜肽的純化及鑑定之方法 38 3.3 胜肽(15mer)與羥基磷灰石(HAp)結合 38 3.3.1 15mer吸附於羥基磷灰石(HAp) 38 3.3.2 15mer與羥基磷灰石(HAp)共合成 39 3.4 鑑定方法 40 3.4.1 X光繞射分析(XRD) 40 3.4.2 傅立葉轉換紅外線光譜(FT-IR) 40 3.4.3 熱重分析儀(TGA) 41 3.4.4 場發射掃描式電子顯微鏡(FE-SEM) 41 3.5 固態核磁共振 41 3.5.1 13C{1H} 交叉極化魔角旋轉光譜 41 3.5.2 31P{1H} Lee-Goldburg交叉極化雙共振關 聯光譜 (LG-CP HETCOR) 42 3.5.3 31P{1H} Lee-Goldburg交叉極化過濾雙量 子訊號雙共振關聯光譜 (LG-CP-DQ HETCOR) 43 3.5.4 31P{1H} Lee-Goldburg交叉極化31P-31P雙 量子訊號光譜(LG-CP 31P-31P DQ Spectrum) 44 3.6 參考文獻 46 第4章 實驗結果與討論 47 4.1 胜肽純化與鑑定 47 4.2 XRD、BET比表面積及SEM 48 4.3 紅外線光譜(FT-IR)與熱重分析儀(TGA) 50 4.4 固態核磁共振 53 4.4.1 13C{1H} 交叉極化魔角旋轉光譜 53 4.4.2 31P{1H} Lee-Goldburg交叉極化雙共振關 聯光譜 (LG-CP HETCOR) 54 4.4.3 31P{1H} Lee-Goldburg交叉極化過濾雙量 子訊號雙共振關聯光譜 (LG-CP-DQ HETCOR) 62 4.4.4 31P{1H} Lee-Goldburg交叉極化31P-31P雙 量子訊號光譜 (LG-CP 31P-31P DQ Spectrum) 64 4.5 參考文獻 67 第5章 總結與未來展望 5.1 論文總結 69 5.2 未來展望 70 5.3 參考文獻 73 | |
dc.language.iso | zh-TW | |
dc.title | 蛋白胜肽對羥基磷灰石相互作用之研究 | zh_TW |
dc.title | Studies of the Interaction between Polypeptides and Hydroxyapatite | en |
dc.type | Thesis | |
dc.date.schoolyear | 94-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 俞聖法,鄒德里 | |
dc.subject.keyword | 羥基磷灰石,固態核磁共振,唾液蛋白, | zh_TW |
dc.subject.keyword | Hydroxyapatite,Solid-State NMR,Statherin, | en |
dc.relation.page | 74 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2006-07-25 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 化學研究所 | zh_TW |
顯示於系所單位: | 化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-95-1.pdf 目前未授權公開取用 | 2.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。