請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32733完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳蕙芬(Whi-Fin Wu) | |
| dc.contributor.author | Pei-Yi Chang | en |
| dc.contributor.author | 張珮怡 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:14:24Z | - |
| dc.date.available | 2009-07-29 | |
| dc.date.copyright | 2006-07-29 | |
| dc.date.issued | 2006 | |
| dc.date.submitted | 2006-07-24 | |
| dc.identifier.citation | Altier, C., Suyemoto, M., and Lawhon, S.D. (2000a) Regulation of Salmonella enterica serovar Typhimurium invasion genes by csrA. Infect. Immun. 68: 6790-6797.
Altier, C., Suyemoto, M., Ruiz, A.I., Burnham, K.D., and Maurer, R. (2000b) Characterization of two novel regulatory genes affecting Salmonella invasion gene expression. Mol. Microbiol. 35: 635-646. Altier, C. (2005) Genetic and environmental control of salmonella invasion. J. Microbiol. 43 Spec No: 85-92. Bajaj, V., Hwang, C., and Lee, C.A. (1995) hilA is a novel ompR/toxR family member that activates the expression of Salmonella typhimurium invasion genes. Mol. Microbiol. 18: 715-727. Bajaj, V., Lucas, R.L., Hwang, C., and Lee, C.A. (1996) Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol. Microbiol. 22: 703-714. Bergman, T., Hakansson, S., Forsberg, A., Norlander, L., Macellaro, A., Backman, A., Bolin, I., and Wolf-Watz, H. (1991) Analysis of the V antigen lcrGVH-yopBD operon of Yersinia pseudotuberculosis: evidence for a regulatory role of LcrH and LcrV. J. Bacteriol. 173: 1607-1616. Beuzon, C.R., Meresse, S., Unsworth, K.E., Ruiz-Albert, J., Garvis, S., Waterman, S.R., Ryder, T.A., Boucrot, E., and Holden, D.W. (2000) Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. Embo J. 19: 3235-3249. Boddicker, J.D., and Jones, B.D. (2004) Lon protease activity causes down-regulation of Salmonella pathogenicity island 1 invasion gene expression after infection of epithelial cells. Infect. Immun. 72: 2002-2013. Botos, I., Melnikov, E.E., Cherry, S., Khalatova, A.G., Rasulova, F.S., Tropea, J.E., Maurizi, M.R., Rotanova, T.V., Gustchina, A., and Wlodawer, A. (2004a) Crystal structure of the AAA+ alpha domain of E. coli Lon protease at 1.9A resolution. J. Struct. Biol. 146: 113-122. Botos, I., Melnikov, E.E., Cherry, S., Tropea, J.E., Khalatova, A.G., Rasulova, F., Dauter, Z., Maurizi, M.R., Rotanova, T.V., Wlodawer, A., and Gustchina, A. (2004b) The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site. J Biol Chem 279: 8140-8148. Butler, S.M., Festa, R.A., Pearce, M.J., and Darwin, K.H. (2006) Self-compartmentalized bacterial proteases and pathogenesis. Mol. Microbiol. 60: 553-562. Carter, P.B., and Collins, F.M. (1974) The route of enteric infection in normal mice. J. Exp. Med. 139: 1189-1203. Chen, Y.W. (2005) Investigations of in vivo redundantly proteolytic activities of Salmonella typhimurium Lon and ClpYQ (HslUV) Protease involved in its pathogenicity. Master Thesis, Graduate Institute of Agricultural Chemistry, National Taiwan University Chuang, S.E., Burland, V., Plunkett, G., 3rd, Daniels, D.L., and Blattner, F.R. (1993) Sequence analysis of four new heat-shock genes constituting the hslTS/ibpAB and hslVU operons in Escherichia coli. Gene 134: 1-6. Cirillo, D.M., Valdivia, R.H., Monack, D.M., and Falkow, S. (1998) Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol. Microbiol. 30: 175-188. Collazo, C.M., and Galan, J.E. (1996) Requirement for exported proteins in secretion through the invasion-associated type III system of Salmonella typhimurium. Infect Immun. 64: 3524-3531. Darwin, K.H., and Miller, V.L. (1999) InvF is required for expression of genes encoding proteins secreted by the SPI1 type III secretion apparatus in Salmonella typhimurium. J. Bacteriol. 181: 4949-4954. Darwin, K.H., and Miller, V.L. (2000) The putative invasion protein chaperone SicA acts together with InvF to activate the expression of Salmonella typhimurium virulence genes. Mol. Microbiol. 35: 949-960. Eichelberg, K., Ginocchio, C.C., and Galan, J.E. (1994) Molecular and functional characterization of the Salmonella typhimurium invasion genes invB and invC: homology of InvC to the F0F1 ATPase family of proteins. J. Bacteriol. 176: 4501-4510. Ellermeier, C.D., and Slauch, J.M. (2003) RtsA and RtsB coordinately regulate expression of the invasion and flagellar genes in Salmonella enterica serovar Typhimurium. J. Bacteriol. 185: 5096-5108. Ellermeier, C.D., Ellermeier, J.R., and Slauch, J.M. (2005) HilD, HilC and RtsA constitute a feed forward loop that controls expression of the SPI1 type three secretion system regulator hilA in Salmonella enterica serovar Typhimurium. Mol. Microbiol. 57: 691-705. Fahlen, T.F., Mathur, N., and Jones, B.D. (2000) Identification and characterization of mutants with increased expression of hilA, the invasion gene transcriptional activator of Salmonella typhimurium. FEMS Immunol. Med. Microbiol. 28: 25-35. Fahlen, T.F., Wilson, R.L., Boddicker, J.D., and Jones, B.D. (2001) Hha is a negative modulator of transcription of hilA, the Salmonella enterica serovar Typhimurium invasion gene transcriptional activator. J. Bacteriol. 183: 6620-6629. Fang, F.C., Libby, S.J., Buchmeier, N.A., Loewen, P.C., Switala, J., Harwood, J., and Guiney, D.G. (1992) The alternative sigma factor katF (rpoS) regulates Salmonella virulence. Proc. Natl. Acad. Sci. U S A 89: 11978-11982. Fortune, D.R., Suyemoto, M., and Altier, C. (2006) Identification of CsrC and characterization of its role in epithelial cell invasion in Salmonella enterica serovar Typhimurium. Infect. Immun. 74: 331-339. Frees, D., Qazi, S.N., Hill, P.J., and Ingmer, H. (2003) Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol. Microbiol. 48: 1565-1578. Frees, D., Thomsen, L.E., and Ingmer, H. (2005) Staphylococcus aureus ClpYQ plays a minor role in stress survival. Arch. Microbiol. 183: 286-291. Fu, Y., and Galan, J.E. (1999) A salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401: 293-297. Galan, J.E., and Curtiss, R., 3rd (1990) Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling. Infect. Immun. 58: 1879-1885. Galan, J.E., Ginocchio, C., and Costeas, P. (1992) Molecular and functional characterization of the Salmonella invasion gene invA: homology of InvA to members of a new protein family. J. Bacteriol. 174: 4338-4349. Gallois, A., Klein, J.R., Allen, L.A., Jones, B.D., and Nauseef, W.M. (2001) Salmonella pathogenicity island 2-encoded type III secretion system mediates exclusion of NADPH oxidase assembly from the phagosomal membrane. J. Immunol. 166: 5741-5748. Ginocchio, C.C., Olmsted, S.B., Wells, C.L., and Galan, J.E. (1994) Contact with epithelial cells induces the formation of surface appendages on Salmonella typhimurium. Cell 76: 717-724. Groisman, E.A., and Ochman, H. (1993) Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. Embo. J. 12: 3779-3787. Hengge-Aronis, R. (2002) Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev. 66: 373-395, table of contents. Hueck, C.J. (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62: 379-433. Iyoda, S., Kamidoi, T., Hirose, K., Kutsukake, K., and Watanabe, H. (2001) A flagellar gene fliZ regulates the expression of invasion genes and virulence phenotype in Salmonella enterica serovar Typhimurium. Microb. Pathog. 30: 81-90. Johnston, C., Pegues, D.A., Hueck, C.J., Lee, A., and Miller, S.I. (1996) Transcriptional activation of Salmonella typhimurium invasion genes by a member of the phosphorylated response-regulator superfamily. Mol. Microbiol. 22: 715-727. Jones, B.D., and Falkow, S. (1994) Identification and characterization of a Salmonella typhimurium oxygen-regulated gene required for bacterial internalization. Infect. Immun. 62: 3745-3752. Komoriya, K., Shibano, N., Higano, T., Azuma, N., Yamaguchi, S., and Aizawa, S.I. (1999) Flagellar proteins and type III-exported virulence factors are the predominant proteins secreted into the culture media of Salmonella typhimurium. Mol. Microbiol. 34: 767-779. Kuo, C.L. (2004) The two component protease ClpQY play roles in Salmonella pathogenicity. Master Thesis, Graduate Institute of Agricultural Chemistry, National Taiwan University Kuo, M.S., Chen, K.P., and Wu, W.F. (2004) Regulation of RcsA by the ClpYQ (HslUV) protease in Escherichia coli. Microbiology 150: 437-446. Lee, A.K., Detweiler, C.S., and Falkow, S. (2000) OmpR regulates the two-component system SsrA-ssrB in Salmonella pathogenicity island 2. J. Bacteriol. 182: 771-781. Lucas, R.L., Lostroh, C.P., DiRusso, C.C., Spector, M.P., Wanner, B.L., and Lee, C.A. (2000) Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar Typhimurium. J. Bacteriol. 182: 1872-1882. Miao, E.A., Freeman, J.A., and Miller, S.I. (2002) Transcription of the SsrAB regulon is repressed by alkaline pH and is independent of PhoPQ and magnesium concentration. J. Bacteriol. 184: 1493-1497. Murli, S., Watson, R.O., and Galan, J.E. (2001) Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells. Cell Microbiol. 3: 795-810. Neuwald, A.F., Aravind, L., Spouge, J.L., and Koonin, E.V. (1999) AAA+: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res. 9: 27-43. Olekhnovich, I.N., and Kadner, R.J. (2002) DNA-binding activities of the HilC and HilD virulence regulatory proteins of Salmonella enterica serovar Typhimurium. J. Bacteriol. 184: 4148-4160. Olekhnovich, I.N., and Kadner, R.J. (2006) Crucial roles of both flanking sequences in silencing of the hilA promoter in Salmonella enterica. J. Mol. Biol. 357: 373-386. Roy, M.F., and Malo, D. (2002) Genetic regulation of host responses to Salmonella infection in mice. Genes Immun. 3: 381-393. Schechter, L.M., Damrauer, S.M., and Lee, C.A. (1999) Two AraC/XylS family members can independently counteract the effect of repressing sequences upstream of the hilA promoter. Mol. Microbiol. 32: 629-642. Schechter, L.M., and Lee, C.A. (2001) AraC/XylS family members, HilC and HilD, directly bind and derepress the Salmonella typhimurium hilA promoter. Mol. Microbiol. 40: 1289-1299. Schechter, L.M., Jain, S., Akbar, S., and Lee, C.A. (2003) The small nucleoid-binding proteins H-NS, HU, and Fis affect hilA expression in Salmonella enterica serovar Typhimurium. Infect. Immun. 71: 5432-5435. Schlumberger, M.C., and Hardt, W.D. (2006) Salmonella type III secretion effectors: pulling the host cell's strings. Curr. Opin. Microbiol. 9: 46-54. Schoemaker, J.M., Gayda, R.C., and Markovitz, A. (1984) Regulation of cell division in Escherichia coli: SOS induction and cellular location of the sulA protein, a key to lon-associated filamentation and death. J. Bacteriol. 158: 551-561. Shea, J.E., Hensel, M., Gleeson, C., and Holden, D.W. (1996) Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc. Natl. Acad. Sci. U S A 93: 2593-2597. Takaya, A., Tomoyasu, T., Tokumitsu, A., Morioka, M., and Yamamoto, T. (2002) The ATP-dependent lon protease of Salmonella enterica serovar Typhimurium regulates invasion and expression of genes carried on Salmonella pathogenicity island 1. J. Bacteriol. 184: 224-232. Takaya, A., Suzuki, M., Matsui, H., Tomoyasu, T., Sashinami, H., Nakane, A., and Yamamoto, T. (2003) Lon, a stress-induced ATP-dependent protease, is critically important for systemic Salmonella enterica serovar Typhimurium infection of mice. Infect. Immun. 71: 690-696. Takaya, A., Kubota, Y., Isogai, E., and Yamamoto, T. (2005) Degradation of the HilC and HilD regulator proteins by ATP-dependent Lon protease leads to downregulation of Salmonella pathogenicity island 1 gene expression. Mol. Microbiol. 55: 839-852. Torres-Cabassa, A.S., and Gottesman, S. (1987) Capsule synthesis in Escherichia coli K-12 is regulated by proteolysis. J. Bacteriol. 169: 981-989. Uchiya, K., Barbieri, M.A., Funato, K., Shah, A.H., Stahl, P.D., and Groisman, E.A. (1999) A Salmonella virulence protein that inhibits cellular trafficking. Embo. J. 18: 3924-3933. Wilson, R.L., Libby, S.J., Freet, A.M., Boddicker, J.D., Fahlen, T.F., and Jones, B.D. (2001) Fis, a DNA nucleoid-associated protein, is involved in Salmonella typhimurium SPI-1 invasion gene expression. Mol. Microbiol. 39: 79-88. Wu, W.F., Zhou, Y., and Gottesman, S. (1999) Redundant in vivo proteolytic activities of Escherichia coli Lon and the ClpYQ (HslUV) protease. J. Bacteriol. 181: 3681-3687. Yamamoto, T., Sashinami, H., Takaya, A., Tomoyasu, T., Matsui, H., Kikuchi, Y., Hanawa, T., Kamiya, S., and Nakane, A. (2001) Disruption of the genes for ClpXP protease in Salmonella enterica serovar Typhimurium results in persistent infection in mice, and development of persistence requires endogenous gamma interferon and tumor necrosis factor alpha. Infect. Immun. 69: 3164-3174. Zhou, D., and Galan, J. (2001) Salmonella entry into host cells: the work in concert of type III secreted effector proteins. Microbes. Infect. 3: 1293-1298. Zhou, X., Mantis, N., Zhang, X.R., Potoka, D.A., Watkins, S.C., and Ford, H.R. (2000) Salmonella typhimurium induces apoptosis in human monocyte-derived macrophages. Microbiol. Immunol. 44: 987-995. Zierler, M.K., and Galan, J.E. (1995) Contact with cultured epithelial cells stimulates secretion of Salmonella typhimurium invasion protein InvJ. Infect. Immun. 63: 4024-4028. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32733 | - |
| dc.description.abstract | 沙門氏桿菌利用沙門氏菌致病基因群1(SPI1)轉譯形成的第三型分泌系統(T3SS)入侵腸道上皮細胞,此第三型分泌系統將作用蛋白運輸至寄主細胞的細胞質內,促進腸道上皮細胞骨架重組及沒入細菌作用。細菌在惡劣的環境下,一連串的機制會被啟動,使細菌能夠克服所遭遇的困境。其中,蛋白酶扮演著重要的角色。之前研究發現沙門氏菌clpXP突變株導致持續性感染老鼠;而clpP單突變株則是容易受到外在壓力(例如:高溫,酸性環境與高滲透壓)的影響。另外,當沙門氏菌入侵上皮細胞時,Lon蛋白酶可降低其感染率,並藉由分解HilC與HilD調節蛋白以負調控SPI1基因表現。當沙門氏菌進入宿主上皮細胞後,Lon會抑制沙門氏菌在宿主細胞內的增生與存活。在大腸桿菌中,ClpQY蛋白酶與ClpXP及Lon有重複的分解蛋白活性。本實驗研究藉由改變氧氣濃度、滲透壓以及溫度分析ClpQY蛋白對於沙門氏菌在不同生長逆境下入侵腸道上皮細胞的影響。我們發現在lon缺失突變下大量表現ClpQY蛋白導致沙門氏菌胞外分泌蛋白量整體性明顯減少且抑制入侵上皮細胞的能力。於clpQ-lon-雙突變株中,於1% NaCl可觀察到與lon-相當或稍高的胞外蛋白分泌與入侵細胞能力。而clpY-lon-雙突變株在不同逆境下皆比lon單突變株表現較差的胞外蛋白分泌與入侵細胞能力,在高滲透壓時最為顯著。這些結果暗示著ClpY於沙門氏菌中扮演著伴隨蛋白(chaperone)的角色,以利於細菌的入侵。此外,在高溫逆境下可觀察到ClpQ與ClpY影響沙門氏菌入侵細胞能力,並且不受Lon蛋白酶的干擾。同樣的;clpY-突變株於1% NaCl厭氧環境下,與野生株相較有較差的入侵細胞能力。因此,在不同逆境下當沙門氏菌缺乏Lon蛋白酶入侵宿主上皮細胞時,ClpY蛋白可能扮演著伴隨蛋白的角色。另外,ClpQ與ClpY於lon突變株下亦會影響沙門氏菌存活於腸道上皮細胞,惟其間的機制需更進一步研究。 | zh_TW |
| dc.description.abstract | Salmonella enterica serotype Typhimurium is a Gram-negative pathogen, which cause a variety of diseases ranging from mild gastroenteritis to life threatening systemic infections. During the course of intestinal epithelial cells infection, two main type III secretion systems (T3SS, pathogenicity Island 1 (SPI1) and SPI2) encoded in Salmonella, were found out important for their fuction. The SPI1 T3SS mediates invasion of epithelial cells and involved in evoking enterocolitis. SPI1 encoded proteins form a needle-like structure that injects effector proteins directly into the cytosol of host cells. The effector proteins also alter signaling mechanisms and mediate cytoskeletal rearrangements, leading to the formation of large membrane ruffles that engulf the bacteria in vacuoles (Salmonella-containing vacuole). Once inside host cell, genes from SPI2 are expressed for intracellular survival and replication of Salmonella. Proteolysis in bacteria is a critical strategy for the control of many cellular processes: it limits an availability of regulatory proteins and rids the cell of irreversibly damaged proteins under stress. Most intracellular proteolysis in bacteria is initiated by ATP-dependent proteases, including Lon, FtsH, ClpXP, ClpAP and ClpQY (HslVU). They have a common structure comprising of ATPase and peptidase domain. Disruption of the genes for ClpXP protease in S. Typhimurium results in persistent infection in mice. The lon mutant revealed a high efficiency of an invasiveness. Recent studies show that HilC and HilD are degraded by Lon protease, resulting depletion of Lon dramatically enhances SPI1 gene transcription, including hilA. Thus, Lon presumably allows down-regulation of the system after invasion of host cells.
Lon and ClpQY share a redundant fuction in E. coli. Therefore here we investigate the role of Salmonella ClpQY in a lon mutant background while bacteria infect host cells and examine the patterns of secreted proteins under an SPI1-induced or -repressed condition. We found that an overproduced ClpQY represses extracellular protein secretions. Alongside, this also leads to an inability of its invasiveness into epithelial cells. In combination of a lon mutation, a clpQlon mutant has similar SipA/SipC secreted proteins as the lon mutant does. In contrast, a clpYlon mutant showed a decreased SipA/SipC protein secretion as well as a less invasiveness. These results indicate that ClpY might play a role for SipA/SipC secretion. Followed this rationality, we reexamine the role of ClpQ and ClpY under a heat induction (a favorable condition for ClpQ and ClpY expression). We found that under a heat induction, clpY mutant alone has a defective SipA/SipC secretion as well as a ten-fold reduction of invasiveness as compared to the wild-type. Again, these results indicate that ClpY is likely playing a role ancillary to the SipA/SipC secretion under certain conditions. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:14:24Z (GMT). No. of bitstreams: 1 ntu-95-R93623003-1.pdf: 1270898 bytes, checksum: e72d68d072654c97583967b53386c994 (MD5) Previous issue date: 2006 | en |
| dc.description.tableofcontents | 目錄
中文摘要 I Abstract III 目錄 A 表圖次 C 壹、前言 1 一、沙門氏菌之重要性 1 二、第三型分泌系統 (Type Three Secretion System) 2 1. 第三型分泌系統簡介 2 2. 第三型分泌系統之組成分子 3 3. 第三型分泌系統之調控 4 4. 影響 SPI1 主要調控蛋白 HilA 基因之表現 5 三、沙門氏菌在哺乳類細胞內的作用 6 1. 沙門氏菌與上皮細胞 6 2. 沙門氏菌與巨噬細胞 7 四、細菌之熱休克蛋白 (heat shock proteins) 與病原菌致病力調控之相關研究 7 1. 細菌之熱休克反應 8 2. 熱休克蛋白酶 8 3. 熱休克蛋白酶與細菌致病性 9 3.1 ClpXP與沙門氏菌致病性的關係 9 3.2 Lon蛋白酶間接調控沙門氏菌入侵基因 9 3.3 ClpQY與Lon蛋白酶功能重疊 10 4. 伴隨蛋白DnaK/DnaJ與沙門氏菌致病力的關係 12 五、研究緣起與目的 13 貳、材料與方法 14 I. 實驗材料 14 一、 實驗菌株與質體 14 二、 培養基 14 三、 藥品與試劑 14 四、 實驗中使用之套組 15 五、 各種溶液及緩衝溶液 15 六、 儀器 15 II. 實驗方法 16 一、 一般實驗方法 16 1. 少量萃取細菌染色體DNA 16 2. 少量萃取細菌質體DNA 18 3. 製備勝任細胞(compentent cell) 19 4. 轉形作用(transformation) 20 5. 蛋白質膠體電泳分析 22 二、 其他實驗方法 24 1. 沙門氏菌突變株之培養條件 24 2. 細菌胞外蛋白質的抽取 25 3. 細菌吸附/入侵上皮細胞效能分析 25 4. 細菌於上皮細胞中存活率分析 26 參、結果 28 一、大量表現ClpQY蛋白對於沙門氏菌致病力的影響 28 二、在不同滲透壓及氧氣濃度下,ClpQY對於沙門氏菌致病力的影響 29 A.細菌胞外蛋白質分析 29 B.沙門氏菌入侵上皮細胞試驗 31 三、在高溫下,ClpQY對於沙門氏菌致病力的影響 32 A.細菌胞外蛋白質分析 32 B.沙門氏菌入侵上皮細胞試驗 33 四、各突變株在上皮細胞中的存活率分析 33 肆、討論 35 伍、參考文獻 38 表圖次 表一、本實驗所使用之菌株、質體與細胞株 i 表二、大量表現ClpQY對於沙門氏菌lon-突變株入侵上皮細胞效能之影響 ii 表三、lon缺失背景之突變株入侵上皮細胞之效能 iii 圖一、缺氧狀態下大量表現ClpQY之分泌蛋白質電泳圖 iv 圖二、震盪培養下大量表現ClpQY之分泌蛋白質電泳圖 vi 圖三、缺氧狀態下各突變株分泌蛋白質電泳圖 viii 圖四、震盪培養下各突變株分泌蛋白質電泳圖 x 圖五、高溫缺氧狀態下各突變株分泌蛋白質電泳圖 xii 圖六、高溫震盪培養下各突變株分泌蛋白質電泳圖 xiv 圖七、高溫缺氧狀態各突變株入侵上皮細胞之效能 xvi 圖八、各突變株在上皮細胞HuTu 80中的存活率 xviii 附表一、影響沙門氏菌入侵能力的調控蛋白及環境因子 xix 附圖一、沙門氏菌 SPI1 基因在染色體上位置 xx 附圖二、沙門氏菌 SPI 基因表現的調控 xxi 附圖三、SPI1調控機制模型 xxii | |
| dc.language.iso | zh-TW | |
| dc.subject | 沙門氏菌 | zh_TW |
| dc.subject | ClpQY | zh_TW |
| dc.subject | salmonella | en |
| dc.subject | ClpQY | en |
| dc.title | 蛋白酶ClpQY在沙門氏菌入侵細胞時所扮演的角色之探討 | zh_TW |
| dc.title | An Investigation of the Role of ClpQY for Invasion of Salmonella enterica serotype Typhimurium | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 94-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 賈景山,劉瑞芬,廖楓,葉光勝 | |
| dc.subject.keyword | ClpQY,沙門氏菌, | zh_TW |
| dc.subject.keyword | ClpQY,salmonella, | en |
| dc.relation.page | 44 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2006-07-25 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-95-1.pdf 未授權公開取用 | 1.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
