請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32735完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳家揚 | |
| dc.contributor.author | Ying-Hsuan Lin | en |
| dc.contributor.author | 林穎萱 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:14:27Z | - |
| dc.date.available | 2008-07-31 | |
| dc.date.copyright | 2006-07-31 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-25 | |
| dc.identifier.citation | Reference
1. EPA, Special Report on Environmental Endocrine Disruption: An Effects Assessment and Analysis. Environmental Protection Agency, US EPA/630/R-96/012, February 1997. 2. Desbrow C, Routledge E J, Brighty G C, Sumpter J P, and Waldock M, Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environmental Science & Technology, 1998. 32(11): p. 1549-1558. 3. Juberg D R, An evaluation of endocrine modulators: Implications for human health. Ecotoxicology and Environmental Safety, 2000. 45(2): p. 93-105. 4. Gomes R L, Scrimshaw M D, and Lester J N, Determination of endocrine disrupters in sewage treatment and receiving waters. Trac-Trends in Analytical Chemistry, 2003. 22(10): p. 697-707. 5. Lai K M, Scrimshaw M D, and Lester J N, The effects of natural and synthetic steroid estrogens in relation to their environmental occurrence. Critical Reviews in Toxicology, 2002. 32(2): p. 113-132. 6. D'Ascenzo G, Di Corcia A, Gentili A, Mancini R, Mastropasqua R, Nazzari M, and Samperi R, Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. Science of the Total Environment, 2003. 302(1-3): p. 199-209. 7. Mills L J and Chichester C, Review of evidence: Are endocrine-disrupting chemicals in the aquatic environment impacting fish populations? Science of the Total Environment, 2005. 343(1-3): p. 1-34. 8. Matsui S, Takigami H, Matsuda T, Taniguchi N, Adachi J, Kawami H, and Shimizu Y, Estrogen and estrogen mimics contamination in water and the role of sewage treatment. Water Science and Technology, 2000. 42(12): p. 173-179. 9. Ternes T A, Andersen H, Gilberg D, and Bonerz M, Determination of estrogens in sludge and sediments by liquid extraction and GC/MS/MS. Analytical Chemistry, 2002. 74(14): p. 3498-3504. 10. Mol H G J, Sunarto S, and Steijger O M, Determination of endocrine disruptors in water after derivatization with N-methyl-N-(tert.-butyldimethyltrifluoroacetamide) using gas chromatography with mass spectrometric detection. Journal of Chromatography A, 2000. 879(1): p. 97-112. 11. Kelly C, Analysis of steroids in environmental water samples using solid-phase extraction and ion-trap gas chromatography-mass spectrometry and gas chromatography-tandem mass spectrometry. Journal of Chromatography A, 2000. 872(1-2): p. 309-314. 12. Fine D D, Breidenbach G P, Price T L, and Hutchins S R, Quantitation of estrogens in ground water and swine lagoon samples using solid-phase extraction, pentafluorobenzyl/trimethylsilyl derivatizations and gas chromatography-negative ion chemical ionization tandem mass spectrometry. Journal of Chromatography A, 2003. 1017(1-2): p. 167-185. 13. Mouatassim-Souali A, Tamisier-Karolak S L, Perdiz D, Cargouet M, and Levi Y, Validation of a quantitative assay using GC/MS for trace determination of free and conjugated estrogens in environmental water samples. Journal of Separation Science, 2003. 26(1-2): p. 105-111. 14. Diaz-Cruz M S, de Alda M J L, Lopez R, and Barcelo D, Determination of estrogens and progestogens by mass spectrometric techniques (GC/MS, LC/MS and LC/MS/MS). Journal of Mass Spectrometry, 2003. 38(9): p. 917-923. 15. Mei H, Hsieh Y S, Nardo C, Xu X Y, Wang S Y, Ng K, and Korfmacher W A, Investigation of matrix effects in bioanalytical high-performance liquid chromatography/tandem mass spectrometric assays: application to drug discovery. Rapid Communications in Mass Spectrometry, 2003. 17(1): p. 97-103. 16. Gao S M, Zhang Z P, and Karnes H T, Sensitivity enhancement in liquid chromatography/atmospheric pressure ionization mass spectrometry using derivatization and mobile phase additives. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2005. 825(2): p. 98-110. 17. Higashi T and Shimada K, Derivatization of neutral steroids to enhance their detection characteristics in liquid chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry, 2004. 378(4): p. 875-882. 18. Anari M R, Bakhtiar R, Zhu B, Huskey S, Franklin R B, and Evans D C, Derivatization of ethinylestradiol with dansyl chloride to enhance electrospray ionization: Application in trace analysis of ethinylestradiol in rhesus monkey plasma. Analytical Chemistry, 2002. 74(16): p. 4136-4144. 19. Quirke J M E, Adams C L, and Vanberkel G J, Chemical Derivatization for Electrospray-Ionization Mass-Spectrometry .1. Alkyl-Halides, Alcohols, Phenols, Thiols, and Amines. Analytical Chemistry, 1994. 66(8): p. 1302-1315. 20. Singh G, Gutierrez A, Xu K Y, and Blair I A, Liquid chromatography/electron capture atmospheric pressure chemical ionization/mass spectrometry: Analysis of pentafluorobenzyl derivatives of biomolecules and drugs in the attomole range. Analytical Chemistry, 2000. 72(14): p. 3007-3013. 21. Li W K, Li Y H, Li A C, Zhou S L, and Weng N D, Simultaneous determination of norethindrone ethinyl estradiol in human plasma by high performance liquid chromatography with tandem mass spectrometry-experiences on developing a highly selective method using derivatization reagent for enhancing sensitivity. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2005. 825(2): p. 223-232. 22. Shou W Z, Jiang X Y, and Weng N D, Development and validation of a high-sensitivity liquid chromatography/tandem mass spectrometry (LC/MS/MS) method with chemical derivatization for the determination of ethinyl estradiol in human plasma. Biomedical Chromatography, 2004. 18(7): p. 414-421. 23. Nelson R E, Grebe S K, O'Kane D J, and Singh R J, Liquid chromatography-tandem mass spectrometry assay for simultaneous measurement of estradiol and estrone in human plasma. Clinical Chemistry, 2004. 50(2): p. 373-384. 24. Rotchell J M and Ostrander G K, Molecular markers of endocrine disruption in aquatic organisms. Journal of Toxicology and Environmental Health-Part B-Critical Reviews, 2003. 6(5): p. 453-495. 25. Pickering A D and Sumpter J P, Comprehending endocrine disrupters in aquatic environments. Environmental Science & Technology, 2003. 37(17): p. 331A-336A. 26. Lai K M, Johnson K L, Scrimshaw M D, and Lester J N, Binding of waterborne steroid estrogens to solid phases in river and estuarine systems. Environmental Science & Technology, 2000. 34(18): p. 3890-3894. 27. Ying G G, Kookana R S, and Ru Y J, Occurrence and fate of hormone steroids in the environment. Environment International, 2002. 28(6): p. 545-551. 28. Hanselman T A, Graetz D A, and Wilkie A C, Manure-borne estrogens as potential environmental contaminants: A review. Environmental Science & Technology, 2003. 37(24): p. 5471-5478. 29. Tanaka H, Yakou Y, Takahashi A, Higashitani T, and Komori K, Comparison between estrogenicities estimated from DNA recombinant yeast assay and from chemical analyses of endocrine disruptors during sewage treatment. Water Science and Technology, 2001. 43(2): p. 125-132. 30. Korner W, Spengler P, Bolz U, Schuller W, Hanf V, and Metzger J W, Substances with estrogenic activity in effluents of sewage treatment plants in southwestern Germany. 2. Biological analysis. Environmental Toxicology and Chemistry, 2001. 20(10): p. 2142-2151. 31. Gutendorf B and Westendorf J, Comparison of an array of in vitro assays for the assessment of the estrogenic potential of natural and synthetic estrogens, phytoestrogens and xenoestrogens. Toxicology, 2001. 166(1-2): p. 79-89. 32. Metcalfe C D, Metcalfe T L, Kiparissis Y, Koenig B G, Khan C, Hughes R J, Croley T R, March R E, and Potter T, Estrogenic potency of chemicals detected in sewage treatment plant effluents as determined by in vivo assays with Japanese medaka (Oryzias latipes). Environmental Toxicology and Chemistry, 2001. 20(2): p. 297-308. 33. Braga O, Smythe G A, Schafer A I, and Feitz A J, Steroid estrogens in ocean sediments. Chemosphere, 2005. 61(6): p. 827-833. 34. Johnson A C, Belfroid A, and Di Corcia A, Estimating steroid oestrogen inputs into activated sludge treatment works and observations on their removal from the effluent. Science of the Total Environment, 2000. 256(2-3): p. 163-173. 35. Belfroid A C, Van der Horst A, Vethaak A D, Schafer A J, Rijs G B J, Wegener J, and Cofino W P, Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in The Netherlands. Science of the Total Environment, 1999. 225(1-2): p. 101-108. 36. Lee H B and Peart T E, Determination of 17 beta-estradiol and its metabolites in sewage effluent by solid-phase extraction and gas chromatography mass spectrometry. Journal of Aoac International, 1998. 81(6): p. 1209-1216. 37. Young W F, Whitehouse P, Johnson I, and Sorokin N, Proposed predicted-no-effelct-concentrations (PNECs) for natural and synthetic steroid oestrogens in surface waters. R&D Technical Report P2-T04/1.Environment Agency, Bristol, UK, 2002. 38. Lee B C, Kamata M, Akatsuka Y, Takeda M, Ohno K, Kamei T, and Magara Y, Effects of chlorine on the decrease of estrogenic chemicals. Water Research, 2004. 38(3): p. 733-739. 39. Schafer A I, Nghiem L D, and Waite T D, Removal of the natural hormone estrone from aqueous solutions using nanofiltration and reverse osmosis. Environmental Science & Technology, 2003. 37(1): p. 182-188. 40. Yoon Y M, Westerhoff P, Snyder S A, and Esparza M, HPLC-fluorescence detection and adsorption of bisphenol A, 17 beta-estradiol, and 17 alpha-ethynyl estradiol on powdered activated carbon. Water Research, 2003. 37(14): p. 3530-3537. 41. Huang C H and Sedlak D L, Analysis of estrogenic hormones in municipal wastewater effluent and surface water using enzyme-linked immunosorbent assay and gas chromatography/tandem mass spectrometry. Environmental Toxicology and Chemistry, 2001. 20(1): p. 133-139. 42. Snyder S A, Keith T L, Verbrugge D A, Snyder E M, Gross T S, Kannan K, and Giesy J P, Analytical methods for detection of selected estrogenic compounds in aqueous mixtures. Environmental Science & Technology, 1999. 33(16): p. 2814-2820. 43. de Alda M J L and Barcelo D, Review of analytical methods for the determination of estrogens and progestogens in waste waters. Fresenius Journal of Analytical Chemistry, 2001. 371(4): p. 437-447. 44. Giese R W, Measurement of endogenous estrogens: analytical challenges and recent advances. Journal of Chromatography A, 2003. 1000(1-2): p. 401-412. 45. de Alda M J L and Barcelo D, Determination of steroid sex hormones and related synthetic compounds considered as endocrine disrupters in water by liquid chromatography-diode array detection-mass spectrometry. Journal of Chromatography A, 2000. 892(1-2): p. 391-406. 46. Yamamoto H, Liljestrand H M, Shimizu Y, and Morita M, Effects of physical-chemical characteristics on the sorption of selected endocrine disrnptors by dissolved organic matter surrogates. Environmental Science & Technology, 2003. 37(12): p. 2646-2657. 47. Baronti C, Curini R, D'Ascenzo G, Di Corcia A, Gentili A, and Samperi R, Monitoring natural and synthetic estrogens at activated sludge sewage treatment plants and in a receiving river water. Environmental Science & Technology, 2000. 34(24): p. 5059-5066. 48. Croley T R, Hughes R J, Koenig B G, Metcalfe C D, and March R E, Mass spectrometry applied to the analysis of estrogens in the environment. Rapid Communications in Mass Spectrometry, 2000. 14(13): p. 1087-1093. 49. Van Berkel G J, Quirke J M E, Tigani R A, Dilley A S, and Covey T R, Derivatization for electrospray ionization mass spectrometry. 3. Electrochemically ionizable derivatives. Analytical Chemistry, 1998. 70(8): p. 1544-1554. 50. Novak T J and Yuan H M, The determination of a chlorinated benzofuran pharmaceutical intermediate by HPLC-MS with on-line derivatization. Journal of Pharmaceutical and Biomedical Analysis, 2000. 23(4): p. 705-713. 51. Mukaiyama T, Ikeda S, and Kobayashi S, Novel Method for Preparation of Various 2-Pyridyl Sulfides from Alcohols. Chemistry Letters, 1975(11): p. 1159-1162. 52. Dunphy J C, Pessler D G, and Morrall S W, Derivatization LC/MS for the simultaneous determination of fatty alcohol and alcohol ethoxylate surfactants in water and wastewater samples. Environmental Science & Technology, 2001. 35(6): p. 1223-1230. 53. Nakagawa Y and Hashimoto Y, Polar derivatization of 5a-dihydrotestosterone and sensitive analysis by semimicro-LC/ESI-MS Journal of the Mass Spectrometry Society of Japan 2002. 50 (6): p. 330-336. 54. Higashi T, Takido N, Yamauchi A, and Shimada K, Electron-capturing derivatization of neutral steroids for increasing sensitivity in liquid chromatography/negative atmospheric pressure chemical ionization-mass spectrometry. Analytical Sciences, 2002. 18(12): p. 1301-1307. 55. Karst U, Liquid chromatography-electron capture-atmospheric pressure chemical ionization-mass spectrometry. Analytical and Bioanalytical Chemistry, 2005. 382(8): p. 1744-1746. 56. Lee S H, Williams M V, DuBois R N, and Blair I A, Targeted lipidomics using electron capture atmospheric pressure chemical ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2003. 17(19): p. 2168-2176. 57. Sheen J F and Her G R, Application of pentafluorophenyl hydrazine derivatives to the analysis of nabumetone and testosterone in human plasma by liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2004. 380(7-8): p. 891-897. 58. Hayen H, Jachmann N, Vogel M, and Karst U, LC-electron capture-APCI(-)-MS determination of nitrobenzoxadiazole derivatives. Analyst, 2003. 128(11): p. 1365-1372. 59. Rogatsky E and Stein D, Evaluation of matrix effect and chromatography efficiency: New parameters for validation of method development. Journal of the American Society for Mass Spectrometry, 2005. 16(11): p. 1757-1759. 60. Stuber M and Reemtsma T, Evaluation of three calibration methods to compensate matrix effects in environmental analysis with LC-ESI-MS. Analytical and Bioanalytical Chemistry, 2004. 378(4): p. 910-916. 61. Taylor P J, Matrix effects: The Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clinical Biochemistry, 2005. 38(4): p. 328-334. 62. Fernandez-Figares I, Rodriguez L C, and Gonzalez-Casado A, Effect of different matrices on physiological amino acids analysis by liquid chromatography: evaluation and correction of the matrix effect. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2004. 799(1): p. 73-79. 63. Matuszewski B K, Constanzer M L, and Chavez-Eng C M, Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Analytical Chemistry, 2003. 75(13): p. 3019-3030. 64. Bald E, Analytical Utility of 2-Halopyridinium Salts .1. Paper Electrophoretic Characterization of Thiols as 2-Alkyl(Aryl)Thio-1-Methylpyridinium Para-Toluenesulfonates. Journal of Chromatography, 1979. 174(2): p. 483-487. 65. Chen C Y, Wen T Y, Wang G S, Cheng H W, and Lin Y H, Investigating the removal of estrogenic steroids in drinking water treatment process using the analysis of high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry. 2006, submitted to Environ. Sci. Technol. 66. Deruiter C, Otten R R, Brinkman U A T, and Frei R W, Rapid and Simple Dansylation of Phenolic Steroids Using a 2-Phase System and Phase-Transfer Catalysis. Journal of Chromatography, 1988. 436(3): p. 429-436. 67. Penzes L P and Oertel G W, Determination of Steroids by Densitometry of Derivatives .2. Direct Fluorometry of Dansyl Estrogens. Journal of Chromatography, 1970. 51(2): p. 325-&. 68. Quirke J M E and Van Berkel G J, Electrospray tandem mass spectrometric study of alkyl 1-methylpyridinium ether derivatives of alcohols. Journal of Mass Spectrometry, 2001. 36(12): p. 1294-1300. 69. Barry S J, Carr R M, Lane S J, Leavens W J, Monte S, and Waterhouse I, Derivatisation for liquid chromatography/electrospray mass spectrometry: synthesis of pyridinium compounds and their amine and carboxylic acid derivatives. Rapid Communications in Mass Spectrometry, 2003. 17(6): p. 603-620. 70. Lee S H, Williams M V, and Blair I A, Targeted chiral lipidomics analysis. Prostaglandins Other Lipid Mediat, 2005. 77(1-4): p. 141-57. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32735 | - |
| dc.description.abstract | 存在於環境中的內生性類固醇雌激素(steroid estrogens)與相關的人工合成化合物,包含動情激素(17β-estradiol, E2)、雌素酮(estrone, E1)、雌素醇(estriol, E3)和乙炔動情激素(17α-ethinyl estradiol, EE2)等,主要經由動物及人類代謝產物進入環境水體,濃度雖低 (pg/L~ng/L),其生態毒性卻足以致使環境失衡,並比其他內分泌干擾物質更具效力。回顧目前應用於偵測環境水體中類固醇類雌激素的分析方法,液相層析搭配串連式質譜儀(LC/MS/MS)具有良好的靈敏度和選擇性;然而當環境基質複雜,且樣本量有限時,分析結果卻未必能到達所需的偵測極限。環境基質不但增加背景雜訊,也減低離子化效率,抑制分析物在質譜儀中產生的訊號。因此,除了加強分析真實樣品時的淨化步驟之外,利用化學衍生法提升離子化效率亦為可行之道。
本研究以LC/MS/MS配合化學衍生,改進類固醇雌激素在質譜儀中的離子化效率,並評估不同衍生方法在環境基質影響下之表現。衍生試劑係根據類固醇雌激素結構具有酚類官能基之特性,分別選用dansyl chloride、2-fluoro-1-methylpyridinium p-toluenesulfonate (FMPTS)、pentafluorobenzyl bromide (PFBBr) 三種化學衍生試劑,進行管柱前衍生,並就其訊號強度和訊雜比(S/N),與未衍生之化合物進行比較。 結果顯示,在未受基質干擾下,比較相同濃度的dansyl chloride衍生產物和未衍生之雌激素本體,前者之訊號強度可較後者高達一至二個數量級之譜;FMPTS之衍生反應具有選擇性,在相同的反應條件下,E1、E2和EE2可見訊號之提升,E3衍生產物之訊號卻明顯低於其他三者,甚至低於未衍生之E3;PFBBr 衍生方法對於四種待測物之訊號提升則有一致性。當衍生方法應用於河水、自來水、污水處理廠之放流水等實際環境水體時,使用電灑游離 (ESI) 為離子源之操作模式受到顯著的基質效應作用,而大氣壓化學游離 (APCI) 則較不受影響。綜合訊號提升與基質效應兩項因子之考量,dansyl chloride衍生方法適用於基質效應較少的水體,如飲用水之檢測;基質複雜的環境水體,如河水與污水處理廠之放流水則建議應用PFBBr 衍生方法。 本研究僅就衍生產物進行定性分析,後續之方法驗證及定量則需使用類固醇雌激素之內標準品,以同位素稀釋法建立檢量線及確定方法偵測極限,方能完整建立定量環境水體中類固醇雌激素之分析方法。 | zh_TW |
| dc.description.abstract | Environmental endocrine disruptors, including natural and synthetic steroid estrogens such as 17β-estradiol (E2), estrone (E1), estriol (E3), and 17α-ethinyl estradiol (EE2), have caused concerns for the disruption of the aquatic ecosystem and human health effects. Although the concentrations of steroid estrogens (pg/L~ng/L) are lower than those of other compounds known as feminizing agents, their effects may be more significant because of their high potencies. Due to their chemical properties and trace levels in the environment, LC/API/MS may not achieve sufficient sensitivity, especially for complex water matrixes. To enhance the signals of the analytes, structure modifications of estrogens with appropriate derivatization reagents are promising to improve detection limits by increasing the ionization efficiency on MS.
In this study, three selected derivatization reagents of different modification mechanisms were used to enhance the detection of steroid estrogens in waters, and the objective was to evaluate the impact of environmental matrixes on their performance. Based on the structural feature of steroid estrogens, which contain a phenolic group, dansyl chloride, 2-fluoro-1-methylpyridinium p-toluenesulfonate (FMPTS), and pentafluorobenzyl bromide (PFBBr) were selected as the derivatization reagents. The derivatized products of dansyl chloride provided higher signal intensity up to one or two orders than that of underivatized estrogens under the conditions without matrix effects. The derivative signals of FMPTS seemed to be analyte-dependent; derivatized products of E1, E2, and EE2 gained signal enhancement ranged from 2.19 to 12.1 times, whereas derivatized products of E3 showed poor signal intensity that was even worse than underivatized E3. Signal intensities of the four target compounds were enhanced consistently up to 5.81 times with PFBBr derivatization. When the derivatization methods were applied to real water samples, including river water, drinking water and effluents from the sewage treatment plant (STP), severe matrix effects were observed in the procedures using electrospray ionization (ESI), but were insignificant in atmospheric pressure chemical ionization (APCI) operation. Considering both sensitivity enhancement and matrix effect, this study suggested utilizing the dansyl chloride derivatization method in samples with less matrix effect such as drinking water, and the PFBBr derivatization method for complex environmental matrixes such as river water and STP effluents. This study presented qualitative comparisons of these derivatization methods. Further method validation and quantitative analysis is desired to analyze steroid estrogens in environmental waters. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:14:27Z (GMT). No. of bitstreams: 1 ntu-95-R93844007-1.pdf: 668246 bytes, checksum: fca3e0c33abb2269bcebbc083f82a9ca (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | Table of content
中文摘要 I Abstract III Table of content VI List of Tables IX List of Figures X Chapter 1. Introduction - 1 - 1.1 Environmental estrogens: on the environmental health perspective - 1 - 1.2 Objectives - 5 - Chapter 2. Literature Review - 7 - 2.1 Natural and synthetic estrogens in the environment - 7 - 2.2 Challenges of analytical techniques - 9 - 2.3 Chemical derivatization of steroid estrogens in LC/API/MS - 11 - 2.4 Matrix effects in LC/API/MS - 14 - Chapter 3. Materials and Methods - 16 - 3.1 Chemicals and reagents - 16 - 3.2 Synthesis of derivatized products - 16 - 3.2.1 Dansyl chloride derivatization - 16 - 3.2.2 FMPTS derivatization - 17 - 3.2.3 PFBBr derivatization - 18 - 3.3 Chromatography - 18 - 3.3.1. Steroid estrogen in ESI (-) without deivatization - 19 - 3.3.2. Steroid estrogen in APCI (-) without deivatization - 19 - 3.3.3. Dansyl-estrogens in ESI (+) - 20 - 3.3.4. FMP estrogens in ESI (+) - 20 - 3.3.5. PFB-estrogens in APCI (-) - 21 - 3.4 Mass spectrometry - 21 - 3.5 Water sampling and analysis - 21 - 3.6 Evaluation of method performance - 23 - 3.7 Data acquisition and analysis - 24 - Chapter 4. Results and Discussion - 25 - 4.1 Qualitative analysis of derivatized products - 25 - 4.1.1 Analysis of dansyl-estrogen derivatives - 26 - 4.1.2 Analysis of FMP-estrogen derivatives - 28 - 4.1.3 Analysis of PFB-estrogen derivatives - 31 - 4.2 Evaluation of method performance - 33 - 4.2.1 Absolute intensity comparison of different analytical methods - 33 - 4.2.2 Relative sensitivity enhancement between different methods - 35 - 4.2.3 Matrix effect of analytical methods - 36 - 4.3 Applicability of derivatization methods to real water samples - 39 - Chapter 5. Conclusions - 41 - Reference - 44 - Tables - 51 - Figures - 56 - Appendices - 74 - Appendix A : Glossary - 74 - Appendix B : Liquid chromatograms of native estrogen under ESI (-) - 76 - Appendix C: Liquid chromatograms of dansyl-estrogen under ESI (+) - 77 - Appendix D: Liquid chromatograms of FMP-estrogen under ESI (+) - 78 - Appendix E: Liquid chromatograms of native estrogen under APCI (-) - 79 - Appendix F: Liquid chromatograms of PFB-estrogen under APCI (-) - 80 - Appendix G: Mass spectra of underivatized estrogens - 81 - List of Tables Table 1. Chemical properties of steroid estrogens - 51 - Table 2. Instrumental parameters of the mass spectrometer - 51 - Table 3. SRM transition of derivatized estrogens - 52 - Table 4. SRM transition of native steroid estrogens - 52 - Table 5. Signal intensity of different estrogen derivatives - 53 - Table 6. Sensitivity comparison of different estrogen derivatives - 54 - Table 7. Matrix effect factors of the analytical methods - 55 - List of Figures Figure 1. Structure of steroid estrogens - 56 - Figure 2. Sample preparation procedures for water samples - 57 - Figure 3. Derivatization reactions of steroid estrogens in this study - 58 - Figure 4. Fragmentation of dansyl-E1 - 59 - Figure 5. Mass spectra of dansyl chloride derivatives - 60 - Figure 6. Mass spectra of FMPTS derivatives - 61 - Figure 7. Fragmentation mechanisms of FMP-derivatives - 62 - Figure 8. Liquid chromatograms of FMP-E2 - 63 - Figure 9. Reconstitution of FMP-derivatives - 64 - Figure10. Mechanism for electron capture APCI of PFB-derivatives - 65 - Figure 11. Mass spectra of PFBBr derivatives - 66 - Figure 12-1. Intensity comparison of different derivatization methods in deionized water and in drinking water - 67 - Figure 12-2. Intensity comparison of different derivatization methods in river water and in STP effluents - 68 - Figure 13-1. Sensitivity comparison of different derivatization methods in deionized water and in drinking water - 69 - Figure 13-2. Sensitivity comparison of different derivatization methods in river water and in STP effluents - 70 - Figure 14. Effect of matrixes within analytical methods - 71 - | |
| dc.language.iso | en | |
| dc.subject | 基質效應 | zh_TW |
| dc.subject | 化學衍生 | zh_TW |
| dc.subject | 液相層析/質譜/質譜儀 | zh_TW |
| dc.subject | Matrix effect | en |
| dc.subject | Chemical derivatization | en |
| dc.subject | LC/MS/MS | en |
| dc.title | 以液相層析/質譜/質譜儀配合化學衍生偵測水體中類固醇雌激素 | zh_TW |
| dc.title | Determination of Steroid Estrogens in Water using Liquid Chromatography/ Tandem Mass Spectrometry with Chemical Derivatization | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖寶琦,王根樹,何國榮 | |
| dc.subject.keyword | 化學衍生,液相層析/質譜/質譜儀,基質效應, | zh_TW |
| dc.subject.keyword | Chemical derivatization,LC/MS/MS,Matrix effect, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-25 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 環境衛生研究所 | zh_TW |
| 顯示於系所單位: | 環境衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 652.58 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
