請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32696完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林仁混 | |
| dc.contributor.author | Shin-Han Sun | en |
| dc.contributor.author | 孫詩涵 | zh_TW |
| dc.date.accessioned | 2021-06-13T04:13:40Z | - |
| dc.date.available | 2013-10-05 | |
| dc.date.copyright | 2011-10-05 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-28 | |
| dc.identifier.citation | 1. Vicini, F.A. and D.W. Arthur, Breast brachytherapy: North American experience. Semin Radiat Oncol, 2005. 15(2): p. 108-15.
2. Park, S., et al., Aetiology of cancer in Asia. Asian Pac J Cancer Prev, 2008. 9(3): p. 371-80. 3. La Vecchia, C., et al., Cancer mortality in Europe, 2000-2004, and an overview of trends since 1975. Ann Oncol, 2010. 21(6): p. 1323-60. 4. Martin, A.M. and B.L. Weber, Genetic and hormonal risk factors in breast cancer. J Natl Cancer Inst, 2000. 92(14): p. 1126-35. 5. Raveis, V.H. and S. Pretter, Existential plight of adult daughters following their mother's breast cancer diagnosis. Psychooncology, 2005. 14(1): p. 49-60. 6. Mulsow, J., et al., Establishing a family risk assessment clinic for breast cancer. Breast J, 2009. 15 Suppl 1: p. S33-8. 7. Hunter, D.J. and W.C. Willett, Diet, body size, and breast cancer. Epidemiol Rev, 1993. 15(1): p. 110-32. 8. Flegal, K.M., et al., Overweight and obesity in the United States: prevalence and trends, 1960-1994. Int J Obes Relat Metab Disord, 1998. 22(1): p. 39-47. 9. van den Brandt, P.A., et al., Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. Am J Epidemiol, 2000. 152(6): p. 514-27. 10. Barros, F.F., et al., Understanding the HER family in breast cancer: interaction with ligands, dimerization and treatments. Histopathology, 2010. 56(5): p. 560-72. 11. Menard, S., et al., Role of HER2 gene overexpression in breast carcinoma. J Cell Physiol, 2000. 182(2): p. 150-62. 12. Harari, D. and Y. Yarden, Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene, 2000. 19(53): p. 6102-14. 13. Stankovic, S., et al., Activity of MMP-2 and MMP-9 in sera of breast cancer patients. Pathol Res Pract, 2010. 206(4): p. 241-7. 14. Frankel, C., Choosing the appropriate breast cancer therapy for today's breast cancer patient. Semin Oncol Nurs, 2007. 23(4 Suppl 2): p. S3-9. 15. Engel, R.H. and V.G. Kaklamani, HER2-positive breast cancer: current and future treatment strategies. Drugs, 2007. 67(9): p. 1329-41. 16. Ross, J.S., et al., Targeted therapy in breast cancer: the HER-2/neu gene and protein. Mol Cell Proteomics, 2004. 3(4): p. 379-98. 17. Signoretti, S., et al., Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J Clin Invest, 2002. 110(5): p. 633-41. 18. Zhang, H., et al., p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell, 1995. 82(6): p. 915-25. 19. Hershko, D.D., Oncogenic properties and prognostic implications of the ubiquitin ligase Skp2 in cancer. Cancer, 2008. 112(7): p. 1415-24. 20. Kitagawa, K., Y. Kotake, and M. Kitagawa, Ubiquitin-mediated control of oncogene and tumor suppressor gene products. Cancer Sci, 2009. 100(8): p. 1374-81. 21. Frescas, D. and M. Pagano, Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer, 2008. 8(6): p. 438-49. 22. Fasanaro, P., M.C. Capogrossi, and F. Martelli, Regulation of the endothelial cell cycle by the ubiquitin-proteasome system. Cardiovasc Res, 2010. 85(2): p. 272-80. 23. Nakayama, K., et al., Skp2-mediated degradation of p27 regulates progression into mitosis. Dev Cell, 2004. 6(5): p. 661-72. 24. Masuda, T.A., et al., Clinical and biological significance of S-phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma: modulation of malignant phenotype by Skp2 overexpression, possibly via p27 proteolysis. Cancer Res, 2002. 62(13): p. 3819-25. 25. Cody, H.S., 3rd, Current surgical management of breast cancer. Curr Opin Obstet Gynecol, 2002. 14(1): p. 45-52. 26. Moore-Higgs, G.J., Radiation options for early stage breast cancer. Semin Oncol Nurs, 2006. 22(4): p. 233-41. 27. Fisher, B., et al., Twenty-five-year follow-up of a randomized trial comparing radical mastectomy, total mastectomy, and total mastectomy followed by irradiation. N Engl J Med, 2002. 347(8): p. 567-75. 28. Veronesi, U., et al., Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med, 2002. 347(16): p. 1227-32. 29. Recht, A. and L.J. Solin, Breast-conserving surgery and radiotherapy in early-stage breast cancer: the importance of local control. Semin Radiat Oncol, 2011. 21(1): p. 3-9. 30. Kuerer, H.M., et al., Accelerated partial breast irradiation after conservative surgery for breast cancer. Ann Surg, 2004. 239(3): p. 338-51. 31. Fisher, E.R., et al., Fifteen-year prognostic discriminants for invasive breast carcinoma: National Surgical Adjuvant Breast and Bowel Project Protocol-06. Cancer, 2001. 91(8 Suppl): p. 1679-87. 32. Effects of radiotherapy and surgery in early breast cancer. An overview of the randomized trials. Early Breast Cancer Trialists' Collaborative Group. N Engl J Med, 1995. 333(22): p. 1444-55. 33. Sibbering, D.M., et al., Safe selection criteria for breast conservation without radical excision in primary operable invasive breast cancer. Eur J Cancer, 1995. 31A(13-14): p. 2191-5. 34. NIH consensus conference. Treatment of early-stage breast cancer. JAMA, 1991. 265(3): p. 391-5. 35. Conner, P., E. Lundstrom, and B. von Schoultz, Breast cancer and hormonal therapy. Clin Obstet Gynecol, 2008. 51(3): p. 592-606. 36. Kim, H.S., Y.T. Jeon, and Y.B. Kim, The effect of adjuvant hormonal therapy on the endometrium and ovary of breast cancer patients. J Gynecol Oncol, 2008. 19(4): p. 256-60. 37. Hayashi, S. and Y. Yamaguchi, Estrogen signaling pathway and hormonal therapy. Breast Cancer, 2008. 15(4): p. 256-61. 38. Serrano, D., et al., Progress in chemoprevention of breast cancer. Crit Rev Oncol Hematol, 2004. 49(2): p. 109-17. 39. Shanle, E.K. and W. Xu, Selectively targeting estrogen receptors for cancer treatment. Adv Drug Deliv Rev, 2010. 62(13): p. 1265-76. 40. Fisher, B., et al., Five versus more than five years of tamoxifen for lymph node-negative breast cancer: updated findings from the National Surgical Adjuvant Breast and Bowel Project B-14 randomized trial. J Natl Cancer Inst, 2001. 93(9): p. 684-90. 41. Kennecke, H.F., et al., Late risk of relapse and mortality among postmenopausal women with estrogen responsive early breast cancer after 5 years of tamoxifen. Ann Oncol, 2007. 18(1): p. 45-51. 42. Tang, S.C., Women and bone health: maximizing the benefits of aromatase inhibitor therapy. Oncology, 2010. 79(1-2): p. 13-26. 43. Gibson, L., et al., Aromatase inhibitors for treatment of advanced breast cancer in postmenopausal women. Cochrane Database Syst Rev, 2009(4): p. CD003370. 44. Prado, C.M., et al., Two faces of drug therapy in cancer: drug-related lean tissue loss and its adverse consequences to survival and toxicity. Curr Opin Clin Nutr Metab Care, 2011. 14(3): p. 250-4. 45. Del Mastro, L., et al., Medical approaches to preservation of fertility in female cancer patients. Expert Opin Pharmacother, 2011. 12(3): p. 387-96. 46. Andreetta, C., et al., First-line chemotherapy with or without biologic agents for metastatic breast cancer. Crit Rev Oncol Hematol, 2010. 76(2): p. 99-111. 47. Liu, F.S., Mechanisms of chemotherapeutic drug resistance in cancer therapy--a quick review. Taiwan J Obstet Gynecol, 2009. 48(3): p. 239-44. 48. Daudt, A., A.J. Alberg, and K.J. Helzlsouer, Epidemiology, prevention, and early detection of breast cancer. Curr Opin Oncol, 1996. 8(6): p. 455-61. 49. Helzlsouer, K.J., Epidemiology, prevention, and early detection of breast cancer. Curr Opin Oncol, 1995. 7(6): p. 489-94. 50. Mincey, B.A., Genetics and the management of women at high risk for breast cancer. Oncologist, 2003. 8(5): p. 466-73. 51. Ishikawa, H., Chemoprevention of carcinogenesis in familial tumors. Int J Clin Oncol, 2004. 9(4): p. 299-303. 52. Sporn, M.B., et al., Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed Proc, 1976. 35(6): p. 1332-8. 53. Cuzick, J., et al., Preventive therapy for breast cancer: a consensus statement. Lancet Oncol, 2011. 12(5): p. 496-503. 54. Cline, J.M. and C.L. Hughes, Jr., Phytochemicals for the prevention of breast and endometrial cancer. Cancer Treat Res, 1998. 94: p. 107-34. 55. Carolin, K.A. and H.A. Pass, Prevention of breast cancer. Crit Rev Oncol Hematol, 2000. 33(3): p. 221-38. 56. Liu, R.H., Health benefits of fruit and vegetables are from additive and synergistic combinations of phytochemicals. Am J Clin Nutr, 2003. 78(3 Suppl): p. 517S-520S. 57. Franceschi, S., et al., Role of different types of vegetables and fruit in the prevention of cancer of the colon, rectum, and breast. Epidemiology, 1998. 9(3): p. 338-41. 58. Jansen, M.C., et al., Quantity and variety of fruit and vegetable consumption and cancer risk. Nutr Cancer, 2004. 48(2): p. 142-8. 59. Vainio, H. and E. Weiderpass, Fruit and vegetables in cancer prevention. Nutr Cancer, 2006. 54(1): p. 111-42. 60. Liu, R.H., Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr, 2004. 134(12 Suppl): p. 3479S-3485S. 61. Prevention of cancer in the next millennium: Report of the Chemoprevention Working Group to the American Association for Cancer Research. Cancer Res, 1999. 59(19): p. 4743-58. 62. Dragsted, L.O., M. Strube, and J.C. Larsen, Cancer-protective factors in fruits and vegetables: biochemical and biological background. Pharmacol Toxicol, 1993. 72 Suppl 1: p. 116-35. 63. Waladkhani, A.R. and M.R. Clemens, Effect of dietary phytochemicals on cancer development (review). Int J Mol Med, 1998. 1(4): p. 747-53. 64. Sun, J., et al., Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem, 2002. 50(25): p. 7449-54. 65. Chu, Y.F., et al., Antioxidant and antiproliferative activities of common vegetables. J Agric Food Chem, 2002. 50(23): p. 6910-6. 66. Duthie, S.J., et al., Quercetin and myricetin protect against hydrogen peroxide-induced DNA damage (strand breaks and oxidised pyrimidines) in human lymphocytes. Mutat Res, 1997. 393(3): p. 223-31. 67. Gerhauser, C., et al., Cancer chemopreventive activity of Xanthohumol, a natural product derived from hop. Mol Cancer Ther, 2002. 1(11): p. 959-69. 68. Wilms, L.C., et al., Protection by quercetin and quercetin-rich fruit juice against induction of oxidative DNA damage and formation of BPDE-DNA adducts in human lymphocytes. Mutat Res, 2005. 582(1-2): p. 155-62. 69. Cai, H., et al., Growth-inhibitory and cell cycle-arresting properties of the rice bran constituent tricin in human-derived breast cancer cells in vitro and in nude mice in vivo. Br J Cancer, 2004. 91(7): p. 1364-71. 70. Manson, M.M., Cancer prevention -- the potential for diet to modulate molecular signalling. Trends Mol Med, 2003. 9(1): p. 11-8. 71. Waite, K.A., M.R. Sinden, and C. Eng, Phytoestrogen exposure elevates PTEN levels. Hum Mol Genet, 2005. 14(11): p. 1457-63. 72. Zhou, J.R., et al., Inhibition of orthotopic growth and metastasis of androgen-sensitive human prostate tumors in mice by bioactive soybean components. Prostate, 2002. 53(2): p. 143-53. 73. Zhou, J.R., et al., Combined inhibition of estrogen-dependent human breast carcinoma by soy and tea bioactive components in mice. Int J Cancer, 2004. 108(1): p. 8-14. 74. Khafif, A., et al., Quantitation of chemopreventive synergism between (-)-epigallocatechin-3-gallate and curcumin in normal, premalignant and malignant human oral epithelial cells. Carcinogenesis, 1998. 19(3): p. 419-24. 75. Suganuma, M., et al., Synergistic effects of (--)-epigallocatechin gallate with (--)-epicatechin, sulindac, or tamoxifen on cancer-preventive activity in the human lung cancer cell line PC-9. Cancer Res, 1999. 59(1): p. 44-7. 76. Anzano, M.A., et al., Prevention of breast cancer in the rat with 9-cis-retinoic acid as a single agent and in combination with tamoxifen. Cancer Res, 1994. 54(17): p. 4614-7. 77. Bengmark, S., M.D. Mesa, and A. Gil, Plant-derived health: the effects of turmeric and curcuminoids. Nutr Hosp, 2009. 24(3): p. 273-81. 78. Agrawal, D.K. and P.K. Mishra, Curcumin and its analogues: potential anticancer agents. Med Res Rev, 2010. 30(5): p. 818-60. 79. Ammon, H.P. and M.A. Wahl, Pharmacology of Curcuma longa. Planta Med, 1991. 57(1): p. 1-7. 80. Aggarwal, B.B., et al., Targeting cell signaling pathways for drug discovery: an old lock needs a new key. J Cell Biochem, 2007. 102(3): p. 580-92. 81. Huang, M.T., et al., Inhibitory effects of curcumin on tumor initiation by benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene. Carcinogenesis, 1992. 13(11): p. 2183-6. 82. Conney, A.H., et al., Inhibitory effect of curcumin and some related dietary compounds on tumor promotion and arachidonic acid metabolism in mouse skin. Adv Enzyme Regul, 1991. 31: p. 385-96. 83. Ravindran, J., S. Prasad, and B.B. Aggarwal, Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS J, 2009. 11(3): p. 495-510. 84. Joe, B., M. Vijaykumar, and B.R. Lokesh, Biological properties of curcumin-cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr, 2004. 44(2): p. 97-111. 85. Sharma, R.A., et al., Effects of dietary curcumin on glutathione S-transferase and malondialdehyde-DNA adducts in rat liver and colon mucosa: relationship with drug levels. Clin Cancer Res, 2001. 7(5): p. 1452-8. 86. Shankar, T.N., et al., Toxicity studies on turmeric (Curcuma longa): acute toxicity studies in rats, guineapigs & monkeys. Indian J Exp Biol, 1980. 18(1): p. 73-5. 87. Goel, A., A.B. Kunnumakkara, and B.B. Aggarwal, Curcumin as 'Curecumin': from kitchen to clinic. Biochem Pharmacol, 2008. 75(4): p. 787-809. 88. Anand, P., et al., Curcumin and cancer: an 'old-age' disease with an 'age-old' solution. Cancer Lett, 2008. 267(1): p. 133-64. 89. Aggarwal, B.B., A. Kumar, and A.C. Bharti, Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res, 2003. 23(1A): p. 363-98. 90. Park, M.J., et al., Curcumin inhibits cell cycle progression of immortalized human umbilical vein endothelial (ECV304) cells by up-regulating cyclin-dependent kinase inhibitor, p21WAF1/CIP1, p27KIP1 and p53. Int J Oncol, 2002. 21(2): p. 379-83. 91. Choudhuri, T., et al., Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem, 2005. 280(20): p. 20059-68. 92. Kerr, J.F., A.H. Wyllie, and A.R. Currie, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972. 26(4): p. 239-57. 93. Wyllie, A.H., J.F. Kerr, and A.R. Currie, Cell death: the significance of apoptosis. Int Rev Cytol, 1980. 68: p. 251-306. 94. Nicholson, D.W. and N.A. Thornberry, Caspases: killer proteases. Trends Biochem Sci, 1997. 22(8): p. 299-306. 95. Su, C.C., et al., Curcumin-induced apoptosis of human colon cancer colo 205 cells through the production of ROS, Ca2+ and the activation of caspase-3. Anticancer Res, 2006. 26(6B): p. 4379-89. 96. Sikora, E., et al., Curcumin induces caspase-3-dependent apoptotic pathway but inhibits DNA fragmentation factor 40/caspase-activated DNase endonuclease in human Jurkat cells. Mol Cancer Ther, 2006. 5(4): p. 927-34. 97. Anto, R.J., et al., Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis, 2002. 23(1): p. 143-50. 98. Singh, M. and N. Singh, Molecular mechanism of curcumin induced cytotoxicity in human cervical carcinoma cells. Mol Cell Biochem, 2009. 325(1-2): p. 107-19. 99. Choudhuri, T., et al., Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett, 2002. 512(1-3): p. 334-40. 100. Chen, C.N., C.L. Wu, and J.K. Lin, Propolin C from propolis induces apoptosis through activating caspases, Bid and cytochrome c release in human melanoma cells. Biochem Pharmacol, 2004. 67(1): p. 53-66. 101. Hung, W.C., et al., Skp2 overexpression increases the expression of MMP-2 and MMP-9 and invasion of lung cancer cells. Cancer Lett, 2010. 288(2): p. 156-61. 102. Schumm, K., et al., Regulation of p53 tumour suppressor target gene expression by the p52 NF-kappaB subunit. EMBO J, 2006. 25(20): p. 4820-32. 103. Zhang, L. and C. Wang, F-box protein Skp2: a novel transcriptional target of E2F. Oncogene, 2006. 25(18): p. 2615-27. 104. Reichert, M., et al., Phosphoinositide-3-kinase signaling controls S-phase kinase-associated protein 2 transcription via E2F1 in pancreatic ductal adenocarcinoma cells. Cancer Res, 2007. 67(9): p. 4149-56. 105. Aggarwal, B.B., et al., Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res, 2005. 11(20): p. 7490-8. 106. Yoon, H. and R.H. Liu, Effect of selected phytochemicals and apple extracts on NF-kappaB activation in human breast cancer MCF-7 cells. J Agric Food Chem, 2007. 55(8): p. 3167-73. 107. Cai, X.Z., et al., Curcumin suppresses proliferation and invasion in human gastric cancer cells by downregulation of PAK1 activity and cyclin D1 expression. Cancer Biol Ther, 2009. 8(14): p. 1360-8. 108. Li, M., et al., Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Res, 2007. 67(5): p. 1988-96. 109. Yu, S., et al., Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism. Mol Cancer Ther, 2008. 7(9): p. 2609-20. 110. Squires, M.S., et al., Relevance of mitogen activated protein kinase (MAPK) and phosphotidylinositol-3-kinase/protein kinase B (PI3K/PKB) pathways to induction of apoptosis by curcumin in breast cells. Biochem Pharmacol, 2003. 65(3): p. 361-76. 111. Lev-Ari, S., et al., Inhibition of pancreatic and lung adenocarcinoma cell survival by curcumin is associated with increased apoptosis, down-regulation of COX-2 and EGFR and inhibition of Erk1/2 activity. Anticancer Res, 2006. 26(6B): p. 4423-30. 112. Di, G.H., et al., [Analysis of anti-proliferation of curcumin on human breast cancer cells and its mechanism]. Zhonghua Yi Xue Za Zhi, 2003. 83(20): p. 1764-8. 113. Himelstein, B.P., et al., Induction of fibroblast 92 kDa gelatinase/type IV collagenase expression by direct contact with metastatic tumor cells. J Cell Sci, 1994. 107 ( Pt 2): p. 477-86. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/32696 | - |
| dc.description.abstract | 在女性的罹癌率中,乳癌是最常見的癌症,而其死亡率是女性癌症中的第二位。乳癌可以簡單的被分為三類,分別是:有表現雌激素接受器 (ER-positive),或者是在HER2蛋白質方面有過度表現,最後一種是既沒有表現雌激素接受器也沒有HER2蛋白質過度表現的現象。現今已經有了可以分別針對雌激素接受器或是HER2蛋白過度表現的乳癌的治療方式,稱做標靶治療 (Target therapy),像是tamoxifen和Transtuzmab (herceptin)。然而在雌激素接受器和HER2兩者都呈現陰性的乳癌方面,則是沒有任何專一性的藥物可用於治療。現在第二型S週期激酶相關蛋白 (S phase kinase-associated protein 2,Skp2)被普遍認為是一種原致癌基因 (proto-oncoprotein),在許多的研究中證明,第二型S周期激酶相關蛋白 (Skp2)會藉由泛素 (ubiquitin)參與在p27kip1蛋白降解的過程中,使p27蛋白的表現量減少。
臨床研究上發現,在雌激素接受器陰性和HER2陰性的乳癌中,大部分都有Skp2過度表現的現象,約佔了61-67%,而在雌激素接受器陽性的乳癌中,有15-23%的病患有Skp2過度表現的情形,也佔了相當高的比例。此外,在近年來的研究中發現,Skp2過度表現在抗雌激素治療無效的過程中扮演了非常重要的角色。然而,目前還沒有專一性的標靶藥物可用於抑制Skp2的表現。 薑黃素 (curcumin)已經被廣泛的報導出具有抗發炎、抗氧化、抑制生長和抗血管新生的功能。除此之外,有很多的研究也指出,在許多種類的癌症中,薑黃素可以有效的去抑制癌細胞的生長。根據這些研究的成果顯示薑黃素可以當成癌症化學預防及化學治療的藥物。 在本文的研究中,我們使用Skp2和HER2都過度表現的乳癌細胞MDA-MB-231/Her2做實驗,去觀察薑黃素對於這株乳癌細胞在細胞增殖、細胞週期調控、促進細胞凋亡,以及一些相關分子的改變會造成怎樣的影響。我們藉由流式細胞儀去分析薑黃素在細胞週期以及細胞凋亡方面所造成的改變。根據其結果,發現到在加入薑黃素之後,隨著劑量不同會有不一樣的影響。在30μM時,會使細胞停留在細胞週期中的G1階段,而在加入50μM的薑黃素後,則是可以看到有效的使細胞走向細胞凋亡。接著我們進一步的去觀察薑黃素對那些調控細胞週期的蛋白質表現量所造成的改變。我們發現了薑黃素會增加細胞中p27Kip1蛋白,同時會減少Skp2、cyclin E和CDK激酶蛋白的表現量,而且這樣的改變會隨著時間拉長和劑量的增加越趨於明顯。這樣的結果也指出Skp2 和p27蛋白質有參與在薑黃素抑制細胞增殖的過程中,並且扮演著重要的角色。另外,隨著加入的薑黃素劑量的增加,走向細胞凋亡的細胞會越來越多,這樣的改變跟活化的caspase 3和PARP蛋白量增加有關。值得注意的是,在本篇研究中,我們透過反轉錄聚合酶鏈式反應 (RT-PCR)發現了薑黃素可以藉由減少Skp2 mRNA的表現量進而有效的去降低Skp2蛋白質的表現量。 綜合這些結果我們得到了結論,不同劑量的薑黃素在乳癌細胞中,可藉由調控與細胞週期相關分子的蛋白表現量和活化的caspase 3和PARP蛋白表現量,分別引發細胞週期停滯和細胞凋亡。薑黃素也可直接藉由抑制mRNA的表現量的方式去降低Skp2蛋白質的表現。根據我們的研究成果,我們認為薑黃素或許可以有效的被利用於乳癌的治療,特別是在具有Skp2過度表現的乳癌中。 | zh_TW |
| dc.description.abstract | In women, breast cancer is the most common cancer, and the secondary occasion of cancer-related deaths. It can simply divide breast cancer into estrogen receptor-positive (ER-positive) and HER2-overexpression or both ER and HER2 negative. Target therapies, which are direct against estrogen receptor and HER2 amplification are existence. Nevertheless, there is no specific therapy which has been identified in tumors that are both ER and HER2 negative. The S-phase kinase-associated protein Skp2 is presumed a proto-oncogene. It has been reported involving in the ubiquitin mediated degradation of p27. In clinical studies, Skp2 overexpression is in the majority in ER/HER2-negative tumor, about 61-67%. And it is also expressed in 15-23% of the ER-positive tumor. In present studies, Skp2 may play an important role in antiestrogens resistance. However, there is no drug which can specific target to Skp2 right now. Curcumin has been reported that it has the functions of anti-inflammatory, antioxidant, antiproliferative, and antiangiogenic. Moreover, there are numerous studies which establish that curcumin can retard proliferation of many kinds of cancer. These data indicated that curcumin may be used as a possible chemoprotective or chemotherapeutic agent.
Here, we measured the effect of curcumin on human breast cancer cell (MDA-MB-231/HER2) proliferation, cell cycle regulation and apoptosis induction and associated molecular alterations. Flow cytometric analysis was used to analyze the effects of curcumin on cell cycle and quantify apoptosis. Curcumin treatment of these cells resulted in a G1 arrest at lower dosage (30 μM), and a significant apoptosis at higher dosage (50 μM). We examined the effects of curcumin on cell cycle regulatory protein expression. We found that curcumin increased p27Kip1 and decreased Skp2, Cyclin E, CDK kinases in a time- and dose-dependent manner, suggesting that p27Kip1 and Skp2 may be involved in the growth inhibition by curcumin in MDA-MB-231/HER2 cells. Furthermore, curcumin showed a dose-dependent apoptotic death in MDA-MB-231/HER2 cells which was related to cleaved forms of PARP and caspase 3. Moreover, curcumin repressed the mRNA level of Skp2 which was detected by reverse transcription polymerase chain reaction (RT-PCR). Together, these results suggest that curcumin can trigger cell cycle arrest and apoptosis at different dosages by regulating cell cycle associated molecular expression and activating PARP and cleaved caspase 3. Besides, the result of reverse transcription polymerase chain reaction (RT-PCR) demonstrated that curcumin reduced the expression level of Skp2 protein on the transcription level. In addition, our findings indicate that curcumin is of potential value for the chemoprevention of breast cancer, especially in breast cancer with Skp2 overexpression. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-13T04:13:40Z (GMT). No. of bitstreams: 1 ntu-100-R98442021-1.pdf: 3698970 bytes, checksum: 28484071e1f357b1c6ce0f4a829799b1 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 致謝……………………………………………………………… i
中文摘要 .……………………………………………………… iii Abstract ……………………………………………………… v Abbreviations…………………………………………………… viii Table of Contents……………………………………………… x List of Figures………………………………………………… xi Introduction ………………………………………………… 1 Materials and Methods ……………………………………… 18 Results ……………………………………………………… 24 Discussion …………………………………………………… 32 Figures ………………………………………………………… 37 References …………………………………………………… 55 | |
| dc.language.iso | en | |
| dc.subject | 薑黃素 | zh_TW |
| dc.subject | 乳癌 | zh_TW |
| dc.subject | breast cancer | en |
| dc.subject | curcumin | en |
| dc.title | 薑黃素使乳癌細胞產生細胞週期停滯和走向細胞凋亡 | zh_TW |
| dc.title | Curcumin induces cell cycle arrest and apoptosis in breast cancer cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林榮耀,蕭水銀,徐麗芬,李宣佑 | |
| dc.subject.keyword | 薑黃素,乳癌, | zh_TW |
| dc.subject.keyword | curcumin,breast cancer, | en |
| dc.relation.page | 70 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-07-28 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
