Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32713
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳政忠
dc.contributor.authorBing-Giun Liangen
dc.contributor.author梁秉鈞zh_TW
dc.date.accessioned2021-06-13T04:13:59Z-
dc.date.available2006-07-28
dc.date.copyright2006-07-28
dc.date.issued2006
dc.date.submitted2006-07-25
dc.identifier.citation1. M. Loncar, T. Doll, J. Vuckovic and A. Scherer (2000), “Design and fabrication of silicon photonic crystal optical waveguide”, Journal of Lightwave Technology 18(10), 1402-1411
2. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos (1996), “High transmission through sharp bands in photonic crystal wave guides”, Phys. Rev. Lett. 77(18),3787-3790
3. E. Yablonovitch (1987), “Inhibited spontaneous emission in solid-state physics and electronics”, Phys. Rev. Lett., 58(20), 2059-2062
4. E. Yablonovitch and T. J. Gmitter (1989), “Photonic band structure: The face-centered-cubic case”, Phys. Rev. Lett., 63(18), 1950-1953
5. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani (1993), “Acoustic Band Structure of Periodic Elastic Composites”, Phys. Rev. Lett., 71(13), 2022-2025
6. M. S. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski, and B. Djafari-Rouhani (1994), “Theory of acoustic band structure of periodic elastic composites”, Phys. Rev. B, 49(4), 2313-2322
7. M. S. Kushwaha and P. Halevi (1994), “Band-gap engineering in periodic elastic composites”, Appl. Phys. Lett., 64(9), 1085-1087
8. Y. Tanaka and S. Tamura (1998), “Surface acoustic waves in two-dimensional periodic elastic structures”, Phys. Rev. B, 58(12), 7958-7965
9. Y. Tanaka and S. Tamura (1999), “Acoustic stop bands of surface and bulk modes in two-dimensional phononic lattices consisting of aluminum and a polymer”, Phys. Rev. B, 60(19), 13294-13297
10. Y. Tanaka, Y. Tomoyasu, and S. Tamura (2000), “Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch”, Phys. Rev. B, 62(11), 7387-7392
11. T.-T. Wu, Z.-G. Huang, and S. Lin (2004), “Surface and bulk acoustic waves in two-dimensional phononic crystal consisting of materials with general anisotropy”, Phys. Rev. B, 69(9), 094301-10
12. F. R. Montero de Espinosa, E. Jimenez, and M. Torres (1998), “Ultrasonic Band Gap in a Periodic Two-Dimensional Composite”, Phys. Rev. Lett., 80(6), 1208-1211
13. R. E. Vines, J. P. Wolfe, and A. V. Every, (1999) “Scanning phononic lattices with ultrasound,” Phys. Rev. B, 60(17), 11871-11874
14. R. E. Vines and J. P. Wolfe, (1999) “Scanning phononic lattices with surface acoustic waves,” Physica B, 263-264, 567-570
15. S.-Y. Liu (2003), “An Experimental Study on the SAW Band Gap in 2D Phononic Structure with Micrometer Scale,” Ms. these, Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan.
16. L.-C. Wu (2004), “Band Gap Measurement of Si-based Phononic Crystals Using Layered SFIT,” Ms. these, Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan.
17. D. P. Morgan (1998), “History of SAW devices”, IEEE International Frequency Control Symp., 439-4603
18. Z.-Y. Liu, C.-T. Chen and P. Sheng (2000), “Elastic wave scattering by periodic structures of spherical objects: Theory and experiment”, Phys. Rev. B 62(4), 2446-2457
19. V. Laude, M. Wilm, S. Benchabane, and A. Khelif (2005), “Full band gap for surface acoustic waves in a piezoelectric phononic crystal”, Phys. Rev. E 71, 036607
20. Y.-Y. Chen (2002), “A Theoretical and Experimental Study of Layered SAW Devices and Its Applications,” Ph. D. dissertation, Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan.
21. B. P. Abbott (1989), “A Coupling-of-Modes Model for SAW Transducers With Arbitrary Reflectivity Weighting,” Ph. D. dissertation, the Department of Electrical Engineering at the University of Central Florida Orlando, Florida.
22. Z.-T. Zhou (2002), “Analyzing the frequency response of layered SAW filter by using coupling of modes model”, Ms. these, Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan.
23. D. Royer and E. Dieulesaint (2000), “Elastic waves in Solids II”, Springer-Verlag Berlin Heielberg New York, 57-72
24. S.-M. Wang (2002), “The design and measurement of an IF SAW filter,” Master thesis, Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan.
25. K.-H. Yoon, J.-W. Choi and D.-H. Lee (1997), “Characteristics of ZnO thin films deposition onto Al/Si substrates by RF magnetron sputtering”, Thin Solid Films, 302, 116-121
26. F. S. Hickernell (1973), “DC triode sputtered zinc oxide surface elastic wave transducers”, J. Appl. Phys., 44, 1061-1071
27. M. F. Ogawa, Y. Natsume and T. Hirayama (1990), “Preparation and electrical properties of undoped zinc oxide films by CVD”, Journal of Material Science Letters, 9, 1351-1353
28. J. S. Kim, H. A. Marzouk and P. J. Rrucroft (1992), “Characterization of high quality c-axis oriented ZnO thin films grown by metal organic chemical vapor deposition using zinc acetate as source material”, Thin Solid Films, 217, 133-137
29. K. Iwata, P. Fons, S. Niki, A. Yamada, K. Matsubara, K. Nakahara, T. Tanabe and H. Takasu (2000), “ZnO growth on Si by radical source MBE”, Journal of Crystal Growth, 214/215, 50-54
30. S.-H. Park, B.-C. Seo, and Giwan Yoon (2000), “Two-step deposition process of piezoelectric ZnO film and its application for film bulk acoustic resonators”, American Vacuum Society, 2432-2436
31. B. T. Khuri-Yakub, G. S. Kino and P. Galle (1975), “Studies of the optimum conditions for growth of RF-sputtered ZnO films”, J. Appl. Phys. 46(8), 3266-3272
32. J. H. Visser and A. Venema (1988), “Silicon SAW devices and electromagnetic feedthrough”, IEEE Ultrasonics Symp., 297-301
33. N. W. Ashcroft, N. D. Mermin, (1976) “Solid State Physics,” Holt, Rinehart and Winston, New York.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32713-
dc.description.abstractIn recent years, there are studies aimed at phononic crystals, both experimentally and theoretically. However, the smallest scale of the phononic structures considered is in the millimeter scale and the frequency is limited in the MHz range. For the purpose toward the applications of phononic crystals to micro electromechanical system (MEMS) related components, it is necessary to reduce the lattice size to micrometer or even in nanometer scale. Moreover, for further integrating with the complementary metal-oxide semiconductor (CMOS) processing techniques, silicon is chosen to be the base material of the two dimensional phononic crystals in this thesis.
From the simulated results by plane wave expansion (PWE) method, the total band gap of 2-D Air/Si phononic crystal appears at high filling fraction. This result inspires us to employ not only partial band gap but also total band gap in MEMS related components. The purpose of this thesis is to verify the phenomenon of total band gap of 2-D Air/Si phononic crystal by MEMS process. Then comparing the insertion loss of surface wave (SAW) passing through phononic crystal structures within/without the total band gap frequency. In order to generate SAW in the silicon substrate, piezoelectric thin film is sputtered on top of the wafer. Moreover, the 2-D phononic crystals is fabricated by ICP etching (inductively coupled plasma-reactive ion etching) process.
Finally, the total band gap of 2-D air/silicon phononic crystals in micrometer-scale are successfully verified by the layered IDT devices, and this experimental result agrees with the theoretical prediction by PWE method.
en
dc.description.provenanceMade available in DSpace on 2021-06-13T04:13:59Z (GMT). No. of bitstreams: 1
ntu-95-R92543014-1.pdf: 4830805 bytes, checksum: c6b865d1be56b554a8a5c082c99fef60 (MD5)
Previous issue date: 2006
en
dc.description.tableofcontentsAcknowledgements I
Abstract…. II
List of Notations III
Table of Contents V
Table of Figures VII
List of Tables IX
Chapter 1 Introduction 1
1-1 MOTIVATION 1
1-2 LITERATURE REVIEW 2
1-3 CONTENTS OF THE CHAPTERS 3
Chapter 2 Analysis of Acoustic Waves in 2-D Phononic Crystal 6
2-1 CONCEPT OF 2-D PHONONIC CRYSTALS 6
2-2 EQUATION OF MOTION 7
2-3 MASS DENSITY AND ELASTIC CONSTANTS 7
2-4 DISPLACEMENT VECTOR 9
2-5 SURFACE AND BULK WAVES IN 2D PHONONIC CRYSTALS 10
Chapter 3 Simulations of Phononic Crystal and Experimental Design of Total Band Gap 19
3-1 SIMULATION OF TOTAL BAND GAP IN 2-D PHONONIC CRYSTAL 19
3-1.1 Air/Silicon Square Lattice 19
3-1.2 The Dispersion Relation of 2-D Air/Si Phononic Crystal 20
3-2 SIMULATIONS OF SAW OF LAYERED STRUCTURES 20
3-3 EXPERIMENTAL DESIGN ABOUT VERIFICATION OF TOTAL BAND GAP 24
Chapter 4 Fabrications and Experimental Results about Verification of Total Band Gap 37
4-1 GROWTH OF ZNO THIN FILM ON SILICON SUBSTRATE 37
4-1.1 Deposition of ZnO Thin Film 37
4-1.2 Analysis of Thin Film properties 38
4-2 FABRICATIONS OF LAYERED IDT AND 2-D PHONONIC CRYSTAL 39
4-2.1 Fabrication Process of IDT/ZnO/Silicon Layered SAW Devices 39
4-2.2 Fabrication Processes of 2-D Air/Silicon Phononic Crystal 41
4-3 EXPERIMENTAL RESULTS OF LAYERED IDT 43
4-3.1 Time Gating Approach 43
4-3.2 Comparisons of simulation and experimental results 44
4-4 EXPERIMENTAL RESULTS ABOUT VERIFICATION OF TOTAL BAND GAP IN 2-D AIR/SI PHONONIC CRYSTAL 45
Chapter 5 Conclusions and Future Works 67
5-1 CONCLUSIONS OF THIS THESIS 67
5-2 FUTURE WORKS 67
References 69
dc.language.isoen
dc.subject全頻溝zh_TW
dc.subject表面波zh_TW
dc.subject聲子晶體zh_TW
dc.subjectlayered IDTen
dc.subjectSAWen
dc.subjecttotal band gapen
dc.subjectphononic crystalen
dc.title二維矽基聲子晶體之全頻溝驗證zh_TW
dc.titleVerification of Total Band Gap in 2D Si-based Phononic Crystalen
dc.typeThesis
dc.date.schoolyear94-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉佩玲,楊燿州
dc.subject.keyword表面波,聲子晶體,全頻溝,zh_TW
dc.subject.keywordSAW,layered IDT,phononic crystal,total band gap,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2006-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
4.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved